
Parallelization of the program XBea
hWillem Vermin (SARA)∗Dano Roelvink (UNESCO)†2008-08-19Abstra
tHere we des
ribe the parallelization of the
omputer program XBea
h.XBea
h is a two-dimensional model for wave propagation, long waves andmean �ow, sediment transport and morphologi
al
hanges of the near-shore area, bea
hes, dunes and ba
k-barrier during storms. It is a publi
-domain model that has been developed with funding and support by theUS Army Corps of Engineers, by a
onsortium of UNESCO-IHE, DelftHydrauli
s, Delft University of Te
hnology and the University of Miami.The typi
al run times of the program range from hours to days, so itwas de
ided to parallelize the program. The parallelization was done byWillem Vermin at SARA and funded by NCF grant NRG-2007.06Contents1 Des
ription of the program XBea
h 22 Des
ription of the parallelization pro
ess 22.1 Choi
e of parallelization paradigm 22.2 Reorganizing the program . 32.3 Distribution of data . 32.3.1 Some more details about the distribution of data 32.4 Parallelization method used . 42.4.1 Input and output . 42.4.2 De�ning the distribution parameters 52.4.3 Communi
ation subroutines 52.4.4 Communi
ation of data 53 S
alability results 54 Con
lusion 7
∗willlem�sara.nl
†d.roelvink�unes
o-ihe.org

1

5 Te
hni
al details 75.1 General
onventions . 75.2 Parallelization by
ode spotting 85.3 Some MPI related subroutines . 95.4 Code generation: program makein
ludes 105.5 Some notes about Fortran90 and MPI 125.6 Compilation and running . 135.6.1 Compilation . 135.6.2 Running the program . 141 Des
ription of the program XBea
hThe program is written in Fortran90 and
ounts
ir
a 12000 non-
omment lines,divided over 30 �les. The program is reasonably well stru
tured. The relevantdata is de�ned in about 100 arrays (1 to 4 dimensional). A number of subrou-tines, ea
h with a spe
ial fun
tion, a
ts at ea
h time step upon the data. Themain subroutines are:
• timestep: determines an appropriate value for the next time step
• wave_b
: wave boundary
onditions update
• �ow_b
: �ow boundary
onditions update
• wave_stationary or wave_timestep: to
arry out wave time step
• �ow_timestep: to
arry out �ow time step
• transus: to
arry out suspended transport time step
• bed_update: to
arry out bed level update
• varoutput: to output the desired resultsThese subroutines are repeatedly
alled after one another, to modify the arraysdes
ribing the state of the system.2 Des
ription of the parallelization pro
ess2.1 Choi
e of parallelization paradigmThe program a
ts on a number of arrays, ea
h des
ribing di�erent aspe
ts ofthe same re
tangular area. In general, to
ompute a new value of an arrayelement A(i,j), the values of A(i,j), A(i-1,j), A(1,j+1) and so on are needed,along with the
orresponding values of other arrays. Therefore a parallelizations
heme, involving the distribution of the data among the available pro
essorsseems feasible Ea
h pro
essor would
ompute 'its' pie
e and
ommuni
ate theborders with the neighbor pro
essors.

2

2.2 Reorganizing the programThe program is written in fortran90, but not all features of fortran90 wereused. It was still possible to
all a subroutine with wrong parameters (type ornumber), without getting an error message from the
ompiler. Therefore, all�les were modi�ed to generate a module,
ontaining the relevant data and thesubroutines. This already un
overed some in
onsisten
ies in the program.The large number of variables made it di�
ult to keep the program in anorderly state. The program
ontains several housekeeping routines su
h as: theoutput routine, the allo
ation and initialization of the distributed data and the
reation of debug
ode. In these parts long lists des
ribing a
tions on the vari-ables were
oded. Therefore it was de
ided to make this housekeeping moresimple and less error prone by
reating a �
ode generating� program: makein-
ludes.This method enables the possibility to refer to a variable by the ASCIIrepresentation of its name, and to perform a
tions on all de�ned variables,without having to know whi
h variables there are. This simpli�ed the
ode forthe output routine
onsiderably, along with the
ode for the distribution and
olle
tion of the data. It makes it also possible to
reate a routine that
he
ksthe
onsisten
y of the data for all variables, very useful during debugging.2.3 Distribution of dataIt was de
ided that the data should be distributed among the pro
esses in twodimensions, as presented below:
4

