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Abstract

Here we describe the parallelization of the computer program XBeach.
XBeach is a two-dimensional model for wave propagation, long waves and
mean flow, sediment transport and morphological changes of the near-
shore area, beaches, dunes and back-barrier during storms. It is a public-
domain model that has been developed with funding and support by the
US Army Corps of Engineers, by a consortium of UNESCO-IHE, Delft
Hydraulics, Delft University of Technology and the University of Miami.
The typical run times of the program range from hours to days, so it
was decided to parallelize the program. The parallelization was done by
Willem Vermin at SARA and funded by NCF grant NRG-2007.06
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1 Description of the program XBeach

The program is written in Fortran90 and counts circa 12000 non-comment lines,
divided over 30 files. The program is reasonably well structured. The relevant
data is defined in about 100 arrays (1 to 4 dimensional). A number of subrou-
tines, each with a special function, acts at each time step upon the data. The
main subroutines are:

e timestep: determines an appropriate value for the next time step
e wave bc: wave boundary conditions update

e flow bc: flow boundary conditions update

e wave_stationary or wave timestep: to carry out wave time step
e flow timestep: to carry out flow time step

e transus: to carry out suspended transport time step

e bed update: to carry out bed level update

e varoutput: to output the desired results

These subroutines are repeatedly called after one another, to modify the arrays
describing the state of the system.

2 Description of the parallelization process

2.1 Choice of parallelization paradigm

The program acts on a number of arrays, each describing different aspects of
the same rectangular area. In general, to compute a new value of an array
element A(i,j), the values of A(i,j), A(i-1,j), A(1,j+1) and so on are needed,
along with the corresponding values of other arrays. Therefore a parallelization
scheme, involving the distribution of the data among the available processors
seems feasible Each processor would compute ’its’ piece and communicate the
borders with the neighbor processors.



2.2 Reorganizing the program

The program is written in fortran90, but not all features of fortran90 were
used. It was still possible to call a subroutine with wrong parameters (type or
number), without getting an error message from the compiler. Therefore, all
files were modified to generate a module, containing the relevant data and the
subroutines. This already uncovered some inconsistencies in the program.

The large number of variables made it difficult to keep the program in an
orderly state. The program contains several housekeeping routines such as: the
output routine, the allocation and initialization of the distributed data and the
creation of debug code. In these parts long lists describing actions on the vari-
ables were coded. Therefore it was decided to make this housekeeping more
simple and less error prone by creating a “code generating” program: makein-
cludes.

This method enables the possibility to refer to a variable by the ASCII
representation of its name, and to perform actions on all defined variables,
without having to know which variables there are. This simplified the code for
the output routine considerably, along with the code for the distribution and
collection of the data. It makes it also possible to create a routine that checks
the consistency of the data for all variables, very useful during debugging.

2.3 Distribution of data

It was decided that the data should be distributed among the processes in two
dimensions, as presented below:

0 3 6 9
1 4 7 10
2 5 8 11

This is a 3x4 distribution, using 12 processes. The numbers in the drawing
represent the enumeration of the processes, starting with zero (MPI convention).
During the computations, process 4 exchanges data with processes 1,3,7 and 5,
while process 9 only exchanges data with processes 6 and 10.

2.3.1 Some more details about the distribution of data

Call the global matrix A, dimensioned as A(M,N). Call the sub matrices a0, al
etc., each dimensioned as a0(m,n), al(m,n) etc, where m and n can be different



for each matrix a. In the same column the values of n are equal, in the same
row the values of m are equal. The matrices overlap, take as example a4:

e the first row contains the same information as the one before the last row
of the matrix above
ad(1,:) == a3(m-1,:)

e the last row (a4(m,:)) contains the same information as the second row of
the matrix below
ad(m,:) == ab(2,:)

e the first column contains the same information as the second last column
of the matrix left
ad(:,1) == al(:,n-1)

e the last column contains the same information as the one before the last
column of the matrix right
ad(:,n) == a7(:,2)

