
Parallelization of the program XBeahWillem Vermin (SARA)∗Dano Roelvink (UNESCO)†2008-08-19AbstratHere we desribe the parallelization of the omputer program XBeah.XBeah is a two-dimensional model for wave propagation, long waves andmean �ow, sediment transport and morphologial hanges of the near-shore area, beahes, dunes and bak-barrier during storms. It is a publi-domain model that has been developed with funding and support by theUS Army Corps of Engineers, by a onsortium of UNESCO-IHE, DelftHydraulis, Delft University of Tehnology and the University of Miami.The typial run times of the program range from hours to days, so itwas deided to parallelize the program. The parallelization was done byWillem Vermin at SARA and funded by NCF grant NRG-2007.06Contents1 Desription of the program XBeah 22 Desription of the parallelization proess 22.1 Choie of parallelization paradigm 22.2 Reorganizing the program . 32.3 Distribution of data . 32.3.1 Some more details about the distribution of data 32.4 Parallelization method used . 42.4.1 Input and output . 42.4.2 De�ning the distribution parameters 52.4.3 Communiation subroutines 52.4.4 Communiation of data 53 Salability results 54 Conlusion 7
∗willlem�sara.nl
†d.roelvink�uneso-ihe.org

1

5 Tehnial details 75.1 General onventions . 75.2 Parallelization by ode spotting 85.3 Some MPI related subroutines . 95.4 Code generation: program makeinludes 105.5 Some notes about Fortran90 and MPI 125.6 Compilation and running . 135.6.1 Compilation . 135.6.2 Running the program . 141 Desription of the program XBeahThe program is written in Fortran90 and ounts ira 12000 non-omment lines,divided over 30 �les. The program is reasonably well strutured. The relevantdata is de�ned in about 100 arrays (1 to 4 dimensional). A number of subrou-tines, eah with a speial funtion, ats at eah time step upon the data. Themain subroutines are:
• timestep: determines an appropriate value for the next time step
• wave_b: wave boundary onditions update
• �ow_b: �ow boundary onditions update
• wave_stationary or wave_timestep: to arry out wave time step
• �ow_timestep: to arry out �ow time step
• transus: to arry out suspended transport time step
• bed_update: to arry out bed level update
• varoutput: to output the desired resultsThese subroutines are repeatedly alled after one another, to modify the arraysdesribing the state of the system.2 Desription of the parallelization proess2.1 Choie of parallelization paradigmThe program ats on a number of arrays, eah desribing di�erent aspets ofthe same retangular area. In general, to ompute a new value of an arrayelement A(i,j), the values of A(i,j), A(i-1,j), A(1,j+1) and so on are needed,along with the orresponding values of other arrays. Therefore a parallelizationsheme, involving the distribution of the data among the available proessorsseems feasible Eah proessor would ompute 'its' piee and ommuniate theborders with the neighbor proessors.

2

2.2 Reorganizing the programThe program is written in fortran90, but not all features of fortran90 wereused. It was still possible to all a subroutine with wrong parameters (type ornumber), without getting an error message from the ompiler. Therefore, all�les were modi�ed to generate a module, ontaining the relevant data and thesubroutines. This already unovered some inonsistenies in the program.The large number of variables made it di�ult to keep the program in anorderly state. The program ontains several housekeeping routines suh as: theoutput routine, the alloation and initialization of the distributed data and thereation of debug ode. In these parts long lists desribing ations on the vari-ables were oded. Therefore it was deided to make this housekeeping moresimple and less error prone by reating a �ode generating� program: makein-ludes.This method enables the possibility to refer to a variable by the ASCIIrepresentation of its name, and to perform ations on all de�ned variables,without having to know whih variables there are. This simpli�ed the ode forthe output routine onsiderably, along with the ode for the distribution andolletion of the data. It makes it also possible to reate a routine that heksthe onsisteny of the data for all variables, very useful during debugging.2.3 Distribution of dataIt was deided that the data should be distributed among the proesses in twodimensions, as presented below:
4