3

5

6

7

8

9

10

11

0

1

2This is a 3x4 distribution, using 12 pro
esses. The numbers in the drawingrepresent the enumeration of the pro
esses, starting with zero (MPI
onvention).During the
omputations, pro
ess 4 ex
hanges data with pro
esses 1,3,7 and 5,while pro
ess 9 only ex
hanges data with pro
esses 6 and 10.2.3.1 Some more details about the distribution of dataCall the global matrix A, dimensioned as A(M,N). Call the sub matri
es a0, a1et
., ea
h dimensioned as a0(m,n), a1(m,n) et
, where m and n
an be di�erent3

for ea
h matrix a. In the same
olumn the values of n are equal, in the samerow the values of m are equal. The matri
es overlap, take as example a4:
• the �rst row
ontains the same information as the one before the last rowof the matrix abovea4(1,:) == a3(m-1,:)
• the last row (a4(m,:))
ontains the same information as the se
ond row ofthe matrix belowa4(m,:) == a5(2,:)
• the �rst
olumn
ontains the same information as the se
ond last
olumnof the matrix lefta4(:,1) == a1(:,n-1)
• the last
olumn
ontains the same information as the one before the last
olumn of the matrix righta4(:,n) == a7(:,2)The matri
es on the edges (a0,a1,a3, et
.) do not share their edge(s) whi
h arepart of the edges of matrix A with another matrix. The
omputing domain ofa matrix in the middle (a4 for example), shares the elements a4(2:m-1,2:n-1)with A. For matri
es on the edges for example the shared elements are a1(2:m-1,1:n-1). On ea
h time step, the elements that are shared with A are
omputed,and the se
ond and se
ond last
olumns of the little matri
es are
ommuni
atedwith the neighbors. For example the row a3(m-1,:) would be sent to the rowa4(1,:). In the program about 100 of these matri
es are used, some of them withone or two extra dimensions. However, only a relatively small number of thesearrays have to be
ommuni
ated between pro
esses.2.4 Parallelization method used2.4.1 Input and outputThe input and output of data is performed by one pro
ess: the master pro
esswith MPI rank zero. Depending on the properties of the data the followingmethods are used to distribute the data:
• Broad
ast: the data is
opied as is to all pro
esses (global variables, pa-rameters of the system, et
.)
• Divide and distribute (all matri
es that des
ribe the state of the systemin a grid. The appropriate parts of matrix A (see above) are sent to thepro
esses)Before the master pro
ess
an output the data, it is
olle
ted from all pro
esses.Using one pro
ess for input and output has the advantage that the programwill also run on systems where only the master pro
ess has the
apability toread and write to a �le system.

