You have collected your data, loaded it into Matlab, analyzed everything to death, and now you want to make a simple map showing how it relates to the world.
But you can't.
Instead you have to figure out how to save all your data, and then read it into another program (like, for example GMT), and then spend all that extra time figuring out why it doesn't give you what you expected it would...or you can invest in Matlab's own mapping toolbox (with a similarly steep learning curve)... or not!
M_Map is a set of mapping tools written for Matlab (it also works under Octave). M_Map includes:
You can download the M_Map toolbox either as a gzipped tar-file , or as zip archive (Click on these links to download). If you are unpacking the zip file MAKE SURE YOU ALSO UNPACK SUBDIRECTORIES! Both are around 650k in size. Once you have this archive, read the Getting started section of the User's guide to correctly install this toolbox, and sections 8.6 and 9.3 to install ETOPO1 and GSHHS respectively.
A number of examples are available to highlight the various capabilities of M_Map (thumbnails are shown above).
M_Map is a programming toolbox. However, you can also explore mapping using MAP-LAB, a a MATLAB-based Graphical User Interface (GUI) designed to produce maps and visualize data sets related to geodetic, geophysical and oceanographic applications, which is built on top of M_Map. MAP_Lab is available here.
New in release 1.4m (Feb/2020):
m_ginput
to assist in mouse-driven point selection. m_coord
so you can use the 13th IGRF model for geomagnetic coordinates at any date between 1900 and 1925.m_mag2geo
and m_geo2mag
that made them work incorrectly in some circumstances, and added
documentation about their use to the users guide.m_northarrow
to show the direction of north. m_windrose
to show wind rose diagrams on the map. New in release 1.4k (Mar/2019):
m_image
!New in release 1.4j (May/2018):
m_shadedrelief
.m_utmgrid
New in release 1.4i (Jan/2018):
m_grid
, as well as many
minor graphics improvements.
m_windbarb
and m_streamline
for meteorologists, also m_scatter
.
m_colmap
, including a perceptually uniform "jet-like" colourmap.
m_contfbar
made to work with contourf
plots.
m_annotation
and wysiwyg
to help you add arrows and things.New in release 1.4h (Nov/2017) are
m_gshhs
.
New in release 1.4g (Jan/2014) are
m_ellipse.m
to plot tidal ellipses (say, from T_Tide )
dataaspectratio
axes property that affects pretty much everything graphical. This version of
M_Map has a workaround that MOSTLY works, but it would
be better to avoid using 2013b.
New in release 1.4f (May/2012) are
m_shaperead.m
to read SHAPEFILES! (so Natural Earth can be
used for political boundaries instead of DCW, among other opportunities) New in release 1.4e (May/2010)
m_gshhs.m
New in release 1.4d (Oct/2007) are
contourf
New in release 1.4b (Jun/2006) are
m_fdist, m_idist
, and m_geodesic
for geodesics on an ellipsoidal
earth.New in release 1.4 (Nov/2005) are
m_pcolor
m_coord
(to allow for geographic and geomagnetic coordinate
systems)m_proj('ortho','lat',48','long',-123'); m_coast('patch','r'); m_grid('linest','-','xticklabels',[],'yticklabels',[]); patch(.55*[-1 1 1 -1],.25*[-1 -1 1 1]-.55,'w'); text(0,-.55,'M\_Map','fontsize',25,'color','b',... 'verticalalignment','middle','horizontalalignment','center');
m_proj('lambert','long',[-160 -40],'lat',[30 80]); m_coast('patch',[1 .85 .7]); m_elev('contourf',[500:500:6000]); m_grid('box','fancy','tickdir','in'); colormap(flipud(copper));
