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A computational procedure has been developed for simulating non-hydrostatic, free-surface, rotational flows
in one and two horizontal dimensions. Its implementation in the publicly available SWASH (an acronym of
Simulating WAves till SHore) is intended to be used for predicting transformation of surface waves and
rapidly varied shallow water flows in coastal waters. This open source code (http://swash.sourceforge.net)
has been developed based on the work of Stelling and Zijlema (2003), Stelling and Duinmeijer (2003) and
Zijlema and Stelling (2005, 2008). The governing equations are the nonlinear shallow water equations
including non-hydrostatic pressure and provide a general basis for describing complex changes to rapidly
varied flows typically found in coastal flooding resulting from e.g. dike breaks and tsunamis, and wave
transformation in both surf and swash zones due to nonlinear wave–wave interactions, interaction of waves
with currents, and wave breaking as well as runup at the shoreline. The present paper provides a complete
description of the numerical algorithms currently used in the code. The code is benchmarked using some
analytical problems. Moreover, the numerical results are validated with various cases of laboratory data with
the principal aim to convey the capabilities of the SWASH code. In particular, emphasis is put on an analysis of
model performance and associated physical implications. Serial and parallel performance scalings are also
presented.
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1. Introduction

Rapid advances in computer hardware and numerical methods in
recent years have made it possible to solve the Reynolds-averaged
Navier–Stokes equations for water waves, in which the vertical
structure is calculated simultaneously with the horizontal variations.
Well-known methods for the treatment of the free surface are
described in the literature, e.g. the Volume-of-Fluid (VOF) and
Smoothed Particle Hydrodynamics (SPH) methods (Dalrymple and
Rogers, 2006; Hirt and Nichols, 1981). However, in the context of
feasible and efficient simulations of large-scale wave evolution and
shallowwater flows in ocean and coastal seas, an approach is adopted
in which the free-surface motion is tracked using a single-valued
function of the horizontal plane. The most commonly applied model
using this technique is often non-hydrostatic of nature. Non-
hydrostatic models consist of the nonlinear shallow water (NLSW)
equations with the addition of a vertical momentum equation and
non-hydrostatic pressure in horizontal momentum equations. These
models require much fewer grid cells in the vertical direction than the
VOF and SPH methods. In addition, the NLSW equations with
appropriate conservation properties are able to deal accurately with
large gradients or discontinuities in the flow, such as hydraulic jumps
and bores, near steep bottom gradients. Examples are dike breach
flooding and tsunami inundation. Moreover, the combined effects of
wave–wave and wave–current interaction in shallow water are
automatically included in a non-hydrostatic wave-flow model and
do not need any additional modelling. It is this recognition which
invoked the efforts to which the present paper relates.

Non-hydrostatic modelling of water wave dynamics is not new;
more than 10 years have elapsed since the pioneering contributions of
Casulli and Stelling (1998) and Stansby and Zhou (1998). Since then,
several papers on this topic in the context of coastal modelling
activities have been published; see Yamazaki et al. (2009), Young and
Wu (2010) and Ai et al. (in press), tomention a few recent papers. The
objectives pursued in these studies have varied considerably.
Frequently, however, the general emphasis has been on developing
an accurate and efficient computational procedure capable of
simulating relatively short wave propagation, where both frequency
dispersion and nonlinear effects play an important role. This issue is
sufficiently fundamental to be common to the majority of idealised
wave conditions in a laboratory environment, and it is on this type of
conditions that studies tended to concentrate, if only because of the
availability of experimental data suitable for validation. For example,
accurate measurements for wave transformation over submerged
bars and shoals have been obtained by Berkhoff et al. (1982), Beji and
Battjes (1993), Ohyama et al. (1995) and Chawla (1995). However, it
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is more evolved to assess such numerical models at an operational
level with laboratory or perhaps field measurements under realistic
nearshore conditions. So far, no advances have been made in applying
non-hydrostatic models to such realistic laboratory experiments or
field campaigns in the surf zone.

Over the past 10 years, strong efforts have been made at Delft
University to advance the state of wave modelling and flooding
simulations for coastal engineering applications. These efforts have
focused on developing and validating the well-known spectral wave
model SWAN (Booij et al., 1999) and the newly developed non-
hydrostatic model SWASH. The purpose of the present work is to
report on the experiences that have been gathered in the develop-
ment of SWASH for surface waves and rapidly varied flows at every
Froude number in coastal areas. Parts of this work have progressed
initially within a simple one-dimensional flume involving non-
breaking, regular, short waves, hydraulic jumps and dam break over
dry and wet beds. Major objectives pursued at that stage included an
implementation of a compact scheme for vertical pressure gradients
resolving frequency dispersion in conjunction with a careful assess-
ment of linear wave properties, such as dispersion and shoaling, by
reference to data emerging from experimental studies (Stelling and
Zijlema, 2003), an efficient and stable implementation of a Poisson
solver for the non-hydrostatic pressure (Zijlema and Stelling, 2005),
and an efficient implementation of an advection scheme on staggered
grids enabling to conserve momentum locally or, by choice, preserve
constant energy head along a streamline (Stelling and Duinmeijer,
2003). More recently, there have been efforts to branch into more
challenging wave features within the surf and swash zones, like
irregular breaking waves and their runup over foreshores, by applying
the aforementioned momentum-conservative scheme and a simple
wet–dry algorithm, respectively (Zijlema and Stelling, 2008), and into
more complicated geometries, e.g. coastlines and around islands, by
means of algorithms using unstructured meshes (Cui et al., 2010;
Kramer and Stelling, 2008).

The above issues are among many addressed in the course of
evolving the SWASH code for operational use, which combines the
following main elements and characteristics:

• It is based on an explicit, second order finite difference method for
staggered grids whereby mass and momentum are strictly conserved
at discrete level. As a consequence, this simple and efficient scheme is
able to track the actual location of incipient wave breaking. Also,
momentumconservationenables the brokenwaves topropagatewith
a correct gradual change of form and to resemble steady bores in a
final stage. Yet, this approach is appropriate for hydraulic jumps, dam-
break problems and flooding situations as well.

• With respect to time integration of the continuity and momentum
equations, the second order leapfrog scheme (Hansen, 1956) is
adopted, as it does not alter the wave amplitude while its numerical
dispersion is favourable.

• In order to resolve the frequency dispersion up to an acceptable
level of accuracy, a compact difference scheme for the approxima-
tion of vertical gradient of the non-hydrostatic pressure is applied in
conjunction with a vertical terrain-following grid, permitting more
resolution near the free surface as well as near the bottom. This
scheme receives good linear dispersion up to kd≈7 and kd≈3 with
two equidistant layers at 1% error in phase velocity of standing and
progressive waves, respectively (k and d are the wave number and
still water depth, respectively). The model improves its frequency
dispersion by simply increasing the number of vertical layers.

• The energy dissipation of the wavebreaker-generated turbulence is
modelled with a Prandtl mixing length hypothesis.