3

5

6

7

8

9

10

11

0

1

2This is a 3x4 distribution, using 12 proesses. The numbers in the drawingrepresent the enumeration of the proesses, starting with zero (MPI onvention).During the omputations, proess 4 exhanges data with proesses 1,3,7 and 5,while proess 9 only exhanges data with proesses 6 and 10.2.3.1 Some more details about the distribution of dataCall the global matrix A, dimensioned as A(M,N). Call the sub matries a0, a1et., eah dimensioned as a0(m,n), a1(m,n) et, where m and n an be di�erent3

for eah matrix a. In the same olumn the values of n are equal, in the samerow the values of m are equal. The matries overlap, take as example a4:
• the �rst row ontains the same information as the one before the last rowof the matrix abovea4(1,:) == a3(m-1,:)
• the last row (a4(m,:)) ontains the same information as the seond row ofthe matrix belowa4(m,:) == a5(2,:)
• the �rst olumn ontains the same information as the seond last olumnof the matrix lefta4(:,1) == a1(:,n-1)
• the last olumn ontains the same information as the one before the lastolumn of the matrix righta4(:,n) == a7(:,2)The matries on the edges (a0,a1,a3, et.) do not share their edge(s) whih arepart of the edges of matrix A with another matrix. The omputing domain ofa matrix in the middle (a4 for example), shares the elements a4(2:m-1,2:n-1)with A. For matries on the edges for example the shared elements are a1(2:m-1,1:n-1). On eah time step, the elements that are shared with A are omputed,and the seond and seond last olumns of the little matries are ommuniatedwith the neighbors. For example the row a3(m-1,:) would be sent to the rowa4(1,:). In the program about 100 of these matries are used, some of them withone or two extra dimensions. However, only a relatively small number of thesearrays have to be ommuniated between proesses.2.4 Parallelization method used2.4.1 Input and outputThe input and output of data is performed by one proess: the master proesswith MPI rank zero. Depending on the properties of the data the followingmethods are used to distribute the data:
• Broadast: the data is opied as is to all proesses (global variables, pa-rameters of the system, et.)
• Divide and distribute (all matries that desribe the state of the systemin a grid. The appropriate parts of matrix A (see above) are sent to theproesses)Before the master proess an output the data, it is olleted from all proesses.Using one proess for input and output has the advantage that the programwill also run on systems where only the master proess has the apability toread and write to a �le system.

4

2.4.2 De�ning the distribution parametersAt the start of the program, a suitable distribution sheme is determined. Giventhe number of proesses available (P) and the number of gridpoints in x andy diretion, the proessorgrid is determined suh that the total length of theommuniation edges is minimized. The proessorgrid is de�ned by two integers:MP and NP. In the example above: P=12, MP=3, NP=4. Subsequently, thedimensions of the loal matries (a0, a1, a2 et.) are determined, suh that allthese matries are as equal as possible in size.2.4.3 Communiation subroutinesA number of interfae subroutines has been written, tailored to the problem athand, so that the atual MPI alls are not visible in the program. For example,in stead of oding something like:all MPI_Sendrev(a(:,2), m, MPI_DOUBLE_PRECISION , &neighbour_left, tag , &a(:,n), m, MPI_DOUBLE_PRECISION , &neighbour_right, tag , &MPI_COMM_WORLD,MPI_STATUS_IGNORE ,&ierror)one an ode as:all xmpi_shift(a,':n')meaning: get the last olumn of a �lled in. This statement su�es to getthe last olumn of all matries a updated.2.4.4 Communiation of dataThe original program was heked for the plaes where ommuniation is ne-essary to maintain onsisteny. For example, if a matrix is updated, but theborder rows and olumns are untouhed, these rows and olumns need to beupdated (i.e. reeived from the neighbors) to maintain onsisteny. Later inthis artile we will dive somewhat more in the tehnial aspets.3 Salability resultsThe program was exeuted, using a standard test ase: 'humptest.zip'. In thisexample the size of the global matries is 101x501. The Lisa system of SARA1 was used to run the saling tests. The Lisa system is equipped with an in-�niband network between the nodes. The MPI library is OpenMPI-1.2.6 2 theFortran90 ompiler is gfortran3. Computing time of the serial program is about5 minutes. The number of timesteps is lowered to speed up the saling measure-ments and development of the program. In pratie, the program would run forseveral hours.1https://subtra.sara.nl/userdo/wiki/lisa/desription2http://www.open-mpi.org/3http://g.gnu.org/fortran/ 5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

one process per node

speedup
optimal

Results using one proessor per node. Eah node has two one-ore proes-sors. The program sales up to 40 proesses: he performane using 40 proessesis a. 20 times the performane of the serial version.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