4

2.4.2 De�ning the distribution parametersAt the start of the program, a suitable distribution s
heme is determined. Giventhe number of pro
esses available (P) and the number of gridpoints in x andy dire
tion, the pro
essorgrid is determined su
h that the total length of the
ommuni
ation edges is minimized. The pro
essorgrid is de�ned by two integers:MP and NP. In the example above: P=12, MP=3, NP=4. Subsequently, thedimensions of the lo
al matri
es (a0, a1, a2 et
.) are determined, su
h that allthese matri
es are as equal as possible in size.2.4.3 Communi
ation subroutinesA number of interfa
e subroutines has been written, tailored to the problem athand, so that the a
tual MPI
alls are not visible in the program. For example,in stead of
oding something like:
all MPI_Sendre
v(a(:,2), m, MPI_DOUBLE_PRECISION , &neighbour_left, tag , &a(:,n), m, MPI_DOUBLE_PRECISION , &neighbour_right, tag , &MPI_COMM_WORLD,MPI_STATUS_IGNORE ,&ierror)one
an
ode as:
all xmpi_shift(a,':n')meaning: get the last
olumn of a �lled in. This statement su�
es to getthe last
olumn of all matri
es a updated.2.4.4 Communi
ation of dataThe original program was
he
ked for the pla
es where
ommuni
ation is ne
-essary to maintain
onsisten
y. For example, if a matrix is updated, but theborder rows and
olumns are untou
hed, these rows and
olumns need to beupdated (i.e. re
eived from the neighbors) to maintain
onsisten
y. Later inthis arti
le we will dive somewhat more in the te
hni
al aspe
ts.3 S
alability resultsThe program was exe
uted, using a standard test
ase: 'humptest.zip'. In thisexample the size of the global matri
es is 101x501. The Lisa system of SARA1 was used to run the s
aling tests. The Lisa system is equipped with an in-�niband network between the nodes. The MPI library is OpenMPI-1.2.6 2 theFortran90
ompiler is gfortran3. Computing time of the serial program is about5 minutes. The number of timesteps is lowered to speed up the s
aling measure-ments and development of the program. In pra
ti
e, the program would run forseveral hours.1https://subtra
.sara.nl/userdo
/wiki/lisa/des
ription2http://www.open-mpi.org/3http://g

.gnu.org/fortran/ 5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

one process per node

speedup
optimal

Results using one pro
essor per node. Ea
h node has two one-
ore pro
es-sors. The program s
ales up to 40 pro
esses: he performan
e using 40 pro
essesis
a. 20 times the performan
e of the serial version.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

two processes per node

speedup
optimal

Results using 2 one-
ore pro
essors per node. The speedup-
urve is some-6

what irregular (probably due to the load variations in the rest of the system:Lisa is very heavily used), but the speedup is about the same as in the above
ase, using only half the number of nodes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

running on 8-core nodes

speedup
optimal

Results for running the program on nodes equipped with 2 quad-
ore nodes,making 8
ores per node. Also here we observe a good s
aling up to 40 pro
esses(using 5 nodes).4 Con
lusionThis parallelization was su

essful: usable s
alability is 40 pro
esses and prob-ably more. The speedup is about 20 for a quite modest model. Larger modelswill result in better s
alability.5 Te
hni
al detailsHere is a detailed des
ription about the parallelization method and the subrou-tines that were
reated during the proje
t.5.1 General
onventions
• Code that is only to be exe
uted in the parallel version has to be sur-rounded as following:#ifdef USEMPI
all xmpi_shift(s%uu ,':1')
all xmpi_shift(s%uu,'m:')7

#endif
• Don't use 'stop' but
all halt_program:use xmpi_module.....if (error = 1) thenstop ! wrong
all halt_program ! goodendif
• The following variables are available using xmpi_modulename meaning value in serialxmpi_rank MPI rank of this pro
ess 0xmpi_size number of pro
esses 1xmaster is this the master pro
ess? .true.xmpi_isleft is a(:,1) part of a global border? .true.xmpi_isright is a(:,n) part of a global border? .true.xmpi_istop is a(1,:) part of a global border? .true.xmpi_isbot is a(m,:) part of a global border? .true.xmpi_p
ol my
olumn number in pro
essor grid 1xmpi_prow my row number in pro
essor grid 1
• Take
are that every input/output statement is done on master only,maybe followed by a broad
ast.use xmpi_module.....if (xmaster) thenwrite(*,*) 'Reading x'read *,xendif
all xmpi_b
ast(x)
• Fun
tions readkey_int and readkey_dbl are MPI-aware, but not readkey:use readkey_module....timings = readkey_int ('params.txt ','timings ',1,0,1)....if(xmaster) then ! for readkey , test is needed
all readkey('params.txt ','tsglobal ',fname)open(10,file=fname)read(10,*) xendif
all xmpi_b
ast(x)5.2 Parallelization by
ode spottingIn the program, all relevant matri
es are de
lared as a(1:nx+1,1:ny+1) andhave a pla
e in a 'spa
epars' derived type. In the serial version there is one8