The matrices on the edges (a0,al,a3, etc.) do not share their edge(s) which are
part of the edges of matrix A with another matrix. The computing domain of
a matrix in the middle (a4 for example), shares the elements a4(2:m-1,2:n-1)
with A. For matrices on the edges for example the shared elements are al(2:m-
1,1:n-1). On each time step, the elements that are shared with A are computed,
and the second and second last columns of the little matrices are communicated
with the neighbors. For example the row a3(m-1,:) would be sent to the row
a4(1,:). In the program about 100 of these matrices are used, some of them with
one or two extra dimensions. However, only a relatively small number of these
arrays have to be communicated between processes.

2.4 Parallelization method used
2.4.1 Input and output

The input and output of data is performed by one process: the master process
with MPI rank zero. Depending on the properties of the data the following
methods are used to distribute the data:

e Broadcast: the data is copied as is to all processes (global variables, pa-
rameters of the system, etc.)

e Divide and distribute (all matrices that describe the state of the system
in a grid. The appropriate parts of matrix A (see above) are sent to the
processes)

Before the master process can output the data, it is collected from all processes.

Using one process for input and output has the advantage that the program
will also run on systems where only the master process has the capability to
read and write to a file system.



2.4.2 Defining the distribution parameters

At the start of the program, a suitable distribution scheme is determined. Given
the number of processes available (P) and the number of gridpoints in x and
y direction, the processorgrid is determined such that the total length of the
communication edges is minimized. The processorgrid is defined by two integers:
MP and NP. In the example above: P=12, MP=3, NP=4. Subsequently, the
dimensions of the local matrices (a0, al, a2 etc.) are determined, such that all
these matrices are as equal as possible in size.

2.4.3 Communication subroutines

A number of interface subroutines has been written, tailored to the problem at
hand, so that the actual MPI calls are not visible in the program. For example,
in stead of coding something like:

call MPI_Sendrecv(a(:,2), m, MPI_DOUBLE_PRECISION, &
neighbour_left, tag, &
a(:,n), m, MPI_DOUBLE_PRECISION, &
neighbour_right, tag, &
MPI_COMM_WORLD ,MPI_STATUS_IGNORE,&
ierror)

one can code as:
call xmpi_shift(a,’:n’)

meaning: get the last column of a filled in. This statement suffices to get
the last column of all matrices a updated.

2.4.4 Communication of data

The original program was checked for the places where communication is nec-
essary to maintain consistency. For example, if a matrix is updated, but the
border rows and columns are untouched, these rows and columns need to be
updated (i.e. received from the neighbors) to maintain consistency. Later in
this article we will dive somewhat more in the technical aspects.

3 Scalability results

The program was executed, using a standard test case: humptest.zip’. In this
example the size of the global matrices is 101x501. The Lisa system of SARA
! was used to run the scaling tests. The Lisa system is equipped with an in-
finiband network between the nodes. The MPI library is OpenMPI-1.2.6 2 the
Fortran90 compiler is gfortran®. Computing time of the serial program is about
5 minutes. The number of timesteps is lowered to speed up the scaling measure-
ments and development of the program. In practice, the program would run for
several hours.

Thttps://subtrac.sara.nl/userdoc/wiki/lisa/description
http://www.open-mpi.org/
3http://gce.gnu.org/fortran/
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Results using one processor per node. Each node has two one-core proces-
sors. The program scales up to 40 processes: he performance using 40 processes
is ca. 20 times the performance of the serial version.
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Results using 2 one-core processors per node. The speedup-curve is some-



what irregular (probably due to the load variations in the rest of the system:

Lisa is very heavily used), but the speedup is about the same as in the above

case, using only half the number of nodes.

running on 8-core nodes
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Results for running the program on nodes equipped with 2 quad-core nodes,
making 8 cores per node. Also here we observe a good scaling up to 40 processes
(using 5 nodes).

4 Conclusion

This parallelization was successful: usable scalability is 40 processes and prob-
ably more. The speedup is about 20 for a quite modest model. Larger models
will result in better scalability.