two processes per node

speedup
optimal

Results using 2 one-ore proessors per node. The speedup-urve is some-6

what irregular (probably due to the load variations in the rest of the system:Lisa is very heavily used), but the speedup is about the same as in the abovease, using only half the number of nodes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

running on 8-core nodes

speedup
optimal

Results for running the program on nodes equipped with 2 quad-ore nodes,making 8 ores per node. Also here we observe a good saling up to 40 proesses(using 5 nodes).4 ConlusionThis parallelization was suessful: usable salability is 40 proesses and prob-ably more. The speedup is about 20 for a quite modest model. Larger modelswill result in better salability.5 Tehnial detailsHere is a detailed desription about the parallelization method and the subrou-tines that were reated during the projet.5.1 General onventions
• Code that is only to be exeuted in the parallel version has to be sur-rounded as following:#ifdef USEMPIall xmpi_shift(s%uu ,':1')all xmpi_shift(s%uu,'m:')7

#endif
• Don't use 'stop' but all halt_program:use xmpi_module.....if (error = 1) thenstop ! wrongall halt_program ! goodendif
• The following variables are available using xmpi_modulename meaning value in serialxmpi_rank MPI rank of this proess 0xmpi_size number of proesses 1xmaster is this the master proess? .true.xmpi_isleft is a(:,1) part of a global border? .true.xmpi_isright is a(:,n) part of a global border? .true.xmpi_istop is a(1,:) part of a global border? .true.xmpi_isbot is a(m,:) part of a global border? .true.xmpi_pol my olumn number in proessor grid 1xmpi_prow my row number in proessor grid 1
• Take are that every input/output statement is done on master only,maybe followed by a broadast.use xmpi_module.....if (xmaster) thenwrite(*,*) 'Reading x'read *,xendifall xmpi_bast(x)
• Funtions readkey_int and readkey_dbl are MPI-aware, but not readkey:use readkey_module....timings = readkey_int ('params.txt ','timings ',1,0,1)....if(xmaster) then ! for readkey , test is neededall readkey('params.txt ','tsglobal ',fname)open(10,file=fname)read(10,*) xendifall xmpi_bast(x)5.2 Parallelization by ode spottingIn the program, all relevant matries are delared as a(1:nx+1,1:ny+1) andhave a plae in a 'spaepars' derived type. In the serial version there is one8

suh derived type, in the parallel version there are two: one alled 'sglobal'(often abbreviated as 'sg'), the other 'sloal' ('sl'). sglobal is �lled in on themaster proess and has spae for all data; sloal ontains only the distributeddata. sglobal%nx and sglobal%ny are the dimensions of the global grid, whereassloal%nx and sloal%ny are the dimensions of the loal distributed matries.Using this method there is no need to hange anything at the ode itself, oneonly has to take are that data is ommuniated when appropriate. Below isa table with examples of ode patterns and the orresponding ations needed.Here a and b are matries that are distributed and divided. The dimensions are(1:nx+1,1:ny+1).pattern ationa = .. b ... No ation neededa(:,2:ny)= all xmpi_shift(a,':1')all xmpi_shift(1,':n')a(:,1) = all xmpi_shift(a,':1')a(nx+1,:) = ... all xmpi_shift(a,'m:')a(2,:) = ...a(3:nx+1,:) = ... This one needs some speialattention. In the parallel ase ,the first line has only meaningin the matriesat the top.The seond line is ok forthe top matries , but forthe other ones , a(2,:) must beomputed in thesame wayas a(3,:)In general, some ations are neessary when:
• a border olumn or row gets a speial treatment, or is not assigned at all:this is treated with a all to xmpi_shift
• another row or olumn gets a speial treatment. In that ase one has totake a good look at the ode to �nd the appropriate ation.One must also take are that the orretions in the border rows and olumnsare made before they are used. Of ourse, if one or more of the borders arenever atually used in suh a way that it in�uenes the output of the program,the orresponding xmpi_shift is not neessary.5.3 Some MPI related subroutinesThe subroutines that interfae to MPI are divided in three ategories:
• general (general_mpi.F90): this are subroutines that funtion regardlessthe environment
• xmpi (xmpi.F90): subroutines that are aware of the parallel environmentof the program, they know about the layout of the matries and knowabout the ommuniation patterns that are needed
• spae (spaeparams.F90): subroutines that know about the data in aspaepars �derived data type� 9