su
h derived type, in the parallel version there are two: one
alled 'sglobal'(often abbreviated as 'sg'), the other 'slo
al' ('sl'). sglobal is �lled in on themaster pro
ess and has spa
e for all data; slo
al
ontains only the distributeddata. sglobal%nx and sglobal%ny are the dimensions of the global grid, whereasslo
al%nx and slo
al%ny are the dimensions of the lo
al distributed matri
es.Using this method there is no need to
hange anything at the
ode itself, oneonly has to take
are that data is
ommuni
ated when appropriate. Below isa table with examples of
ode patterns and the
orresponding a
tions needed.Here a and b are matri
es that are distributed and divided. The dimensions are(1:nx+1,1:ny+1).pattern a
tiona = .. b ... No a
tion neededa(:,2:ny)=
all xmpi_shift(a,':1')
all xmpi_shift(1,':n')a(:,1) =
all xmpi_shift(a,':1')a(nx+1,:) = ...
all xmpi_shift(a,'m:')a(2,:) = ...a(3:nx+1,:) = ... This one needs some spe
ialattention. In the parallel
ase ,the first line has only meaningin the matri
esat the top.The se
ond line is ok forthe top matri
es , but forthe other ones , a(2,:) must be
omputed in thesame wayas a(3,:)In general, some a
tions are ne
essary when:
• a border
olumn or row gets a spe
ial treatment, or is not assigned at all:this is treated with a
all to xmpi_shift
• another row or
olumn gets a spe
ial treatment. In that
ase one has totake a good look at the
ode to �nd the appropriate a
tion.One must also take
are that the
orre
tions in the border rows and
olumnsare made before they are used. Of
ourse, if one or more of the borders arenever a
tually used in su
h a way that it in�uen
es the output of the program,the
orresponding xmpi_shift is not ne
essary.5.3 Some MPI related subroutinesThe subroutines that interfa
e to MPI are divided in three
ategories:
• general (general_mpi.F90): this are subroutines that fun
tion regardlessthe environment
• xmpi (xmpi.F90): subroutines that are aware of the parallel environmentof the program, they know about the layout of the matri
es and knowabout the
ommuni
ation patterns that are needed
• spa
e (spa
eparams.F90): subroutines that know about the data in aspa
epars �derived data type� 9

Some important subroutines and interfa
es are listed here. The sour
e
ode
ontains instru
tions how to use them.�le: general_mpi.F90, module: general_mpi_modulename fun
tionmatrix_distr distributes matrixve
tor_distr_send distributes ve
tormatrix_
oll
olle
ts matrix on master pro
essde
omp
omputes optimal divisiondet_submatri
es determines optimal sizes of matri
esshift_borders
ommuni
ates all borders, obsolete�le: xmpi.F90, module: xmpi_modulename fun
tionxmpi_initialize initializes MPIxmpi_�nalize �nalizes MPIhalt_program halts program, serial and parallelxmpi_determine_pro
essor_grid determines pro
essor gridxmpi_b
ast broad
ast a variablexmpi_allredu
e performs an MPI_Allredu
exmpi_redu
e performs an MPI_Redu
exmpi_shift get values for border from neighbourxmpi_getrow get a row from another matrix�le: spa
eparams.F90, module: spa
eparamsname fun
tionspa
e_
onsisten
y for debugging,
he
ks
onsisten
yspa
e_
opy_s
alars
opies s
alars from and to spa
eparsspa
e_distribute_s
alars distribute s
laras in spa
eparsspa
e_distribute distributes matri
esspa
e_shift_borders
ommuni
ate all borders, obsoletespa
e_
olle
t
olle
ts spa
epar variables on masterprintsum debugging: prints sum of matrix elements5.4 Code generation: program makein
ludesIn some parts of the program, some kind of bookkeeping is ne
essary. This
anresult in boring long pie
es of
ode, di�
ult to maintain. For example: whenthe data is read in by the master pro
ess, it needs to be distributed among thepro
esses. Sin
e there are more than 100 variables de�ned in spa
epars, at least100 lines of
ode would be ne
essary, and it is all too easy to forget to distributea newly introdu
ed variable. Therefore a
ode generating program is developed- �makein
ludes� - that reads a simple formatted �le, and produ
es a number of�les to be in
luded in the program. The following is now a
hieved:
• variables in spa
epars are de�ned in one �le: the name, the number ofdimensions, the dimensions self, and the desired method of distribution:10