• For a proper representation of the interface of water and land, a
simple approach is adopted that tracks the moving shoreline by
ensuring non-negative water depths and using the upwind water
depths in the momentum flux approximations.
The model is essentially applicable in the coastal regions up to the
shore. This has prompted the acronym SWASH for the associated
code, standing for Simulating WAves till SHore. The basic philosophy
of the SWASH code is to provide an efficient and robust model that
allows a wide range of time and space scales of surface waves and
shallow water flows in complex environments to be applied. As a
result, SWASH allows for the entire modelling process to be carried
out in any area of interest. SWASH is close in spirit to SWAN
(Simulating WAves Nearshore) with respect to the pragmatism
employed in the development of the code in the sense that comprises
are sometimes necessary for reasons of efficiency and robustness.
Furthermore, like SWAN, the software package of SWASH includes
user-friendly pre- and post-processing and does not need any special
libraries. In addition, SWASH is highly flexible, accessible and easily
extendible concerning several functionalities of the model. As such,
SWASH can be used operationally and the software can be used freely
under the GNU GPL license (http://swash.sourceforge.net).

In this paper we present a comprehensive description of the
SWASH code and its main results. Here, only those features are
discussed that impinge on the above characteristics of SWASH and
associated issues in related sections, occasionally referring to earlier
publications to promote brevity. Applications drawn from the work of
the Fluid Mechanics research group at Delft University convey an
impression of the capabilities of SWASH.

2. Governing equations and boundary conditions

The most general coordinate framework that can be used in
SWASH is curved orthogonal, and the governing equations may in
principle be written in terms of these coordinates. However, such a
form is unnecessarily complicated for the present purpose of outlining
the principles adopted. Instead, the equations are introduced in terms
of Cartesian notation. To simplify the statements without introducing
a significant loss of generality, attention is focused on the depth-
averaged flow in a two-dimensional horizontal physical domain. The
extension to the three-dimensional framework is elaborated in
Zijlema and Stelling (2005, 2008).

The depth-averaged, non-hydrostatic, free-surface flow can be
described by the nonlinear shallow water equations that, in turn, can
be derived from the incompressible Navier–Stokes equations that
comprise the conservation of mass and momentum. These equations
are given by

∂ζ
∂t +

∂hu
∂x +

∂hv
∂y = 0 ð1Þ
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where t is time, x and y are located at the still water level and the
z-axis pointing upwards, ζ(x, y, t) is the surface elevation measured
from the still water level, d(x, y) is the still water depth, or downward
measured bottom level, h=ζ+d is the water depth, or total depth, u
(x, y, t) and v(x, y, t) are the depth-averaged flow velocities in x- and y-
directions, respectively, q(x, y, z, t) is the non-hydrostatic pressure
(normalised by the density), g is gravitational acceleration, cf is the
dimensionless bottom friction coefficient, and τxx, τxy, τyx and τyy are
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the horizontal turbulent stress terms. Note that the momentum
equations are written in a non-conservative form. This will be
discussed later. The integral of the non-hydrostatic pressure gradient
over the water depth in Eq. (2) can be expressed as follows (Stelling
and Zijlema, 2003):

∫ζ
−d

∂q
∂x dz =

1
2
h
∂qb
∂x +

1
2
qb

∂ ζ−dð Þ
∂x ð4Þ

with qb the non-hydrostatic pressure at the bottom. Similar
expression can be found for the integral in Eq. (3).

Since the quantity qb is included, some extra equations are needed.
As demonstrated in Stelling and Zijlema (2003) the accuracy of the
frequency dispersion for relative short waves can be significantly
improved by applying the Keller-box method (Lam and Simpson,
1976):

q j z=ζ−q j z=−d

h
= −qb

h
=

1
2
∂q
∂z j z=ζ +

1
2
∂q
∂z j z=−d: ð5Þ

Note that the non-hydrostatic pressure at the free surface is zero.
Next, we introduce the velocity in z-direction at the free surface, ws,
and at the bed level, wb. The momentum equations for these vertical
components are

∂ws

∂t +
∂q
∂z j z=ζ = 0;

∂wb

∂t +
∂q
∂z j z=−d = 0 ð6Þ

where both the advective and diffusive terms have been neglected as
they are generally small compared to the vertical acceleration which
is assumed to be instantaneously determined by the non-hydrostatic
pressure gradient. Combination of Eqs. (6) and (5) gives

∂ws

∂t =
2qb
h

−∂wb

∂t : ð7Þ

The vertical velocity at the bottom, wb, can be found through the
following kinematic condition:

wb = −u
∂d
∂x−v

∂d
∂y : ð8Þ

Finally, conservation of local mass yields

∂u
∂x +

∂v
∂y +

ws−wb

h
= 0: ð9Þ

When waves are travelling over a relatively long distance of order
of several kilometres, the influence of bottom friction becomes more
pronounced. Moreover, it may affect longwaves close to the shoreline,
e.g. infragravity waves, and nearshore circulations. Although there are
many expressions for the bottom friction coefficient cf, we employ the
one based on Manning's roughness coefficient n, as follows,

cf =
n2g
h1=3

ð10Þ

since our experiences have indicated that this expression provides a
better representation of wave dynamics in the surf zone to that
returned by other well-known friction formulations such as the one in
terms of the Chézy coefficient and the Colebrook–White equation.

The turbulent stresses are given by

τxx = 2νt
∂u
∂x ; τxy = τyx = νt

∂v
∂x +

∂u
∂y

� �
; τyy = 2νt

∂v
∂y

ð11Þ

with νt(x, y, t) the horizontal eddy viscosity due to wave breaking and
subgrid turbulence. In this paper, we restrict ourselves to the
description of the breaking process. In this case a turbulence model
needs to be employed to approximate the turbulent mixing and
dissipation caused by breaking. Although dissipation is implicit in the
bore representation, it is the viscosity that determines the scale at
which dissipation takes place. As such, the large-scale turbulent
motion in the surface roller can be effectively modelled through the
eddy viscosity νt, whereby the turbulence is assumed to be in local
equilibrium. For this reason, the Prandtl mixing length hypothesis is
used and is given by

νt = ‘
2
m
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s

ð12Þ

with ‘m the mixing length taken to be proportional to a typical wave
height; either wave height for regular waves or significant wave
height for irregular waves. It should be noted that this type of
modelling should not only be regarded asmodelling the lateral mixing
but also as modelling the longitudinal momentum exchange occur-
ring in the travelling turbulent bore.

To complete the system of equations, appropriate boundary
conditions need to be imposed at the open boundaries of the
computational grid domain. At the offshore boundary regular or
irregular waves are introduced by specifying a local velocity
distribution. To simulate entering waves without some reflections at
this boundary, a weakly reflective condition allowing outgoing waves
is adopted (Blayo and Debreu, 2005):

ub = F

ffiffiffi
g
h

r
2ζb−ζð Þ ð13Þ

assuming that incoming and outgoing waves are perpendicular to the
boundary. This type of radiation conditions has been shown to lead to
good results with nearshore wave conditions. Here, ub is the inflow
velocity at the boundary and ζb is the surface elevation signal of the
incident wave. The sign in Eq. (13) depends on the location of the
boundary. The plus sign refers to an inflow velocity at the western and
southern boundaries, and the minus sign refers to inflow velocity at
the eastern and northern boundary. For regular waves, the incident
signal can either be a time series or a Fourier series as given by

ζb = a0 + ∑
N

j=1
ajcos ωjt−φj

� �
ð14Þ

where N is the number of Fourier components, a0 is the mean water
level, and aj, ωj and φj are the amplitude, angular frequency and local
phase lag, respectively, of the jth component.