Some important subroutines and interfaes are listed here. The soure odeontains instrutions how to use them.�le: general_mpi.F90, module: general_mpi_modulename funtionmatrix_distr distributes matrixvetor_distr_send distributes vetormatrix_oll ollets matrix on master proessdeomp omputes optimal divisiondet_submatries determines optimal sizes of matriesshift_borders ommuniates all borders, obsolete�le: xmpi.F90, module: xmpi_modulename funtionxmpi_initialize initializes MPIxmpi_�nalize �nalizes MPIhalt_program halts program, serial and parallelxmpi_determine_proessor_grid determines proessor gridxmpi_bast broadast a variablexmpi_allredue performs an MPI_Allreduexmpi_redue performs an MPI_Reduexmpi_shift get values for border from neighbourxmpi_getrow get a row from another matrix�le: spaeparams.F90, module: spaeparamsname funtionspae_onsisteny for debugging, heks onsistenyspae_opy_salars opies salars from and to spaeparsspae_distribute_salars distribute slaras in spaeparsspae_distribute distributes matriesspae_shift_borders ommuniate all borders, obsoletespae_ollet ollets spaepar variables on masterprintsum debugging: prints sum of matrix elements5.4 Code generation: program makeinludesIn some parts of the program, some kind of bookkeeping is neessary. This anresult in boring long piees of ode, di�ult to maintain. For example: whenthe data is read in by the master proess, it needs to be distributed among theproesses. Sine there are more than 100 variables de�ned in spaepars, at least100 lines of ode would be neessary, and it is all too easy to forget to distributea newly introdued variable. Therefore a ode generating program is developed- �makeinludes� - that reads a simple formatted �le, and produes a number of�les to be inluded in the program. The following is now ahieved:
• variables in spaepars are de�ned in one �le: the name, the number ofdimensions, the dimensions self, and the desired method of distribution:10

see the �le spaeparams.tmpl. This �le also ontains a desription of thelayout desired.
• automati ode generation for the delaration of the spaepars derivedtype.
• the possibility to get to the value of a variable by using it's name in ASCII(see the example program demo.F90). This proves to be very useful forthe subroutine varoutput (varoutput.F90)
• it is easy to write a ode that visits all the variables in spaepars, withouthaving to know whih variables are available. This was very useful duringdebugging and �nding the ause of inonsistenies that reped in. (See forexample subroutine spae_onsisteny in spaeparams.F90)The program makeinludes generates the following �les:
• spaedel.gen: ontains the ode needed for the delaration of a spaeparsderived type.
• spae_allo_salars.gen: alloates the simple variables in spaepars. Thisis neessary, beause now all variables in spaepars are delared as point-ers.
• spae_allo_arrays.gen: ontains the ode to alloate the 1,2,3 and 4dimensional arrays in spaepars.
• mnemoni.gen: de�nes variables with names like �mnem_E�: the variablemnem_E is equal to the string 'E'. Furthermore, an array �mnemonis� isde�ned with all names.
• indextos.gen: ontains ode whih, given an index, returns a derived typewith a pointer to the variable for whih mnemonis(index) is equal to thename in ASCII for the variable.
• spae_ind.gen, spae_inp.gen: they de�ne pointers to the variables in thederived type. Primary goal is to make the ode more readable.
• hartoindex.gen: ode to onvert the name of a variable into an indexFurthermore there are some subroutines de�ned
• hartoindex (mnemoni.F90): returns the index number of the name given
• indextos (spaeparams.F90): returns a pointer to a variable with a givenindex numberProgram demo.F90 ontains an example ode to demonstrate how to use this.