5 Technical details

Here is a detailed description about the parallelization method and the subrou-
tines that were created during the project.

5.1 General conventions

e Code that is only to be executed in the parallel version has to be sur-
rounded as following:

#ifdef USEMPI
call xmpi_shift(s%uu,’:1?)
call xmpi_shift(s%uu,’m:?’)




#endif

e Don’t use 'stop’ but call halt _program:

use xmpi_module

if (error = 1) then
stop ! wrong
call halt_program ! good
endif

e The following variables are available using xmpi module

| name | meaning | value in serial |
xmpi_rank MPI rank of this process 0
xmpi_ size number of processes 1
xmaster is this the master process? true.
xmpi__isleft is a(:,1) part of a global border? true.
xmpi_isright is a(:,n) part of a global border? true.
xmpi__istop is a(1,:) part of a global border? true.
xmpi__isbot is a(m,:) part of a global border? true.
xmpi_pcol | my column number in processor grid 1
xXmpi_ prow my row number in processor grid 1

e Take care that every input/output statement is done on master only,
maybe followed by a broadcast.

use xmpi_module
if (xmaster) then
write(*,*) ’Reading x’
read *,x
endif
call xmpi_bcast(x)

e Functions readkey int and readkey dbl are MPI-aware, but not readkey:

use readkey_module
timings = readkey_int (’params.txt’,’timings’,1,0,1)

if (xmaster) then ! for readkey, test is needed
call readkey(’params.txt’,’tsglobal’,fname)
open(10,file=fname)
read (10,*) x

endif

call xmpi_bcast(x)

5.2 Parallelization by code spotting

In the program, all relevant matrices are declared as a(l:nx+1,1:ny+1) and
have a place in a ’spacepars’ derived type. In the serial version there is one



such derived type, in the parallel version there are two: one called ’sglobal’
(often abbreviated as ’sg’), the other ’slocal’ (’sl’). sglobal is filled in on the
master process and has space for all data; slocal contains only the distributed
data. sglobal%nx and sglobal%ny are the dimensions of the global grid, whereas
slocal%nx and slocal%ny are the dimensions of the local distributed matrices.
Using this method there is no need to change anything at the code itself, one
only has to take care that data is communicated when appropriate. Below is
a table with examples of code patterns and the corresponding actions needed.
Here a and b are matrices that are distributed and divided. The dimensions are
(L:inx+1,1:ny+1).

| pattern | action
a = ..b ... No action needed
call xmpi_shift(a,’:17)
:,2: = -
a(:,2:ny) call xmpi_shift(1l,’:n?)
a(:,1) call xmpi_shift(a,’:17)

a(nx+1,:) = ... call xmpi_shift(a,’m:?’)

This one needs some special
attention. In the parallel case,
the first line has only meaning
in the matricesat the top.

The second line is ok for

the top matrices, but for

the other ones, a(2,:) must be
computed in thesame way

as a(3,:)

a(2,:) =
a(3:nx+1,:) =

In general, some actions are necessary when:

e a border column or row gets a special treatment, or is not assigned at all:
this is treated with a call to xmpi_ shift

e another row or column gets a special treatment. In that case one has to
take a good look at the code to find the appropriate action.

One must also take care that the corrections in the border rows and columns
are made before they are used. Of course, if one or more of the borders are
never actually used in such a way that it influences the output of the program,
the corresponding xmpi __shift is not necessary.