Irregular waves are usually treated as realisations of a stationary,
Gaussian process which can readily be described bymeans of a Fourier
series (Holthuijsen, 2007). We will restrict ourselves here to
unidirectional waves, although SWASH allows to specify multi-
directional waves as well. Using the linear wave theory, the velocity
at a depth is found by linear superposition of N harmonic waves
whose amplitude is determined by sampling a variance density
spectrum and whose phase is randomly chosen for each realisation:

ub z; tð Þ = ∑
N

j=1
aj ωj

cosh kj z + dð Þ
sinh kjh

+
ffiffiffi
g
h

r" #
cos ωjt−αj

� �
−

ffiffiffi
g
h

r
ζ ð15Þ

where kj and αj are the wave number and random phase, respectively,
of each frequency ωj. Moreover, the frequency range is uniformly
resolved with a frequency interval Δω, i.e. ωj= jΔω. The wave
number and frequency are related by the dispersion relationship,
ω2=gk tanh(kh), whereas the random phase at each frequency is
uniformly distributed between 0 and 2π. Note that the boundary
condition (15) is augmented with the radiation condition to minimise
reflections at the offshore boundary.
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For a given wave spectrum E(ω), a time series (15) can be
synthesised by calculating the amplitude of each harmonic, as follows

aj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E ωj

� �
Δω

r
: ð16Þ

The spectrum may be obtained from observations for the desired sea
state or by specifying a parametric shape of the spectrum, such as the
well-known Jonswap spectrum for fetch-limited conditions in deep
water. Another fetch-limited spectrum is the so-called TMA spectrum
that may be employed to generate wave characteristics of those
occurring in shallower waters (Holthuijsen, 2007).

Finally, we may consider two types of onshore condition. The
moving shoreline, in the case of inundation or runup computations,
requires a numerical treatment which will be outlined in Section 3. If
the onshore boundary is located in the pre-breaking zone, an
absorbing condition may be imposed. Usually, the Sommerfeld's
radiation condition is employed, which allows the (long) waves to
cross the outflow boundary without reflections. For instance, for the
case of a boundary parallel to y-axis, this condition is given by

∂u
∂t +

ffiffiffiffiffiffi
gh

p ∂u
∂x = 0: ð17Þ

This radiation condition may be combined with a sponge layer
technique; see Stelling and Zijlema (2003) for details.

3. Numerical implementation

The computational solutions to follow have been implemented in
the SWASH code, recently developed at Delft University by the authors.
This employs a finite difference method on a staggered, orthogonal
curvilinear grid of the governing equations. The basic principles of this
approach, as well as the underlying rationale for staggering locations
pertaining to mass conservation and velocity components will be
pursued here. For the sake of clarity these principles will be elucidated
by means of the one-dimensional, depth-averaged shallow water
equations in non-conservative form, as follows,

∂ζ
∂t +

∂hu
∂x = 0 ð18Þ
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∂t + u
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∂x +
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∂ ζ−dð Þ

∂x + cf
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∂
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� �
ð19Þ

∂ws

∂t =
2qb
h

−∂wb

∂t ;wb = −u
∂d
∂x ð20Þ

∂u
∂x +

ws−wb

h
= 0: ð21Þ

The extension to the two-dimensional framework is tedious but
otherwise straightforward. Furthermore, discretization in the vertical
direction in which the computational domain is divided into a fixed
number of terrain-following layers, the so-called multi-layered case,
is extensively discussed in Zijlema and Stelling (2005, 2008).

We consider a regular 1D grid {xi+1/2|xi+1/2= iΔx, i=0,…, I} with
I the number of grid cells and Δx the length of the grid cell. The
location of the cell centre is given by xi=(xi−1/2+xi+1/2)/2. A
staggered grid convention is used in which the velocity component u
and surface elevation ζ are located at i+1/2 and i, respectively. The
staggered grid avoids de-coupling of the unknowns, which otherwise
may cause non-physical oscillations in non-staggered (colocated)
grids. The variables d, qb, νt, wb and ws are all located at i. As a
consequence, the water depth h is given in point i.
For the time integration an explicit leapfrog scheme in conjunction
with a second order explicit time step for advection, a first order explicit
time step for the viscosity termand afirst order implicit time step for the
non-hydrostatic part is used. This scheme as proposed by Hansen
(1956) employs staggering in time. The velocity u is evaluated at a half
time step (n+1/2)Δt, whereas the surface elevation at a whole time
step (n+1)Δt, with Δt the time step and n indicating the time level
tn=nΔt. This variant of the leapfrog scheme shares with the classical
leapfrog scheme theadvantages of secondorder accuracy in timeandno
wave damping. In addition, it requires less storage and makes the
algorithm easy to implement.

We start with a discretization of the momentum Eq. (19), as follows,

un + 1 = 2
i + 1 = 2 −un−1 = 2

i + 1 = 2

Δt
+ un−1 = 2

i + 1 = 2 Lxuð Þn−1 = 2
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� �n ζni + 1−ζni −di + 1 + di
2Δx
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i + 1 = 2 un−1 = 2

i + 1 = 2

��� ���
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n
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i + 3 = 2−un−1 = 2
i + 1 = 2

� �
−νt;ih

n
i un−1 = 2

i + 1 = 2−un−1 = 2
i−1 = 2

� �
h
x
i + 1=2

� �n
Δx2

:

ð22Þ

Note that the bottom friction term is approximated implicitly to
enhance the robustness of the model. Furthermore, Lx is a finite
difference operator to advection term and the over bar notation is
used to denote averages, for instance,

hxi + 1 = 2 =
1
2

hi + hi + 1
� 	

: ð23Þ

Concerning the approximation Lx, any appropriate finite difference
scheme can be employed. We come back to this issue later.

Discretization of Eq. (18) yields

ζn + 1
i −ζni

Δt
+

ĥ
n
i + 1 = 2u

n + 1 = 2
i + 1 = 2 − ĥ

n
i−1 = 2u

n + 1 = 2
i−1 = 2

Δx
= 0: ð24Þ

Note that the explicit time stepping is carried out by solving Eq. (22)
before Eq. (24). The water depth ĥi + 1=2 is not uniquely defined. An
appropriate approximation is based on first order upwinding and is
given by

ĥi + 1=2 =
ζi + min di; di + 1

� 	
; if ui + 1=2 N 0

ζi + 1 + min di;di + 1
� 	

; if ui + 1=2b0
max ζi; ζi + 1

� 	
+ min di;di + 1

� 	
; if ui + 1=2 = 0:

8><
>: ð25Þ

Based on this expression, it can be shown that if the time step is
chosen such that Δt|ui+1/2

n+1/2|/Δx≤1 at every time step then the water
depth hi

n+1 is non-negative at every time step (Stelling and
Duinmeijer, 2003). Hence, flooding never happens faster than one
grid size per time step, which is physically correct. This implies that
the calculation of the dry areas does not need any special feature. For
this reason, no complicated drying and flooding procedures as
described in Stelling (1983) are required. Additionally, the shoreline
motion in the swash zone can be simulated in a natural manner. For
computational efficiency, the momentum Eq. (22) is not solved
and the velocity u is set to zero if the water depth ĥi + 1=2 is below a
threshold value. Throughout this work, it equals 0.05 mm.