11

5.5 Some notes about Fortran90 and MPIUsing MPI in Fortran90 needs some preautions. This is aused by the wayFortran90 handles arrays when alling a non-Fortran90 subroutine (as is thease with MPI). In Fortran77, the address of the �rst element of an array ispassed, in Fortran90, however, in general a pointer to the �rst element of a opyof the array is passed. This is neessary beause in general it is not possible totell if the array is ontiguous, or a setion of another array. For example:subrout ine demo(x)r ea l , dimension (: , :) : : x a l l MPI_Bast(x , s i z e (x) ,MPI_REAL,0 ,MPI_COMM_WORLD)! a l l MPI_Bast(x (1 , 1) , s i z e (x) ,MPI_REAL,0 ,MPI_COMM_WORLD) ! e r r o rend subrout ine demoprogram t e s tr ea l , dimension (100 ,100) : : y. . . a l l demo(y (1 : 1 0 0 : 2 , :))In this example, MPI_Bast will be alled with a opy of x, whih is noproblem: Fortran90 takes are that after the MPI_Bast the array is opiedbak. The seond MPI_Bast line would be in error, beause the address ofx(1,1) would be passed, and MPI_Bast would broadast 50x100 elements,ontiguous, starting at x(1,1).In general, Fortran90 will not make a opy if the array is ontiguous, andthe seond MPI_Bast would be OK if subroutine demo would be alled like: a l l demo(y)So, in general, do not use an array-element as starting address of a bu�er(whih is ommon pratie in Fortran77), but use the whole array.Another problem arises with non-bloking sends and reeives:subrout ine demo(x)r ea l , dimension (: , :) : : x a l l MPI_Isend(x , s i z e (x) ,MPI_REAL, . . .) ! wrong. . . a l l MPI_Wait (. . .)re turnend subrout ine demoprogram t e s tr ea l , dimension (100 ,100) : : y. . . a l l demo(y (1 : 1 0 0 : 2 , :))This will in general give unexpeted results. MPI_Isend will get the addressof a opy of x, and return while the atual send is still pending. However, afterreturn of MPI_Isend, Fortran90 will free the opy of x, so an invalid bu�er(the freed opy of x) will be sent. The same reasoning applies for MPI_Irev:MPI_Irev would result in reeiving data in an invalid bu�er. The atualbehaviour of the program is unpreditable.The solution is to make sure that MPI_Isend is working with the array itself,so one has to make a opy: 12

subrout ine demo(x)r ea l , dimension (: , :) : : xr ea l , dimension (s i z e (x , 1) , s i z e (x , 2)) : : xxxx = x a l l MPI_Isend(xx , s i z e (xx) ,MPI_REAL, . . .). . . a l l MPI_Wait (. . .)Another problem an exist using the MPI_Satterv and the like subroutines.These subroutines expet a desription of the layout of the data (the so-alledounts and displaements arrays). Also in this ase it is important to make surethat the data is ontiguous, otherwise the displaements an be invalid.5.6 Compilation and runningThe parallel ode is developed on systems running Linux. Here follows a desrip-tion how to ompile and run the program. On Windows systems, the detailsan di�er.5.6.1 CompilationA Make�le is provided, in priniple ompilation is as easy as:USEMPI=yes make install # produe a parallel version:# xbeah.mpimake leanmake install # produe a serial version:# xbeahto get the parallel and serial versions. They are installed in the diretory../bin . Important maro's are:name funtionUSEMPI when de�ned: generate parallel programUSEMPE when de�ned: produe trae �les for jumpshotF90 the fortran ompiler to useThe Make�le is pretty simple, it should not be di�ult to adapt to a loalsituation. Do not de�ne USEMPE for a prodution version of the program.When ompiling Fortran90 �les, it is important to have orret dependen-ies, espeially when module �les are generated (as is the ase here) and whenone wants to run make in parallel (make -j) to speed up the ompilation proess.Therefore a simple sript has been made, makedepo, whih takes are of depen-denies. It is alled by the Make�le when no �le named �DEPENDENCIES� ispresent. One an fore a re-generation of this �le bymake depOther things one an make:make lean # gets rid of .o and .mod files# and test programsmake reallean # gets rid of everything exept# files needed for ompilation13

make testgenmodule # make program testgenmodule# that tests the ommuniating# subroutines.# USEMPI must be definedmake demo # make program demoFurthermore, a sript 'maketags' is provided, whih produes a �tags�4 �le,very useful in ombination with the vim or emas program editors.5.6.2 Running the programWe give two examples, one for OpenMPI, one for MPICH2, to run the programon 8 proesses:OpenMPImpiexe -n 8 diretory -to-bin/xbeah.mpiMPICH2mpdboot [-n number-of-nodes -f file -with -node-names℄mpiexe -np 8 diretory -to-bin/xbeah.mpi

4exuberant tags: http://tags.soureforge.net/14