5.3 Some MPI related subroutines
The subroutines that interface to MPI are divided in three categories:

e general (general mpi.F90): this are subroutines that function regardless
the environment

e xmpi (xmpi.F90): subroutines that are aware of the parallel environment
of the program, they know about the layout of the matrices and know
about the communication patterns that are needed

e space (spaceparams.F90): subroutines that know about the data in a
spacepars “derived data type”



Some important subroutines and interfaces are listed here. The source code
contains instructions how to use them.

file: general mpi.F90, module: general mpi module

| name | function |
matrix_ distr distributes matrix
vector _distr _send distributes vector
matrix _coll collects matrix on master process
decomp computes optimal division
det submatrices | determines optimal sizes of matrices
shift_borders communicates all borders, obsolete

file: xmpi.F90, module: xmpi_module

| name | function |

xmpi__initialize initializes MPI
xmpi_finalize finalizes MPI

halt program halts program, serial and parallel

xmpi_ determine processor_grid determines processor grid

xmpi_bcast broadcast a variable

xmpi_ allreduce performs an MPI _Allreduce
xmpi_reduce performs an MPI Reduce
xmpi_ shift get values for border from neighbour
xmpi_ getrow get a row from another matrix

file: spaceparams.F90, module: spaceparams

| name | function
space__consistency for debugging, checks consistency
space__copy _scalars copies scalars from and to spacepars
space_distribute scalars distribute sclaras in spacepars
space_ distribute distributes matrices
space_shift _borders communicate all borders, obsolete
space_ collect collects spacepar variables on master
printsum debugging: prints sum of matrix elements

5.4 Code generation: program makeincludes

In some parts of the program, some kind of bookkeeping is necessary. This can
result in boring long pieces of code, difficult to maintain. For example: when
the data is read in by the master process, it needs to be distributed among the
processes. Since there are more than 100 variables defined in spacepars, at least
100 lines of code would be necessary, and it is all too easy to forget to distribute
a newly introduced variable. Therefore a code generating program is developed
- “makeincludes” - that reads a simple formatted file, and produces a number of
files to be included in the program. The following is now achieved:

e variables in spacepars are defined in one file: the name, the number of
dimensions, the dimensions self, and the desired method of distribution:
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see the file spaceparams.tmpl. This file also contains a description of the
layout desired.

automatic code generation for the declaration of the spacepars derived
type.

the possibility to get to the value of a variable by using it’s name in ASCII
(see the example program demo.F90). This proves to be very useful for
the subroutine varoutput (varoutput.F90)

it is easy to write a code that visits all the variables in spacepars, without
having to know which variables are available. This was very useful during
debugging and finding the cause of inconsistencies that creped in. (See for
example subroutine space_consistency in spaceparams.F90)

The program makeincludes generates the following files:

spacedecl.gen: contains the code needed for the declaration of a spacepars
derived type.

space _alloc_scalars.gen: allocates the simple variables in spacepars. This
is necessary, because now all variables in spacepars are declared as point-
ers.

space_alloc_arrays.gen: contains the code to allocate the 1,2,3 and 4
dimensional arrays in spacepars.

mnemonic.gen: defines variables with names like “mnem _E”: the variable
mnem__E is equal to the string ’E’. Furthermore, an array “mnemonics” is
defined with all names.

indextos.gen: contains code which, given an index, returns a derived type
with a pointer to the variable for which mnemonics(index) is equal to the
name in ASCII for the variable.

space_ind.gen, space_inp.gen: they define pointers to the variables in the
derived type. Primary goal is to make the code more readable.

chartoindex.gen: code to convert the name of a variable into an index

Furthermore there are some subroutines defined

chartoindex (mnemonic.F90): returns the index number of the name given

indextos (spaceparams.F90): returns a pointer to a variable with a given
index number

Program demo.F90 contains an example code to demonstrate how to use this.

11



5.5 Some notes about Fortran90 and MPI

Using MPT in Fortran90 needs some precautions. This is caused by the way
Fortran90 handles arrays when calling a non-Fortran90 subroutine (as is the
case with MPI). In Fortran77, the address of the first element of an array is
passed, in Fortran90, however, in general a pointer to the first element of a copy
of the array is passed. This is necessary because in general it is not possible to
tell if the array is contiguous, or a section of another array. For example:

subroutine demo(x)

real ,dimension (:,:) :: x

call MPI_Bcast(x,size (x),MPI_REAL,0 ,MPI COMM_WORLD)

! call MPI_ Bcast(x(1,1),size(x),MPI_REAL,0 ,MPI COMM_WORID)
end subroutine demo

program test
real , dimension (100,100) :: y

call demo(y(1:100:2,:))

In this example, MPI Bcast will be called with a copy of x, which is no
problem: Fortran90 takes care that after the MPI_Bcast the array is copied
back. The second MPI Bcast line would be in error, because the address of
x(1,1) would be passed, and MPI_Bcast would broadcast 50x100 elements,
contiguous, starting at x(1,1).