To achieve second order accuracy in space for the approximation of
ĥi + 1=2, we add a higher order interpolation augmented with a flux
limiter:

ĥi + 1=2←ĥi + 1=2 +

1
2
Ψ rþi + 1 = 2

� �
ζi−ζi−1ð Þ; if ui + 1=2 N 0

1
2
Ψ r−i + 1 = 2

� �
ζi + 1−ζi + 2
� 	

; if ui + 1=2b 0

8>><
>>: ð26Þ
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where

rþi + 1 = 2 =
ζi + 1−ζi
ζi−ζi−1

; r−i + 1 = 2 =
ζi + 1−ζi

ζi + 2−ζi + 1
ð27Þ

are the upwind ratios of consecutive gradients of the surface
elevation, and Ψ(r) is the flux limiter to avoid unwanted oscillations
near sharp gradients. For the test cases in this paper, the so-called
MUSCL limiter (Van Leer, 1979) is employed, as given by

Ψ rð Þ = max 0;min 2;
1
2
r +

1
2
;2r

� �
 �
ð28Þ

which has been found to give the best results.
It is recalled that the momentum Eq. (19) is employed in the non-

conservative formand thus, in principle, unable to conservemomentum.
It should be clear that this formulation in conjunction with the
widespread use of staggered grids is necessitated by efficiency and
accuracy for subcritical flows, see e.g. Stelling (1983). Shock-capturing
schemes, designed for flow expansions, are usually Godunov-type
schemes based on an approximate Riemann solver on colocated grids.
They take characteristic features of the complete set of conservation
laws of mass and momentum into account. They aim, in particular, to
mimic the so-called Riemann invariants propagation features implied
by these conservation laws making them suitable for rapidly varied
flows. However, they lack the desired efficiency of staggered schemes
andcanhardly be extended to three-dimensional non-hydrostaticflows.
In Stelling and Duinmeijer (2003), a scheme is proposed that is
momentum conservative while being applicable for staggered grids.
The obvious advantage gained is that this efficient scheme is able to deal
with flows with a wide range of Froude numbers. In addition, in the
context of simulatingwave dynamics, it ensures that thewave properties
under breaking waves are modelled correctly. The manner in which the
momentum conservation is achieved is one key facet of a successful
implementation of the momentum equation into the staggered grid
arrangement, and this is thus exposed below in some detail.

The following identity is used:

u
∂u
∂x =

1
h

∂ ϕuð Þ
∂x −u

∂ϕ
∂x

� �
ð29Þ

with ϕ≡hu the discharge. An appropriate approximation for this
quantity is

ϕi + 1=2 = ĥi + 1=2ui + 1=2: ð30Þ
A momentum-conservative advection scheme is given by

ui + 1=2 Lxuð Þi + 1 =2 =
1

hxi + 1 = 2

ϕx
i + 1 ûi + 1−ϕx

i ûi

Δx
−ui + 1=2

ϕx
i + 1−ϕx

i

Δx

 !
:

ð31Þ

To retain second order accuracy in time, this scheme is combinedwith
the well-known MacCormack predictor-corrector technique, which
includes two steps in each time step. In the predictor step, Eq. (22) is
replaced by

u⁎i + 1 = 2−un−1 = 2
i + 1 = 2

Δt
+ un−1 = 2

i + 1 = 2 Lxuð Þn−1 = 2
i + 1 = 2 + … + cf

u⁎i + 1 = 2 jun−1 = 2
i + 1 = 2 j

h
x
i + 1 =2

� �n = …

ð32Þ

to obtain an intermediate value u⁎. In this step, the first order upwind
scheme is used to approximate û at point i:

ûi =
ui−1=2; if ϕx

i ≥ 0

ui + 1=2; if ϕx
i b 0:

8<
: ð33Þ
In the corrector step, the predicted value u⁎ is corrected according to

un + 1 = 2
i + 1 = 2 = u⁎i + 1 = 2−

Δt

hxi + 1=2

� �n ϕx
i + 1

� 	n−1=2Δui + 1− ϕx
i

� 	n−1=2Δui

Δx

 !

ð34Þ

with

Δui =

1
2

u⁎i−1 = 2−un−1 = 2
i−3 = 2

� �
; if ϕx

i

� 	n−1=2≥0

1
2

un−1 = 2
i + 1 = 2−u⁎i + 3 = 2

� �
; if ϕx

i

� 	n−1=2
b0:

8>><
>>: ð35Þ

With this second order correction, the one-sided second order
backward difference (BDF) scheme is obtained. This upwind scheme
generates a limited amount of numerical dissipation which is
sufficient to avoid spuriouswaves with wave length of 2Δx effectively.

The time integration is of explicit type and thus requires strict
conformity of stability criteria for a stable solution. The well-known
CFL condition is given by

Cr =
Δt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g hxi + 1=2

� �n + 1
r

+ un + 1 = 2
i + 1 = 2

��� ���� �
Δx

≤1 ð36Þ

with Cr the Courant number evaluated at a velocity point. A
dynamically adjusted time step controlled by the Courant number is
implemented in SWASH as follows. The actual maximum of the
Courant number over all wet grid points is determined. The time step
is halved when this number becomes larger than a preset constant
Crmaxb1, and the time step is doubled when this number is smaller
than another constant Crmin, which is small enough to be sure the time
step can be doubled. In all the numerical computations presented
here, Crmin is set to 0.1, while the maximum Courant number Crmax

will be specified differently for different cases.
The explicit treatment of the viscosity term of Eq. (22) leads to the

following additional stability condition:

Δt≤Δx2

2νt
: ð37Þ

This time step restriction is typically very local but often more severe
compared to the CFL condition (36). To overcome this stringent
limitation, the model adopts a constraint, which a maximum of the
eddy viscosity is determined at each time step, as follows

νt = min νt;
Δx2

2Δt

 !
: ð38Þ

This clipping of the eddy viscosity only happens occasionally in terms
of a few percentage of the total active grid points.

Hitherto, a numerical framework for solving the shallow water
equations has been discussed. There remains the question of how to
determine the non-hydrostatic pressure qb appearing in Eqs. (19) and
(20). Since this pressure is governed, indirectly, by the local continuity
Eq. (21), attention must focus on this equation and its linkage to the
momentum equations. A common approach to establishing such a
linkage is the so-called pressure correction technique. The second
order method given in Van Kan (1986) is employed. This is based on
combining the discretized forms of the continuity and momentum
Eqs. (21), (19) and (20) to give a Poisson equation linking the non-
hydrostatic pressure correction at a grid point to its neighbours. As a
result, local mass conservation is enforced. This technique is
extensively outlined in Zijlema and Stelling (2005). We use either
SIP (Stone, 1968), in the case of depth-averaged mode, or BiCGSTAB
(Van der Vorst, 1992) preconditionedwith an ILU, in the case ofmulti-
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layered mode, for the solution of the Poisson equation. Further details
on this subject can be found in Zijlema and Stelling (2005).

4. Parallelization strategy

The scale of the typical two-dimensional applications dictates that the
serial code of SWASHmust be implemented for parallel computers, since
the run times on a present-day single processor can be range from hours
to days. Parallel simulation using multiple processors is frequently used
to overcome such a limit. Obtaining good scalability for relatively large
number of processors is usually achieved through distributed memory
machines with each processor having its own private memory. The
conventional methodology for parallelization on distributed computer
systems is domain decomposition,which not only benefits from carrying
out the task simultaneously onmany processors but also enables using a
large amount ofmemory. It gives efficient parallel algorithms and is easy
to program within message passing environment (e.g. MPI).