see the �le spa
eparams.tmpl. This �le also
ontains a des
ription of thelayout desired.
• automati

ode generation for the de
laration of the spa
epars derivedtype.
• the possibility to get to the value of a variable by using it's name in ASCII(see the example program demo.F90). This proves to be very useful forthe subroutine varoutput (varoutput.F90)
• it is easy to write a
ode that visits all the variables in spa
epars, withouthaving to know whi
h variables are available. This was very useful duringdebugging and �nding the
ause of in
onsisten
ies that
reped in. (See forexample subroutine spa
e_
onsisten
y in spa
eparams.F90)The program makein
ludes generates the following �les:
• spa
ede
l.gen:
ontains the
ode needed for the de
laration of a spa
eparsderived type.
• spa
e_allo
_s
alars.gen: allo
ates the simple variables in spa
epars. Thisis ne
essary, be
ause now all variables in spa
epars are de
lared as point-ers.
• spa
e_allo
_arrays.gen:
ontains the
ode to allo
ate the 1,2,3 and 4dimensional arrays in spa
epars.
• mnemoni
.gen: de�nes variables with names like �mnem_E�: the variablemnem_E is equal to the string 'E'. Furthermore, an array �mnemoni
s� isde�ned with all names.
• indextos.gen:
ontains
ode whi
h, given an index, returns a derived typewith a pointer to the variable for whi
h mnemoni
s(index) is equal to thename in ASCII for the variable.
• spa
e_ind.gen, spa
e_inp.gen: they de�ne pointers to the variables in thederived type. Primary goal is to make the
ode more readable.
•
hartoindex.gen:
ode to
onvert the name of a variable into an indexFurthermore there are some subroutines de�ned
•
hartoindex (mnemoni
.F90): returns the index number of the name given
• indextos (spa
eparams.F90): returns a pointer to a variable with a givenindex numberProgram demo.F90
ontains an example
ode to demonstrate how to use this.

11

5.5 Some notes about Fortran90 and MPIUsing MPI in Fortran90 needs some pre
autions. This is
aused by the wayFortran90 handles arrays when
alling a non-Fortran90 subroutine (as is the
ase with MPI). In Fortran77, the address of the �rst element of an array ispassed, in Fortran90, however, in general a pointer to the �rst element of a
opyof the array is passed. This is ne
essary be
ause in general it is not possible totell if the array is
ontiguous, or a se
tion of another array. For example:subrout ine demo(x)r ea l , dimension (: , :) : : x
 a l l MPI_B
ast(x , s i z e (x) ,MPI_REAL,0 ,MPI_COMM_WORLD)!
 a l l MPI_B
ast(x (1 , 1) , s i z e (x) ,MPI_REAL,0 ,MPI_COMM_WORLD) ! e r r o rend subrout ine demoprogram t e s tr ea l , dimension (100 ,100) : : y. . .
 a l l demo(y (1 : 1 0 0 : 2 , :))In this example, MPI_B
ast will be
alled with a
opy of x, whi
h is noproblem: Fortran90 takes
are that after the MPI_B
ast the array is
opiedba
k. The se
ond MPI_B
ast line would be in error, be
ause the address ofx(1,1) would be passed, and MPI_B
ast would broad
ast 50x100 elements,
ontiguous, starting at x(1,1).In general, Fortran90 will not make a
opy if the array is
ontiguous, andthe se
ond MPI_B
ast would be OK if subroutine demo would be
alled like:
 a l l demo(y)So, in general, do not use an array-element as starting address of a bu�er(whi
h is
ommon pra
ti
e in Fortran77), but use the whole array.Another problem arises with non-blo
king sends and re
eives:subrout ine demo(x)r ea l , dimension (: , :) : : x
 a l l MPI_Isend(x , s i z e (x) ,MPI_REAL, . . .) ! wrong. . .
 a l l MPI_Wait (. . .)re turnend subrout ine demoprogram t e s tr ea l , dimension (100 ,100) : : y. . .
 a l l demo(y (1 : 1 0 0 : 2 , :))This will in general give unexpe
ted results. MPI_Isend will get the addressof a
opy of x, and return while the a
tual send is still pending. However, afterreturn of MPI_Isend, Fortran90 will free the
opy of x, so an invalid bu�er(the freed
opy of x) will be sent. The same reasoning applies for MPI_Ire
v:MPI_Ire
v would result in re
eiving data in an invalid bu�er. The a
tualbehaviour of the program is unpredi
table.The solution is to make sure that MPI_Isend is working with the array itself,so one has to make a
opy: 12