% Note that coastline is drawn OVER the grid because of the order in which % the two routines are called m_proj('stereographic','lat',90,'long',30,'radius',25); m_elev('contour',[-3500:1000:-500],'edgecolor','b'); m_grid('xtick',12,'tickdir','out','ytick',[70 80],'linest','-'); m_coast('patch',[.7 .7 .7],'edgecolor','r');
subplot(211); Slongs=[-100 0;-75 25;0 45; 25 145;45 100;145 295;100 295]; Slats= [ 8 80;-80 8; 8 80;-80 8; 8 80;-80 0; 0 80]; for l=1:7 m_proj('sinusoidal','long',Slongs(l,:),'lat',Slats(l,:)); m_grid('fontsize',6,'xticklabels',[],'xtick',[-180:30:360],... 'ytick',[-80:20:80],'yticklabels',[],'linest','-','color',[.7 .7 .7]); m_coast('patch','g'); end xlabel('Interrupted Sinusoidal Projection of World Oceans'); % In order to see all the maps we must undo the axis limits set by m_grid calls: set(gca,'xlimmode','auto','ylimmode','auto'); subplot(212); Slongs=[-100 43;-75 20; 20 145;43 100;145 295;100 295]; Slats= [ 0 90;-90 0;-90 0; 0 90;-90 0; 0 90]; for l=1:6 m_proj('mollweide','long',Slongs(l,:),'lat',Slats(l,:)); m_grid('fontsize',6,'xticklabels',[],'xtick',[-180:30:360],... 'ytick',[-80:20:80],'yticklabels',[],'linest','-','color','k') m_coast('patch',[.6 .6 .6]); end xlabel('Interrupted Mollweide Projection of World Oceans'); set(gca,'xlimmode','auto','ylimmode','auto');
%% Nice looking data [lon,lat]=meshgrid([-136:2:-114],[36:2:54]); u=sin(lat/6);
v=sin(lon/6); m_proj('oblique','lat',[56 30],'lon',[-132 -120],'aspect',.8); subplot(121); m_coast('patch',[.9 .9 .9],'edgecolor','none'); m_grid('tickdir','out','yaxislocation','right',... 'xaxislocation','top','xlabeldir','end','ticklen',.02); hold on; m_quiver(lon,lat,u,v); xlabel('Simulated surface winds'); subplot(122); m_coast('patch',[.9 .9 .9],'edgecolor','none');
m_grid('tickdir','out','yticklabels',[],... 'xticklabels',[],'linestyle','none','ticklen',.02); hold on; [cs,h]=m_contour(lon,lat,sqrt(u.*u+v.*v)); clabel(cs,h,'fontsize',8); xlabel('Simulated something else');
% Plot a circular orbit lon=[-180:180]; lat=atan(tan(60*pi/180)*cos((lon-30)*pi/180))*180/pi; m_proj('miller','lat',82); m_coast('color',[0 .6 0]); m_line(lon,lat,'linewi',3,'color','r'); m_grid('linestyle','none','box','fancy','tickdir','out'); m_northarrow(-150,0,40,'type',4,'linewi',.5);
m_proj('lambert','lon',[-10 20],'lat',[33 48]); [CS,CH]=m_etopo2('contourf',[-5000:500:0 250:250:3000],'edgecolor','none'); m_grid('linestyle','none','tickdir','out','linewidth',3); colormap([ m_colmap('blues',80); m_colmap('gland',48)]); brighten(.5); ax=m_contfbar(1,[.5 .8],CS,CH); title(ax,{'Level/m',''}); % Move up by inserting a blank line
m_vec; % See code in m_vec.m for details
% Example showing the default coastline and all of the different resolutions % of GSHHS coastlines as we zoom in on a section of Prince Edward Island. clf axes('position',[.35 .6 .37 .37]); m_proj('albers equal-area','lat',[40 60],'long',[-90 -50],'rect','on'); m_coast('patch',[0 1 0]); m_grid('linestyle','none','linewidth',2,'tickdir','out',... 'xaxisloc','top','yaxisloc','right','fontsize',6); m_text(-69,51,'Standard coastline','color','r','fontweight','bold'); m_ruler([.5 .9],.8,3,'fontsize',8) axes('position',[.09 .5 .37 .37]); m_proj('albers equal-area','lat',[40 54],'long',[-80 -55],'rect','on'); m_gshhs_c('patch',[.2 .8 .2]); m_grid('linestyle','none','linewidth',2,'tickdir','out',... 'xaxisloc','top','fontsize',6); m_text(-80,52.5,'GSHHS\_C (crude)','color','m','fontweight','bold'); m_ruler([.5 .9],.8,2,'fontsize',8); axes('position',[.13 .2 .37 .37]); m_proj('albers equal-area','lat',[43 48],'long',[-67 -58],'rect','on'); m_gshhs_l('patch',[.4 .6 .4]); m_grid('linestyle','none','linewidth',2,'tickdir','out','fontsize',6); m_text(-66.5,43.5,'GSHHS\_L (low)','color','m','fontweight','bold'); m_ruler([.5 .9],.8,3,'fontsize',8); axes('position',[.35 .05 .37 .37]); m_proj('albers equal-area','lat',[45.8 47.2],'long',[-64.5 -62],'rect','on'); m_gshhs_i('patch',[.5 .6 .5]); m_grid('linestyle','none','linewidth',2,'tickdir','out',... 