A stripwise grid partitioning is employed. It is based upon a
partition of the whole computational domain into a number of strips,
along the x- or y-axis, with each of them being assigned to a different
processor. However, in the context of SWASH applications to coastal
areas, some difficulties arise. Firstly, wet and dry grid points may
unevenly distributed over subdomains while no computations have to
be done in dry grid points. And secondly, a load imbalance may arise
during the simulation due to flooding and drying e.g. by swash
motions. In such cases, one may decide to repartition such that they
are balanced again. For the time being, however, we restrict ourselves
to balanced, static grid partitions.

Each subdomain can have multiple neighbours on each of its sides.
For this, a data structure is implemented to store all the information
about the relationship of the subdomain and its particular neighbours.
Next, each subdomain, look at in isolation, is surrounded by an auxiliary
layer of three grid points width originating from neighbouring
subdomains. This layer is used to store the so-called halo data from
neighbouring partitions that is needed for the solution within the
subdomain in question. Since, each processor needs data that reside in
other neighbouring subdomains, exchange of data across subdomains is
necessary. Moreover, to evaluate the stopping criterion of the iterative
solution methods for pressure correction (SIP, preconditioned BiCG-
STAB), global communication is requiredaswell. Thesemessagepassings
are implementedby ahigh level communication libraryMPI. Only simple
point-to-point and collective communications have been employed.

The most difficult part of the program to parallelize is the iterative
solution method, since it usually contains recurrence relations. One
approach suggested in the literature (Barrett et al., 1994) consists of
treating the data on the subdomain interface explicitly, i.e. taking the
solution from the previous time step located in the halo cells. This
method possesses a high degree of parallelism, but may lead to a
certain degradation of convergence properties. From many experi-
ments this approach appeared to be the best one for the ILU-
preconditioned BiCGSTAB method. For the SIP method, however,
another parallelization strategy has been chosen. It is based on a so-
called wavefront approach. The rationale behind this approach is that
the pressure correction unknowns on a diagonal of the grid only
depend on the unknowns corresponding to the previous diagonal. As
such, all unknowns corresponding to the same diagonal can be
computed independently. This facilitates parallelization. This ap-
proach does not alter the order of computing operations of the
sequential algorithm and thus preserves the convergence properties,
but reduces parallel efficiency to a lesser extent because of the serial
start-up and shut-down phases. For details, see Barrett et al. (1994).

5. Some illustrative applications of SWASH

This section aims to convey the capabilities of SWASH by
presenting calculations for seven test cases for which experimental
data have been obtained under well-controlled laboratory conditions.
In addition, four cases have been included for which analytical
solutions are provided, to verify numerical accuracy of some distinct
features of the model, namely frequency dispersion, shock capturing
and wetting and drying. While none of these cases considered here
relates directly to real-life applications, the wave and flow features
considered are generic and expected to be encountered in most
nearshore-related applications.

These eleven cases have been chosen so as to cover a broad range
of wave and flow conditions and computational challenges. In
addition, for the presentation, they have been ordered by level of
difficulty. Physical issues arising from the performance of SWASH
with respect to proper conservation properties in case of transitions
from super- to subcritical flow (hydraulic jump), flooding and drying
in case of wave runup on a island and N-wave runup on a complex
beach, cross-shore motions of irregular breaking waves, surf beats,
nearshore circulations and setups induced by breaking waves are
discussed in some detail. The examples selected are drawn from those
generated by the authors. A complementary set of test cases has been
reported by Stelling and Zijlema (2003), Stelling and Duinmeijer
(2003), Zijlema and Stelling (2005,2008), Kramer and Stelling (2008)
and Cui et al. (2010).

5.1. Linear progressive waves through a flume

The purpose of this test is to validate the model capability for
resolving frequency dispersion in an accurate manner by means of
progressive waves. Simulating progressive waves is more demanding
compared to standing waves in a closed basin which is a quite
common test case for verifying the accuracy of linear dispersion. The
difficulty lies in the fact that the orbital velocity under a wave crest
reaches its maximum value and not zero as for standing waves, and
thus progressive waves form a very suitable test case for SWASH.

We consider a linear progressive wave propagating through a
flume with a length of 36λ, with λ the wave length. A weakly
reflective hyperbolic cosine distribution of velocity in the vertical
based on linear wave theory was imposed at the inlet of the flume. A
combination of a sponge layer with a width of two wave lengths and
the Sommerfeld's radiation condition was applied at the outlet to
minimise wave reflection. Five different cases were carried out; wave
amplitude a0, wave period T0 and still water depth d are such that
kd=π, kd=2π, kd=3π, kd=4π and kd=5π, respectively, and in all
cases a0/d=0.001. For these cases, a grid size of Δx=λ/30 was
employed, whereas the time step was specified during the simulation
by a maximum Courant number of 0.5. To optimise wave dispersion
and to resolve vertical velocity profile properly, the following vertical
layer distributions for the considered cases have been employed. For
the first case, kd=π, two equidistant layers were chosen, for the
second case, kd=2π, three equidistant layers were taken and for the
remaining cases, three non-equidistant layers were specified with the
following thicknesses: 10%, 20% and 70% of the total depth for top,
middle and bottom layer, respectively. In Fig. 1, the numerical results
for the surface elevation at x=30λ are compared to the analytical
solutions. Clearly, the model is able to capture the wave dispersion in
intermediate and deep waters effectively using a few number of
vertical layers. Only for the last two cases, kd=4π and kd=5π, the
predicted wave propagates slightly faster after a relatively long
distance of a few tens of wave lengths.

5.2. Tidal wave flow over an irregular bed

We consider a tidal wave flow over an irregular bottom for which
an asymptotic solution is derived by Bermudez and Vazquez (1994).
Their derivation makes use of the NLSW equations in strong
conservation form with a space-varying bottom elevation. They
showed the paramount importance of an accurate and robust
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approximation of the bed slope source term in order to avoid
numerical parasitic waves. Similar results have been found in, e.g.
Zhou et al. (2001) and Wei et al. (2006).

A tidal wave with 4 m height and 12 hour period propagates in a
one dimensional channel with a length of L=14km and a variable
depth as given by

d xð Þ = 50:5−40x
L

−10sin π
4x
L
−1

2

� �
 �
: ð39Þ

Both the water level and flow velocity are initially set to zero. The
boundary conditions are

ζ jx=0 = 4−4sin 2π
t

43;200
+

1
4

� �
 �
;u jx=L = 0: ð40Þ

The asymptotic solution is given by

ζ tð Þ = 4−4sin 2π
t

43;200
+

1
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� �
 �
ð41Þ

u x; tð Þ = π x−Lð Þ
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From Eq. (41) it is clear that the surface elevation is a function of time
only.

The results of the numerical simulation, with Δx=280 m, at
t=7552.13 s are shown in Fig. 2. Good agreement is obtained
between the numerical and asymptotic solutions. Yet, no spatial
variation in the predicted water level is encountered, i.e. the present
model does not exhibit artificial waves. This suggests that SWASH
applies the correct conservation properties.
5.3. Tsunami wave runup on a plane beach

This case is a good example of the benefits of assuring non-
negative water depths when flooding and drying is involved. A
leading depression N-wave is going to runup and rundown on a
sloping beach. This situation has an analytical solution derived from
the NLSW equations by Carrier et al. (2003). The initial free surface is
formed by an N-wave shape as proposed theoretically by Carrier et al.
(2003). This profile resembles a tsunami wave typically caused by a
submarine landslide.