subrout ine demo(x)r ea l , dimension (: , :) : : xr ea l , dimension (s i z e (x , 1) , s i z e (x , 2)) : : xxxx = x
 a l l MPI_Isend(xx , s i z e (xx) ,MPI_REAL, . . .). . .
 a l l MPI_Wait (. . .)Another problem
an exist using the MPI_S
atterv and the like subroutines.These subroutines expe
t a des
ription of the layout of the data (the so-
alled
ounts and displa
ements arrays). Also in this
ase it is important to make surethat the data is
ontiguous, otherwise the displa
ements
an be invalid.5.6 Compilation and runningThe parallel
ode is developed on systems running Linux. Here follows a des
rip-tion how to
ompile and run the program. On Windows systems, the details
an di�er.5.6.1 CompilationA Make�le is provided, in prin
iple
ompilation is as easy as:USEMPI=yes make install # produ
e a parallel version:# xbea
h.mpimake
leanmake install # produ
e a serial version:# xbea
hto get the parallel and serial versions. They are installed in the dire
tory../bin . Important ma
ro's are:name fun
tionUSEMPI when de�ned: generate parallel programUSEMPE when de�ned: produ
e tra
e �les for jumpshotF90 the fortran
ompiler to useThe Make�le is pretty simple, it should not be di�
ult to adapt to a lo
alsituation. Do not de�ne USEMPE for a produ
tion version of the program.When
ompiling Fortran90 �les, it is important to have
orre
t dependen-
ies, espe
ially when module �les are generated (as is the
ase here) and whenone wants to run make in parallel (make -j) to speed up the
ompilation pro
ess.Therefore a simple s
ript has been made, makedepo, whi
h takes
are of depen-den
ies. It is
alled by the Make�le when no �le named �DEPENDENCIES� ispresent. One
an for
e a re-generation of this �le bymake depOther things one
an make:make
lean # gets rid of .o and .mod files# and test programsmake real
lean # gets rid of everything ex
ept# files needed for
ompilation13

make testgenmodule # make program testgenmodule# that tests the
ommuni
ating# subroutines.# USEMPI must be definedmake demo # make program demoFurthermore, a s
ript 'maketags' is provided, whi
h produ
es a �tags�4 �le,very useful in
ombination with the vim or ema
s program editors.5.6.2 Running the programWe give two examples, one for OpenMPI, one for MPICH2, to run the programon 8 pro
esses:OpenMPImpiexe
 -n 8 dire
tory -to-bin/xbea
h.mpiMPICH2mpdboot [-n number-of-nodes -f file -with -node-names℄mpiexe
 -np 8 dire
tory -to-bin/xbea
h.mpi

4exuberant tags: http://
tags.sour
eforge.net/14