'yaxisloc','right','fontsize',6); m_text(-64.4,45.9,'GSHHS\_I (intermediate) ','color','m',... 'fontweight','bold','horizontalalignment','right'); m_ruler([.5 .8],.1,3,'fontsize',8); axes('position',[.5 .1 .37 .37]); m_proj('albers equal-area','lat',[46.375 46.6],'long',[-64.2 -63.7],'rect','on'); m_gshhs_h('patch',[.6 .7 .6]); m_grid('linestyle','none','linewidth',2,'tickdir','out',... 'xaxisloc','top','yaxisloc','right','fontsize',6); m_text(-64.18,46.4,'GSHHS\_H (high)','color','m','fontweight','bold'); m_ruler([.5 .8],.2,3,'fontsize',8); axes('position',[.55 .35 .37 .37]); m_proj('albers equal-area','lat',[46.55 46.65],'long',[-63.97 -63.77],'rect','on'); m_gshhs_f('patch',[.7 .9 .7]); m_grid('linestyle','none','linewidth',2,'tickdir','out',... 'xaxisloc','top','yaxisloc','right','fontsize',6); m_text(-63.95,46.56,'GSHHS\_F (full)','color','m','fontweight','bold'); m_ruler([.5 .8],.2,3,'fontsize',8);
m_proj('UTM','long',[-72 -68],'lat',[40 44]); m_gshhs_i('color','k'); m_grid('box','fancy','tickdir','in'); m_ruler(1.2,[.5 .8]); % fake up a trackline lons=[-71:.1:-67]; lats=60*cos((lons+115)*pi/180); dates=datenum(1997,10,23,15,1:41,zeros(1,41)); m_track(lons,lats,dates,'ticks',0,'times',4,'dates',8,... 'clip','off','color','r','orient','upright'); m_northarrow(-68.5,43.4,.4,'type',2);
m_proj('hammer','clong',170); m_grid('xtick',[],'ytick',[],'linestyle','-'); m_coast('patch','g'); m_line(100.5,13.5,'marker','square','color','r'); m_range_ring(100.5,13.5,[1000:1000:15000],'color','b','linewi',2); xlabel('1000km range rings from Bangkok');
bndry_lon=[-128.8 -128.8 -128.3 -128 -126.8 -126.6 -128.8]; bndry_lat=[49 50.33 50.33 50 49.5 49 49]; clf; m_proj('lambert','long',[-130 -121.5],'lat',[47 51.5],'rectbox','on'); m_gshhs_i('color','k'); % Coastline... m_gshhs_i('speckle','color','k'); % with speckle added m_line(bndry_lon,bndry_lat,'linewi',2,'color','k'); % Area outline ... m_hatch(bndry_lon,bndry_lat,'single',30,5,'color','k'); % ...with hatching added. m_grid('linewi',2,'linest','none','tickdir','out','fontsize',12); title({'Speckled Boundaries','for nice B&W presentation','(best in postscript format)'}); m_text(-128,48,{'Pacific','Ocean'},'fontsize',18); m_northarrow(-122.5,50.2,.8,'type',3,'linewi',2);
m_proj('miller','lat',[-77 77]); m_coast('patch',[.7 1 .7],'edgecolor','none'); m_grid('box','fancy','linestyle','-','gridcolor','w','backcolor',[.2 .65 1]); cities={'Cairo','Washington','Buenos Aires'}; lons=[ 30+2/60 -77-2/60 -58-22/60]; lats=[ 31+21/60 38+53/60 -34-45/60]; for k=1:3 [range,ln,lt]=m_lldist([-123-6/60 lons(k)],[49+13/60 lats(k)],40); m_line(ln,lt,'color','r','linewi',2); m_text(ln(end),lt(end),sprintf('%s - %d km',cities{k},round(range))); end; title('Great Circle Routes','fontsize',14,'fontweight','bold'); set(gcf,'color','w'); % Need to do this otherwise 'print' turns the lakes black
% This projection shows all the oceans connected to each other - the outside ring % is the Asian coastline (Thanks to M B-O for this idea) % otherwise its just an example of different map types. m_proj('azimuthal equal-area','radius',156,'lat',-46,'long',-95,'rot',30); ax1=subplot(2,2,1,'align'); m_coast('patch','r'); m_grid('xticklabel',[],'yticklabel',[],'linestyle','-','ytick',[-60:30:60]); ax2=subplot(2,2,2,'align'); m_elev('contourf',[-7000:1000:0 500:500:3000],'edgecolor','none'); colormap(ax2,[m_colmap('blues',70);m_colmap('gland',30)]); caxis(ax2,[-7000 