We have considered a numerical flume of 1 km wide, 50 km long,
with a uniformly sloping bed. The still water depth at the toe of the
slope was 5000 m, while the slope equaled 1:10. The calculation was
carried out using a non-uniform grid with a higher grid resolution
during runup and rundown to better capture moving shoreline.
Additionally, the time step was kept constant at 0.01 s, whereas the
maximum Courant number was 0.2. Fig. 3 presents the predicted
water levels at 3 different times, along with the analytical surface
elevations. The comparison between numerical and analytical
shoreline movements is shown in Fig. 4. The model correctly
reproduces both the runup and moving waterline, thereby indicating
that the proposed wet–dry algorithm is accurate for runup of a
tsunami event.

5.4. Long wave resonance in a circular parabolic basin

An analytical solution of the NLSW equations in two horizontal
dimensions is due to Thacker (1981). This relates to a long wave
resonating in a circular parabolic basin and includes the moving
shoreline implicitly. This case provides a severe test problem for the
model and has been featured in numerous papers as well. Examples of
these include Lynett et al. (2002), Wei et al. (2006) and Fuhrman and
Madsen (2008).
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The frictionless flow takes place inside a parabolic basin with the
following shape

d x; yð Þ = d0 1− r2
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with r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
the distance from the origin, d0 the still water

depth in the origin and R the radius of the still water level. The surface
elevation is given by
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where

A =
R4−r40
R4 + r40

ð45Þ

with r0 the initial wet radius, and

ω =

ffiffiffiffiffiffiffiffiffiffiffi
8gd0

p
R

ð46Þ

the resonance frequency.
We replicate the test performed by Lynett et al. (2002) with

d0=1 m, r0=2000m and R=2500m. The basin is 8000 m wide,
8000 m long, and was discretized with a uniform grid spacing of 20 m.
The simulation was carried out using an initial time step Δt=T/480
with T the resonance period. The maximum Courant number was set
to 0.3. The initial water level was taken from Eq. (44) with t=0,
whereas the initial flow velocity was set to zero. Fig. 5 plots the
computed and exact surface elevations after the first period. The
comparison indicates good agreement and shows the validity of the
wet–dry procedure in a two-dimensional setting. It should be noted
that the results become less accurate after a few cycles due to the
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left panel), and t=3T/2 (bottom right panel).
numerical dispersion. A similar observation has been found earlier in
Lynett et al. (2002) and Fuhrman and Madsen (2008).

5.5. Hydraulic jump in an open channel

A hydraulic jump is formed whenever supercritical flow changes
to subcritical flow. In this transition, free surface rises abruptly,
turbulent mixing occurs and energy is dissipated. We evaluated the
ability of SWASH to predict the hydraulic jump in an open channel
flow. The channel dimensions and flow parameters for this test case
are identical to those used by Zhou and Stansby (1999). The channel
of 30.5 m long consists of two parts with different slopes. The first one
is horizontal and 14.5 m long, and the second is 16.0 mwith a slope of
0.03; see Fig. 6. The inflow is supercritical with a Froude number
Fr = u =

ffiffiffiffiffiffi
gh

p
of 4.65. The flow pass through a subcritical state

followed by the critical depth (Fr = 1) where a hydraulic drop
occurred, and becomes uniform and supercritical again at the
downstream end.

The computational grid is one dimensional and consists of 60
equidistant grid cells. The initial water level and flow velocity are
0.06 m and 0 m/s, respectively, throughout the channel. At inlet, an
ingoing Riemann invariant, defined as u + 2

ffiffiffiffiffiffi
gh

p
, of 5.105 m/s is
−4000 −2000 0 2000 4000
x [m]

se of parabolic basin at t=T (top left panel), t=7T/6 (top right panel), t=4T/3 (bottom



0 5 10 15 20 25 30
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x [m]

w
at

er
 d

ep
th

 [m
]

Fig. 6. Steady super- and subcritical flow through a channel with different slopes involving hydraulic jump and drop.

Fig. 7. Schematic views of the conical island experiment. Plane view of the wave basin
and the island (top panel) and side view of the island along section A–A (bottom panel).
Wave gauges 1 to 4 are located half wave length away from the toe of the island.
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specified, whereas at outlet, ∂h/∂x=0 is imposed. A Manning's
roughness coefficient n=0.019 is employed. The numerical result is
depicted in Fig. 6 and is comparable to that reported by Zhou and
Stansby (1999). This figure illustrates all the essential features of the
hydraulic jump. To verify the correctness of the computation, the
well-known Bélanger formula is employed and is given by

h1
h0

=
−1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 8Fr2

p
2

ð47Þ

which express the ratio of the flow height after the jump, h1, and just
before the jump, h0, depending on the upstream Froude number. From
the numerical results, it follows that h0=0.1102 and h1=0.2194m,
giving a ratio of 1.99. The Froude number just before the jump appears
to be 1.78 implying a ratio of 2.07 according to Eq. (47). This gives a
relative error of 4% which is acceptable.

5.6. Runup of solitary waves on a conical island

Briggs et al. (1995) conducted a laboratory experiment for solitary
wave runup around a conical island. A physical test of this conical
island has been set up in the centre of a 25 m long and 30 m wide
basin. The shape of the island is a truncated circular cone with
diameters of 7.2 m at the toe and 2.2 m at the crest. The height of the
island is 0.625 m, whereas the slope is 1:4. The still water depth d of
the basin is 0.32 m. Fig. 7 depicts schematic views of the experiment,
where the locations are indicated for comparison of the free surface
elevation.

Solitary waves with three different measured wave heights were
generated at the western sidewall: H=0.045d, H=0.096d and
H=0.181d. At the eastern boundary the Sommerfeld's radiation
conditionwas applied, whereas the lateral sidewalls weremodelled as
fully reflected boundaries. The simulations were considered to be
non-hydrostatic and depth-averaged. No bed roughness was as-
sumed. Wave breaking occurs mainly on the lee side of the island for
H=0.181d as demonstrated by Lynett et al. (2002). For this case, a
mixing length ofℓm of 0.06 mwas chosen. A uniform grid of 500×600
cells (Δx=Δy=0.05 m) was employed. The initial time step was
0.01 s whereas the maximum CFL was set to 0.8. The simulation
period was set to 25 s for all cases, while computations were run for
2500 time steps for cases H=0.045d and H=0.096d, and 2515 time
steps for the most severe case H=0.181d.

Fig. 8 shows the time series of the computed andmeasured surface
elevations at selected gauges for the different wave conditions
considered. The agreement with experimental data is satisfactory.
Generally, both the arrival time and the wave height of the primary
wave are adequately reproduced. Also, the depression following the
leading wave is captured well, albeit with some phase differences.
Similar results have been obtained elsewhere using Boussinesq-type
wave models as discussed in Lynett et al. (2002) and Fuhrman and
Madsen (2008), a finite-volume, depth-averaged NLSWmodel of Wei
et al. (2006) and a depth-averaged non-hydrostatic model of
Yamazaki et al. (2009). For H=0.181d, the soliton breaks on the
backside of the island where the trapped waves collide. The present
model appeared to predict the leading wave height at gauge 22
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correctly, although there is a small deviation in the phase of the peak.
Yet, it is worth emphasising the value of momentum conservation in
conjunction with the Prandtl mixing length hypothesis in capturing
breaking waves. As final validation, the maximum horizontal runup
around the island is compared to themeasured one; see Fig. 9. Clearly,
the inundation position is predicted reasonably well at the front, side,
and rear of the island, and the agreement is similar to that achieved in
the aforementioned cited references. A minor discrepancy occurs
around the front of the island for the most steepest case, H=0.181d,
where the runup is slightly underpredicted.