In general, Fortran90 will not make a copy if the array is contiguous, and
the second MPI Bcast would be OK if subroutine demo would be called like:

call demo(y)

So, in general, do not use an array-element as starting address of a buffer
(which is common practice in Fortran77), but use the whole array.
Another problem arises with non-blocking sends and receives:

subroutine demo(x)
real ,dimension (:,:) :: x
call MPI TIsend(x,size(x),MPI_REAL, ...) ! wrong

call MPI_Wait (...)

return

end subroutine demo

program test

real ,dimension (100,100) :: y

call demo(y(1:100:2,:))

This will in general give unexpected results. MPI Isend will get the address
of a copy of x, and return while the actual send is still pending. However, after
return of MPI_TIsend, Fortran90 will free the copy of x, so an invalid buffer
(the freed copy of x) will be sent. The same reasoning applies for MPI _Irecv:
MPI Irecv would result in receiving data in an invalid buffer. The actual
behaviour of the program is unpredictable.

The solution is to make sure that MPI _Tsend is working with the array itself,
so one has to make a copy:

12
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subroutine demo(x)

real , dimension (:,:) ::x

real , dimension (size(x,1),size(x,2)) :: xx
XX = X

call MPI TIsend(xx,size(xx),MPI_REAL, ...)

call MPI_Wait (...)

Another problem can exist using the MPI _Scatterv and the like subroutines.
These subroutines expect a description of the layout of the data (the so-called
counts and displacements arrays). Also in this case it is important to make sure
that the data is contiguous, otherwise the displacements can be invalid.

5.6 Compilation and running

The parallel code is developed on systems running Linux. Here follows a descrip-
tion how to compile and run the program. On Windows systems, the details
can differ.

5.6.1 Compilation
A Makefile is provided, in principle compilation is as easy as:

USEMPI=yes make install # produce a parallel version:
# xbeach.mpi

make clean

make install # produce a serial version:
# xbeach

to get the parallel and serial versions. They are installed in the directory
../bin . Important macro’s are:

| name | function |
USEMPI when defined: generate parallel program
USEMPE | when defined: produce trace files for jumpshot
F90 the fortran compiler to use

The Makefile is pretty simple, it should not be difficult to adapt to a local
situation. Do not define USEMPE for a production version of the program.

When compiling Fortran90 files, it is important to have correct dependen-
cies, especially when module files are generated (as is the case here) and when
one wants to run make in parallel (make -j) to speed up the compilation process.
Therefore a simple script has been made, makedepo, which takes care of depen-
dencies. It is called by the Makefile when no file named “DEPENDENCIES” is
present. One can force a re-generation of this file by

make dep

Other things one can make:

make clean # gets rid of .o and .mod files
# and test programs

make realclean # gets rid of everything except
# files needed for compilation

13



make testgenmodule # make program testgenmodule
# that tests the communicating
# subroutines.
# USEMPI must be defined

make demo # make program demo

Furthermore, a script 'maketags’ is provided, which produces a “tags™ file,
very useful in combination with the vim or emacs program editors.
5.6.2 Running the program
We give two examples, one for OpenMPI, one for MPICH2, to run the program
on 8 processes:

OpenMPI

mpiexec -n 8 directory-to-bin/xbeach.mpi

MPICH2

mpdboot [-n number-of-nodes -f file-with-node-names]
mpiexec -np 8 directory-to-bin/xbeach.mpi

4exuberant tags: http://ctags.sourceforge.net/
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