3000]); m_grid('xticklabel',[],'yticklabel',[],'linestyle','-','ytick',[-60:30:60]); ax3=subplot(2,2,3,'align'); colormap(ax3,[m_colmap('blues',70);m_colmap('gland',30)]); caxis(ax3,[-7000 3000]); m_elev('image'); m_grid('xticklabel',[],'yticklabel',[],'linestyle','-','ytick',[-60:30:60]); ax4=subplot(2,2,4,'align'); colormap(ax4,[m_colmap('blues')]); caxis(ax4,[-8000 000]); m_elev('shadedrelief','gradient',.5); m_coast('patch',[.7 .7 .7],'edgecolor','none'); m_grid('xticklabel',[],'yticklabel',[],'linestyle','-','ytick',[-60:30:60]); ha = axes('Position',[0 0 1 1],'Xlim',[0 1],'Ylim',[0 1],'Box','off',... 'Visible','off','Units','normalized', 'clipping' , 'off'); text(0.5, 0.98,'This projection shows all oceans connected to each other',... 'horiz','center','fontsize',20);
% get delta-SA data from the TEOS-10 gsw atlas at 2500 dbar [LG,LT]=meshgrid(0:360,-86:89); dSA=ones(size(LG)); dSA(:)=gsw_deltaSA_atlas(3000*dSA(:),LG(:),LT(:)); % Rearrange data to lie in the longitude limits I give for the % projection ind=[31:361 1:30]; % Move left side to right dSA=dSA(:,ind); LT=LT(:,ind); LG=LG(:,ind);LG(LG>30)=LG(LG>30)-360; %...and subtract 360 to some longitudes clf; m_proj('robinson','lon',[-330 30]); m_pcolor(LG,LT,dSA*1000); m_coast('patch',[.7 .7 .7],'edgecolor','none'); m_grid('tickdir','out','linewi',2); % This is a perceptually uniform jet-like color scale, but in m_colmap % we can add some simple graduated steps to make the pcolor look a little % more like a contourf colormap(m_colmap('jet','step',10)); h=colorbar('northoutside'); title(h,'\deltaSA/(g/kg) at 2000 dbar','fontsize',14); set(h,'pos',get(h,'pos')+[.2 .05 -.4 0],'tickdir','out') set(gcf,'color','w'); % Need to do this otherwise 'print' turns the lakes black
load /ocean/rich/home/dens14/VENTS lp=load('/ocean/rich/home/dens14/Linep_201402'); m_proj('lambert','long',[-160 -115],'lat',[32 60]); [CS,CH]=m_etopo2('contourf',[-7000:1000:-1000 -500 -200 0 ],'edgecolor','none'); m_gshhs_f('patch',[.7 .7 .7],'edgecolor','none'); h1=m_line(vents.lon,vents.lat,'marker','s','color',[0 .5 0],... 'linest','none','markerfacecolor','w','clip','point'); h2=m_line(lp.POS(:,2),lp.POS(:,1),'marker','o','color','r','linewi',2,... 'linest','none','markersize',8,'markerfacecolor','w'); m_grid('linest','none','tickdir','out','box','fancy','fontsize',16); legend([h1(1),h2(1)],'Known Hydrothermal vents','Line-P Stations','location','southwest'); colormap(m_colmap('blues')); caxis([-7000 000]); [ax,h]=m_contfbar([.55 .75],.8,CS,CH,'endpiece','no','axfrac',.05); title(ax,'meters') set(gcf,'color','w'); % otherwise 'print' turns lakes black
m_proj('lambert','lat',[5 24],'long',[105 125]); set(gcf,'color','w') % Set background colour before m_image call caxis([-6000 0]); colormap(flipud([flipud(m_colmap('blues',10));m_colmap('jet',118)])); m_etopo2('shadedrelief','gradient',3); m_gshhs_i('patch',[.8 .8 .8]); m_grid('box','fancy'); ax=m_contfbar(.97,[.5 .9],[-6000 0],[-6000:100:000],'edgecolor','none','endpiece','no'); xlabel(ax,'meters','color','k');
m_proj('utm','ellipse','grs80','zone',10,'lat',[49+15.7/60 49+21/60],... 'long',[-123-15/60 -123-3/60]); % Uses multibeam bathymetry with 10m horizontal resolution % Already regularly gridded in UTM coords with vector x2/y2, and % matrix Z2. caxis([-150 0]); colormap([m_colmap('water',128)]); m_shadedrelief(x2,y2,-Z2,'lightangle',-45,'gradient',8,'coord','z'); % Add some contours hold on; [cs,h]=contour(x2,y2,Z2,[0:20:150],'color','k'); clabel(cs,h,'fontsize',6); hold off; % Land parts from a previously saved high-resolution coastline col=[255 214 140]/255; % CHS chart land colour m_usercoast('/ocean/rich/more/mmapbase/bcgeo/PNW.mat','patch',col); m_usercoast('/ocean/rich/more/mmapbase/bcgeo/PNWrivers.mat','patch',col); % Lat/long AND a UTM grid m_grid('tickdir','out','fontsize',12,'linest','none','xaxisloc','top','yaxisloc','right'); m_utmgrid('xcolor','b','ycolor','b','linest','-'); m_ruler([.5 .8],.9,'tickdir','out','ticklen',[.007 .007]); m_northarrow(-123-4.5/60,49+19.5/60,1/60,'type',4,'aspect',1.5); xlabel('Vancouver Harbour','color','k');