Finally, a few words about the computational efficiency of the
SWASH model. The execution time needed for the case H=0.181d
appeared to be about 28 CPU minutes on a single 2.0 GHz Intel Core 2
processor, with the highest level of resource required by the solution
of the pressure Poisson equation. This implies that the total CPU time
per grid point and per time step required is about 2.2 μs.

The parallel performance of the SWASHmodel was measured on a
dedicated Linux cluster with 8 nodes, each of which has 2 dual-core
64-bit AMD processors (1.8 GHz, 4 MB L2 cache), and thus having a
total of 32 computational cores. Each node contains 4 GB of memory
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Fig. 9. Computed (solid line) and measured (circles) maximum horizontal runup around t
(middle panel), and H=0.181d (right panel).
that is shared among the cores, while the nodes are connected via
Gigabit ethernet. Wall clock times in seconds were measured for the
total execution including MPI communication. Usually, the perfor-
mance of a parallel computation is measured by the speedup and
efficiency. The speedup Sp is defined as the ratio between the
turnaround time needed by 1 computational core and by p
computational cores. The efficiency, as measure for scalability, is
determined by Ep=Sp/p. The performance test was conducted for 1, 2,
4, 8, 12, 16 and 32 cores. The measured timings, speedups and
efficiencies are reported in Table 1. Clearly, the model shows super
linear scaling up to 12 cores, but then it levels off. At this point, the
communication overhead slows down the parallel performance. Still,
the computing time for this particular simulation has been reduced to
about 80 ns per grid point and per time step. Possible causes for
observed super linear speedup are memory sharing and cache effect.

5.7. N-wave runup on a complex beach

The Hokkaido Nansei-oki tsunami of 1993 produced unexpectedly
large runup heights inMonai Valley, Japan. Themaximum runup height
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Table 1
Parallel performance of SWASH for the conical island case with H=0.181d.

p CPU time (s) Sp Ep

1 1489 1.0 1.00
2 585 2.5 1.27
4 332 4.5 1.13
8 171 8.7 1.09
12 123 12.1 1.01
16 95 15.7 0.98
32 63 23.8 0.74
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was over 30 m,whereas an average of 24 m runup height was observed
along the beach (Matsuyama and Tanaka, 2001). To study this unusual
phenomenon, Matsuyama and Tanaka (2001) conducted a laboratory
experiment for N-wave transformation and runup in a large-scale flume
of 205 m long, 3.4 mwide and 6 m deep. The bathymetry of this 1:400-
scale laboratory model with a small pocket beach is partly shown in
Fig. 10. Complete time series of measured surface elevation were
provided at three wave gauges behind Muen Island as indicated in the
figure. Also the measurements of some runup heights in the pocket
beach, including the highest one, were available.

For the present simulation the numerical setup of Yamazaki et al.
(in press) has been taken. The numerical basin is 5.475 m long and
3.4 m wide. A uniform grid was chosen with Δx=Δy=0.0125 m,
while an initial time step of 0.005 s was taken with a maximum
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Fig. 10. Bathymetry and computational domain for the Monai Valley
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Fig. 11. Input N-wave profile for the
Courant number of 0.5. The simulation period was set to 30 s. At the
western boundary an N-wave, as shown in Fig. 11, was imposed. A
Manning's roughness coefficient n=0.012 was used. The simulation
was depth-averaged and non-hydrostatic of nature.

Fig. 12 presents the comparison of the computed surface elevation
with measured data at different gauge locations. Both the amplitude
and phase of the first wave are predicted very well. Similar results
have been found in Cui et al. (2010) and Yamazaki et al. (in press).
Matsuyama and Tanaka (2001) have measured runup heights along
transects at y=2.2062 and y=2.32 m as well as the maximum value
inside Monai Valley from a series of tests. These recorded runup data
with some spreading can also be found in Table 1 of Yamazaki et al. (in
press). Fig. 13 shows the computed runup with the range and sample
mean of themeasured runup. Despite the uncertainty in themeasured
data the computed runup heights agree well with the measured ones,
particularly the one atMonai Valleywhere the highest runup has been
observed. This is consistent with the findings of Yamazaki et al. (in
press).

5.8. Irregular waves breaking on a bar-trough beach profile

The laboratory flume test of Battjes and Janssen (1978) is
considered, in which random, uni-directional waves propagate
towards a bar-trough profile (see Fig. 14). Battjes and Janssen
(1978) considered five different conditions applied to the bar-trough
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Fig. 12. Comparison of experimental data with numerical simulation results for the Monai Valley runup experiment. Time series of surface elevation at gauges behind Muen Island
are shown. Dashed line: experimental data; solid line: SWASH.
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beach of which two of them will be discussed in this paper: mildly
breaking (run 13 of Battjes and Janssen) and strongly breaking (run
15). The incident significant wave height Hm0 and peak period Tp are
given as 0.147 m, 2.01 s and 0.202 m, 1.89 s, respectively. In both
cases, a one-dimensional Jonswap spectrum was imposed. The grid
size was set to 0.05 m and the time step was taken initially as 0.005 s
with a maximum Courant number of 0.5. The computations
considered were depth-averaged. The mixing length ℓm used in
1.4
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Fig. 13. Comparison of recorded runup with computed runup along the pocket beach
with the highest runup height at Monai Valley. Error bars: recorded runup of
Matsuyama and Tanaka (2001); solid line: SWASH.
these calculations was 0.15 m and 0.20 m, respectively. At outflow, a
sponge layer of typically two incident wave lengths in conjunction
with the Sommerfeld's radiation conditionwas given. For comparison,
SWAN computations have been included as no measured energy
density spectra were available. The default surf zone physics of SWAN
has been employed, namely the depth-induced wave breaking model
of Battjes and Janssen (1978) and the Lumped Triad Approximation
(LTA) for nonlinear interactions (Holthuijsen, 2007).1 A well-known
deficiency of LTA is the overestimation of the first superharmonic
(Becq-Girard et al., 1999). Moreover, only sum interaction is
considered while the generation of low-frequency (lf) motion (‘surf
beat’) is excluded.

Fig. 15 displayed the wave height along the flume for both cases.
The predicted wave heights are overall in good agreement with
observations. Fig. 16 demonstrates the comparison of SWASH- and
SWAN-computed wave spectra at different locations in the flume. As
expected, the generation of the first superharmonic has been
prevailed in the SWAN-computed spectra, while the subharmonics
are completely lacked. By contrast, the spatial evolution of the
SWASH-computed spectral levels is characterised by increases of
energy at lower and higher frequencies, while lowering the peak
frequency, qualitatively consistent with the well-known triad inter-
action rules. Moreover, because of the interplay between depth-
induced wave breaking and triad nonlinear interaction occurring in
the surf zone, the spectrum evolves from relatively peaked at the
offshore location to a broad, flat one at nearshore positions. These
findings illustrate the first-principle based model representations of
the relevant nearshore processes.
5.9. Irregular wave breaking in a barred surf zone

The case considered is the laboratory flume experiment of Boers
(1996) which features a barred beach; see Fig. 17. Here the wave
1 Bottom friction was not included.
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condition 1B from Boers (1996) is discussed, determined by a
prescribed spectrum with parameters Hm0=0.206 m and
Tp=2.03 s. This wave field is energetic and has a relatively high
mean steepness, and at the inflow already has a reasonable amount of
energy at superharmonic frequencies. Moreover, spilling breakers
have been observed throughout the wave flume.
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The considered case was simulated with SWASH using the
following settings. The calculation was run in the depth-averaged
mode with a grid size of 0.02 m and the time step was taken initially
as 0.001 s. The maximum Courant number was set to 0.5 and the
simulation time equaled 1680 s. Themixing lengthℓm was taken to be
0.13 m (which appears to be optimal for other wave conditions of the
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experiments of Boers (1996) as well). At outflow, the Sommerfeld's
radiation condition was applied.