clf;set(gcf,'color','w'); m_proj('oblique','lon',[-125.3 -122.6],'lat',[50.1 48.6] ,'dir','vert','aspect',0.45) % Database 1 coastline m_usercoast('/ocean/rich/more/mmapbase/bcgeo/PNW.mat',... 'patch',[.8 .8 .8],'edgecolor','k'); % Database 2 river m_usercoast('/ocean/rich/more/mmapbase/bcgeo/PNWrivers.mat',... 'patch',[.8 .8 .8],'edgecolor','k'); % Elevation database in structure SOGbath hold on; m_contourf(SOGbath.lon,SOGbath.lat,SOGbath.Z,[500 500],... 'edgecolor','none','facecolor',[.7 .7 .7]); hold off; m_grid('linewi',2,'tickdir','out','ticklen',.03,'linestyl','none','color','k'); m_northarrow(-125.4,49.7,.2,'type',2); title({'Winter','ONDJFM',' '},'fontsize',14); % Wind data in struct arrays - pass each parameter to M_WINDROSE as a 1xN % cell array of data in the order you want them plotted (ones on top later % in list) levels=[0:4:24]; % Binning for speeds k=[1 15 18 6 3 19 4 5 7 8 10 9 11 12 2 13 14 16 17 ]; % change order to % make overlaps look nicer m_windrose({Winter(k).lon},{Winter(k).lat},{Winter(k).wdir},{Winter(k).wspd},... 'size',.17,'nspeed',levels,'alpha',1); colormap(m_colmap('jet')); caxis([0 24]); axb=m_contfbar(.8,[.6 .9],levels,levels); axb.YLabel.String='Wind speeds m/s'; axb.YTick=levels;
% This command generates the figure % In each subplot title is the M_COLMAP call that % generated the colourmap displayed. % % Uses of these colourmaps can be seen % in other maps in this gallery. m_colmap demo
% NOAA/NASA Pathfinder AVHRR SST product % http://podaac.jpl.nasa.gov/sst/ [P,map]=imread('../m_mapWK/199911h54ma-gdm.hdf'); % Documentation for the 54km dataset gives % this formula for temperature P=0.15*double(P)-3; % deg C %...and defines this Lat/Long grid for the data Plat=90-.25-[0:359]*.5;Plon=-180+.25+[0:719]*.5; % Since the grid is rectangular in lat/long (i.e. not % really a projection at all, although it is included in % m_map under the name 'equidistant cyldindrical'), we % don't want to use the 'image' technique. Instead... % Create a grid, offsetting by half a grid point to account % for the flat pcolor [Plg,Plt]=meshgrid(Plon-0.25,Plat+0.25); m_proj('hammer-aitoff','clongitude',-150); % Rather than rearranging the data so its limits match the % plot I just draw it twice (you can see the join at 180W % because of the quirks of flat pcolor) (Note that % all the global projections have 360 deg ambiguities) m_pcolor(Plg,Plt,P);shading flat;colormap(map); hold on; m_pcolor(Plg-360,Plt,P);shading flat;colormap(map); m_coast('patch',[.6 1 .6]); m_grid('xaxis','middle'); % add a standard colorbar. h=colorbar('h'); set(get(h,'xlabel'),'string','AVHRR SST Nov 1999');
%Near-Real-Time SSM/I-SSMIS EASE-Grid Daily Global Ice Concentration and % Snow Extent, Version 5 % % Brodzik, M. J. and J. S. Stewart. 2016. Near-Real-Time SSM/I-SSMIS EASE-Grid % Daily Global Ice Concentration and Snow Extent, Version 5. Boulder, Colorado % USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. % doi: http://dx.doi.org/10.5067/3KB2JPLFPK3R. Q=hdfinfo('NISE_SSMISF18_20171124.HDFEOS') % Q.Attributes(2).Value says % UpperLeftPointMtrs=(-9036842.762500,9036842.762500) % LowerRightMtrs=(9036842.762500,-9036842.762500) % ProjParams=(6371228,0,0,0,0,90000000,0,0,0,0,0,0,0) % and % Q.Attributes(3).Value says % 'Data Value Parameter % 0 snow-free land % 1-100 sea ice concentration percentage % 101 permanent ice (Greenland, Antarctica) % 102 not used % 103 dry snow % 104 wet snow % 105-251 not used % 252 mixed pixels at coastlines (unable to reliably apply microwave algorithm) % 253 suspect ice value % 254 corners(undefined) % 255 ocean P=hdfread('NISE_SSMISF18_20171124.HDFEOS','Northern Hemisphere','fields','Extent'); P(P==255)=105; % Put ocean at top of indices P(P>105)=0; % According to web site this is is the projection info. I make te radius % of my map less than the actual data field though. m_proj('azimuthal equal-area','latitude',90,'radius',47,'rectbox','on'); clf % Plot data as an image offs=9036842.762500/6371228; % Convert projection coords to units of earth radii image([-offs offs],[offs -offs],P); set(gca,'ydir','normal'); colormap([.2 .5 .2; % 0 jet(100); % 1-100 1 1 1; % Greenland 0 0 0 ; .9 .9 .9; % dry snow .8 .8 .8; % wet snow 0 0 .5]); % 105 - now ocean caxis([0 105]); m_coast('color','k'); m_grid('linewi',2,'tickdir','out'); title({'SSM/I Ice cover Nov 24, 2017',''},'fontsize',14,'fontweight','bold'); hh=colorbar('h'); set(hh,'tickdir','out'); xlabel(hh,'% Ice cover');
% This image comes from the TerraServer % (http://terraserver.microsoft.com/ - now greatly altered) % and has been georeferenced to UTM coords. The UTM projection % uses UTM coordinates on the screen (as long as the ellipse % parameter is set to something other than the default), [P,map]=imread('../m_mapWK/oncehome.jpeg'); % Set the projection limits to the lat/long of image % corners. m_proj('UTM','long',[-71-6/60-30/3600 -71-4/60-43/3600],... 'lat',[42+21/60+13/3600 42+22/60+7/3600],'ellipse','wgs84'); clf; image([326400 328800],[4692800 4691200],P);set(gca,'ydir','normal'); m_grid('tickdir','out','linewi',2,'fontsize',14); title('A home for certain nerds','fontsize',16);
% Ocean colour data from http://seawifs.gsfc.nasa.gov/SEAWIFS.html % % Take a 4km weakly average dataset and plot a map for the Strait of % Georgia and outer coast. Note that most of this code is used % for reading in and subsetting the data. LATLIMS=[47 51]; LONLIMS=[-130 -121]; % Note - This is probably not the most efficient way to read and % handle HDF data, but I don't usually do this... % % First, get the attribute data PI=hdfinfo('../m_mapWK/A20040972004104.L3m_8D_CHLO_4KM'); % And write it into a structure pin=[]; for k=1:59 nm=PI.Attributes(k).Name;nm(nm==' ')='_'; if isstr(PI.Attributes(k).Value), pin=setfield(pin,nm,PI.Attributes(k).Value); else pin=setfield(pin,nm,double(PI.Attributes(k).Value)); end end; % lon/lat of grid corners lon=[pin.Westernmost_Longitude:pin.Longitude_Step:pin.Easternmost_Longitude]; lat=[pin.Northernmost_Latitude:-pin.Latitude_Step:pin.Southernmost_Latitude]; % Get the indices needed for the area of interest [mn,ilt]=min(abs(lat-max(LATLIMS))); [mn,ilg]=min(abs(lon-min(LONLIMS))); ltlm=fix(diff(LATLIMS)/pin.Latitude_Step); lglm=fix(diff(LONLIMS)/pin.Longitude_Step); % load the subset of data needed for the map limits given P=hdfread('../m_map/WKA20040972004104.L3m_8D_CHLO_4KM','l3m_data',... 'Index',{[ilt ilg],[],[ltlm lglm]}); % Convert data into log(Chla) using the equations given. Blank no-data. P=double(P); P(P==255)=NaN; P=(pin.Slope*P+pin.Intercept); % log_10 of chla LT=lat(ilt+[0:ltlm-1]);LG=lon(ilg+[0:lglm-1]); [Plg,Plt]=meshgrid(LG,LT); % FINALLY....Draw the map... clf; m_proj('lambert','lon',LONLIMS,'lat',LATLIMS); m_pcolor(Plg,Plt,P);shading flat; m_gshhs_i('color','k');; m_grid('linewi',2,'tickdir','out');; h=colorbar; set(get(h,'ylabel'),'String','Chla (\mug/l)'); set(h,'ytick',log10([.5 1 2 3 5 10 20 30]),'yticklabel',[.5 1 2 3 5 10 20 30],... 'tickdir','out'); title(['MODIS Chla ' ... datestr(datenum(pin.Period_Start_Year,1,0)+pin.Period_Start_Day) ... ' -> ' ... datestr(datenum(pin.Period_Start_Year,1,0)+pin.Period_End_Day) ],... 'fontsize',14,'fontweight','bold');
iday=156; % the day to show % use ncdisp(filename) to discover file contents... lat=ncread('uwnd.10m.gauss.2017.nc','lat'); lon=ncread('uwnd.10m.gauss.2017.nc','lon'); [LN,LT]=meshgrid(lon,lat); mtime=ncread('uwnd.10m.gauss.2017.nc','time')/24+datenum(1800,1,1,0,0,0); u=ncread('uwnd.10m.gauss.2017.nc','uwnd',[1,1,iday],[192,94,1]); v=ncread('vwnd.10m.gauss.2017.nc','vwnd',[1,1,iday],[192,94,1]); prate=ncread('prate.sfc.gauss.2017.nc','prate',[1,1,iday],[192,94,1]); m_proj('miller','lon',[100 260],'lat',[0 65]); m_coast('patch',[.8 .8 .8]); hold on [CS,CH]=m_contourf(LN,LT,prate'*1e3,[0.05:.05:.7],'edgecolor','none'); m_windbarb(LN,LT,u' ,v',2,'units','m/s','linewi',1,'color','r'); hold off; m_grid('box','fancy','tickdir','out'); ax=m_contfbar([.3 .7],.05,CS,CH); set(ax,'fontsize',12) xlabel(ax,'Mean Daily Precipitation Rate/(kg/m^2/s)'); title(['North Pacific Surface Winds : ' datestr(mtime(iday))],'fontsize',16); colormap(flipud(m_colmap('Blues')))
% Argo stuff % Go to: % http://www.usgodae.org/cgi-bin/argo_select.pl % Select area you want and date range, download all profiles % tar -xvzf them into directory... basname='./argo'; % base map m_proj('lambert','lons',[-150 -124],'lat',[40 60],'rectbox','on'); [cs,h]=m_etopo2('contourf',[-7000:500:0],'edgecolor','none'); m_gshhs_l('patch',[.5 .8 0],'edgecolor','none'); m_grid('linewi',2,'layer','top'); caxis([-7000 000]); m_contfbar(.92,[.2 .5],cs,h,'endpiece','no','axfrac',.02); colormap(m_colmap('blue')); title('Argo float trajectories NE Pacific (2017)'); % Add ARGO float trajectories % 1) draw a scale arrow vecscl=0.015; m_vec(vecscl ,-126,58,-0.01,0,'r','shaftwidth',2,'headlength',10,... 'key',{'1 cm/s','Mean Drift'},'centered','yes'); dirs=dir(basname); m=0; for k=3:length(dirs) profname=dir([dirs(k).folder '/' dirs(k).name]); for l=3:length(profname) fname=[profname(l).folder '/' profname(l).name '/' profname(l).name '_Rtraj.nc']; %ncdisp(fname); argo.id=ncread(fname,'PLATFORM_NUMBER'); argo.mtime=ncread(fname,'JULD')+datenum(1950,1,1); argo.lat=ncread(fname,'LATITUDE'); argo.lon=ncread(fname,'LONGITUDE'); % Long are stored between -180 and +180; this removes artificial % jumps which might happen just left of the map limits. argo.lon(argo.lon>0)=argo.lon(argo.lon>0)-360; ii=find(isfinite(argo.lon)); if any(ii ) m_line(argo.lon(ii),argo.lat(ii),'color',[0 0 0]); % Sometimes first point is an error of some sort so skip it Dlon=argo.lon(ii([2 end])); Dlat=argo.lat(ii([2 end])); t=diff(argo.mtime(ii([2 end]))); % time between the points % Distance between the points [d,a12]=m_idist(Dlon(1),Dlat(1),Dlon(2),Dlat(2)); % Store stuff m=m+1; spd(m)=d/(t*86400) ;% m/s % Find midpoint on geodesic and store as well [Clon(m),Clat(m),a21(m)]=m_fdist(Dlon(1),Dlat(1),a12,d/2); end end end Clon=rem(Clon-360,360); % Get it into the right range a21=rem(a21-180,360); % I need the opposite direction % Draw all the 'mean speed' arrows, centered at the midpoint of the % geodesic between first and last points. m_vec(vecscl ,Clon,Clat,spd.*sind(a21),spd.*cosd(a21),'r',... 'centered','yes','shaftwidth',2,'headlength',10);
fname='SAR_IMP_1PNESA19920724_190439_00000018C086_00199_05354_0000.h5'; %h5disp(fname) % See the structure titlestr=h5readatt(fname,'/metadata/MPH','STATE_VECTOR_TIME'); datsize=double([ h5readatt(fname,'/bands/Amplitude','raster_width') ... h5readatt(fname,'/bands/Amplitude','raster_height')]); tielat=h5read(fname,'/tie_point_grids/latitude'); tielon=h5read(fname,'/tie_point_grids/longitude'); stp=[h5readatt(fname,'/tie_point_grids/latitude','sub_sampling_x') ... h5readatt(fname,'/tie_point_grids/latitude','sub_sampling_y') ]; % Pull out a subsection in by [2000 2500] from one corner and in % [600 2000] from the opposite corner istart=[2000 2500]; strd=[3 3]; cnt=fix([(datsize(1)-istart(1)-600)/strd(1) (datsize(2)-istart(2)-2000)/strd(2)]); % ...and read. subimg=h5read(fname,'/bands/Amplitude',istart,cnt,strd); % ....smooth it a bit... subf=filter2(ones(3,3)/9,subimg); % Now generate lat/lon for all pixels by interpolating from % the tie points. Ty=[0:size(tielat,2)-1]*stp(2)+1; Tx=[0:size(tielat,1)-1]*stp(1)+1; Iy=istart(2)+[0:size(subimg,2)-1]*strd(2); Ix=istart(1)+[0:size(subimg,1)-1]*strd(1); sublat=interp2(Ty',Tx,tielat,Iy',Ix); sublon=interp2(Ty',Tx,tielon,Iy',Ix); % Now make the map m_proj('lambert','lon',[-123-25/60 -122-40/60],'lat',[48+42/60 49+9/60]); m_pcolor(sublon,sublat,subf);shading flat; m_grid('box','fancy','tickdir','out'); m_ruler(1.03,[.15 .5],'ticklen',[.01]); caxis([0 450]); colormap(gray); title(titlestr)
clat=[48+46/60 49+5/60];clon=[-125-15/60 -124-55/60]; % Barkley Sound %% Read data from a netcdf file fname='/ocean/rich/more/mmapbase/noaa_bc3/barkley_sound_1_navd88_2016.nc'; lat=ncread(fname,'lat'); lon=ncread(fname,'lon'); ilat=lat>=clat(1) & lat<=clat(2); ilon=lon>=clon(1) & lon<=clon(2); Z=ncread(fname,'Band1',[ find((ilon),1,'first') find((ilat),1,'first')],... [ sum(ilon) sum(ilat)],[1 1]); m_proj('equidistant','lon',clon,'lat',clat); % Projection % The shaded relief version (right hand plot)) subplot(1,2,2); caxis([-300 1210]); % 1210 chosen by manual adjustment % since 'waterline" appears to be at about Z=2 (vertical datum for % bathymetry is 'lowest normal tide') colormap([m_colmap('blues',32);m_colmap('gland',128)]); % Colormap sizes chosen because... % ... 32/128 = (300+2)/(1210-2) m_shadedrelief(lon(ilon),lat(ilat),Z'); m_grid('box','fancy','grid','none','fontsize',14); m_contfbar( [.3 .7],.98, Z',[-300:1210],... 'axfrac',.02,'endpiece','no','levels','match','edgecolor','none'); % The normal contour version (left hand plot)) subplot(1,2,1); m_contourf(lon(ilon),lat(ilat),Z',[-300:25:-25 2 50:50:200 300:100:1200 1210]); caxis([-300 1210]); colormap([m_colmap('blues',32);m_colmap('gland',128)]); m_grid('box','fancy','tickdir','out','grid','none','fontsize',14); m_contfbar( [.3 .7],.98, Z',[-300:25:-25 2 50:50:200 300:100:1200 1210],... 'axfrac',.02,'endpiece','no','levels','match');
% Axis limits lms=[ -123-[14 8]/60 49+[10 13.5]/60 ]; % plot_google_maps.m from the mathworks user contributed files database: % https://www.mathworks.com/matlabcentral/fileexchange/27627-zoharby-plot_google_map % accesses the static google maps map tiles, returning a lat/long gridded % image that is just bigger than the given limits. clf; axis(lms); [Glon,Glat,Gimg]=plot_google_map('maptype','satellite','refresh',0,'autoaxis',0); clf; % Now draw it! m_proj('utm','lat',lms(3:4),'lon',lms(1:2)); m_image(Glon,Glat,Gimg); m_grid('tickdir','out','box','fancy'); m_ruler([.4 .9],1.05,6,'tickdir','in','ticklen',.01);
If you decide that M_Map made a significant contribution to a project, and you want acknowledge that contribution with a citation (thanks!), I recommend something like the following:
A number of people have helped out with suggestions, code fixes, etc. I am especially grateful for the work done by E. Firing, D. Byrne, M. Mann, J. Pringle, J. E. Nilsen, M.Halverson, Jamie Tsoa, Shi Weiheng, and W. Brown who have all contributed code.