Fig. 18 shows that the energy levels at superharmonic frequencies
decrease steadily, as the waves propagate towards the shore, due to
breaking dissipation. Meanwhile, the steady growth in the spectral
levels at the low-frequency range due to difference triad interaction is
clearly observed. Also, the further inshore the broader the spectrum
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breaking. From this figure we see overall good agreement between
model predictions and observations. Fig. 19 presents the integral
wave parameters. The significant wave height is somewhat under-
estimated offshore of the first breaker bar and slightly overpredicted
in between the bars, presumably due to over and under dissipation,
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0 0.5 1 1.5 2
0

0.005

0.01

0.015
station 2

0 0.5 1 1.5 2
0

0.005

0.01
station 4

0 0.5 1 1.5 2
0

1

2

3

4
x 10

−3 station 6

0 0.5 1 1.5 2
0

0.5

1

1.5

2
x 10

−3 station 8

f [Hz]

ectra of shoreward propagating waves for case 1B of Boers (1996).



0 10 20 30
0.05

0.1

0.15

0.2

0.25

x [m]
H

m
0 [m

]
0 10 20 30

0.5

1

1.5

2

x [m]

T
m

02
 [s

]

Fig. 19. Computed and measured significant wave heights (left panel) and mean zero-crossing periods (right panel) along the flume for Boers 1B. Circles: experimental data; solid
line: SWASH.

1007M. Zijlema et al. / Coastal Engineering 58 (2011) 992–1012
heights agree well with the measurements. The calculated zero-
crossing period Tm02 is slightly overpredicted throughout the flume.
Nevertheless, the qualitative trend of themean period is well resolved
by the model.
5.10. Wave transformation over a shallow foreshore

In Van Gent and Doorn (2000) physical and numerical model
studies have been performed to model wave propagation over a
shallow foreshore with a bar. A prototype of this foreshore at the
Petten Sea defence at the Dutch coast has been set up in a wave flume
at a scale of 1:40; see Fig. 20. The measurements included 20 different
wave conditions of which 6 of them correspond to storm conditions
and the other 14 ones are idealised to study the influence of several
parameters like wave height, wave steepness, spectral shape and
water level.

Numerical simulations were carried out using a grid size of 1.0 m,
an initial time step of 0.02 s and 2 equidistant layers. A simulation
period of 60 min has been chosen so as to obtain a steady-state
solution while the Courant number was set to 0.5. Measured wave
spectra at the start of the foreshore were imposed as incident
frequency spectra. In the cases with storm conditions, full wave
reflection near the toe has been incorporated in the computations,
since long wave reflection at the shoreline has been observed. In the
other simulations the radiation condition of Sommerfeld has been
applied at the outflow boundary in order to minimise wave
reflections.

Fig. 21 illustrates the comparison of measured and computedwave
spectra at different locations (see Fig. 20) for a storm condition (test
1.04 of Van Gent and Doorn (2000); incident parameters:
Hm0=4.4 m, Tp=16.2 s at a water level of 1.7 m). The numerical
simulation shown in this figure uses ℓm=4m. The model-predicted
spectral evolution is generally in good agreement with the observa-
tions. At low frequencies, long waves including reflected components
are generated while the amount of energy in the short waves
decreases. Also notable is the fact that the shape has been broadened.
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Fig. 20. Lay out of the Petten Sea defence ex
These findings are in line with what was discussed in the test cases
presented earlier.

Another test case is an idealised case with a relative high wave
steepness (test 2.51; incident 1D Jonswap spectrum with Hm0=6 m
and Tp=9 s at a water level of 4.7 m) of which the results are depicted
in Fig. 22. (The mixing length was set to 3 m.) It demonstrates clearly
the strong response of the peak energy levels to high steepness in
which those levels are attenuated and nonlinear three-wave transfer
across the frequencies is very limited. Again, good agreement to
observations is found.

5.11. Wave-induced nearshore circulation on a barred beach with rip
channels

Although rip currents and their effects on nearshore circulation
have been observed in the field for many years, there are quite a few
laboratory data involving rip currents on a longshore varying
bathymetry, of which Haller et al. (2002) is the most comprehensive
one so far. These data were obtained in a directional wave basin with a
longshore, submerged bar where two rip channels were present. The
experiment was carried out using regular waves only. Wave-driven
currents, wave heights and setups were measured over a large area of
the basin to get a detailed picture of the rip current circulations.
Earlier numerical studies related to this rip current system have been
carried out by Chen et al. (1999) and Haas et al. (2003).

Comparisons with the observations of test B from Haller et al.
(2002) are considered. The corresponding wave condition is a
monochromatic, normally incident wave with a height of 4.75 cm
and a period of 1 s. The bottom topography used in the present
simulations is depicted in Fig. 23, where two rip channels incising a
bar are clearly shown. The computational domain is 13.05 m long and
18.2 m wide. The seaward boundary is located at the most offshore
wave gauge, which is at 3.95 m from the wave maker, thus giving a
more precise forcing of the model. The offshore still water depth is
0.374 m, while the beach slope is 1:30. A discharge was imposed at
the seaward boundary, which is uniform alongshore. This discharge is
determined by means of the linear wave theory given the wave
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periment (Van Gent and Doorn, 2000).
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condition. The radiation condition was imposed at the shoreline to
minimise reflections. The lateral boundaries were closed. A simulation
was carried out using a uniform grid with Δx=Δy=0.05m, an initial
time step of 0.01 s, and a maximum Courant number of 0.8. A single
layer was considered to be enough. Exactly 163,800 time steps were
needed to complete the simulation period of 1638 s, which is the
duration of the considered physical test as well. Since, wave breaking
causes a forcing on themean current, while this force balances bottom
friction and lateral turbulent mixing, a Manning's roughness coeffi-
cient n=0.017 and a mixing length ℓm=3 cm were adopted. These
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Fig. 24. Comparison between the computed and measured cross-shore variation of the wave
panel). Circles: experimental data; solid line: SWASH.
values were determined by calibration. Note that turbulent mixing is
implicitly accounted for in the Prandtl mixing length hypothesis,
although its effect is usually small compared to that of wave breaking.
Thus, the effective mixing length is somewhat smaller than the given
value of 3 cm.

The cross-shore variation of the measured and computed wave
height and setup over the centre bar (y=11.23 m) and along the
centerline of the rip channel (y=13.68 m) are shown in Figs. 24 and 25,
respectively. Obviously, both wave breaking and the wave setup are
fairly captured by themodel.Moreover,waves over thebar break earlier
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than those through the channel. This creates an alongshore variation of
the mean water level close to the shore and subsequently drives a
circulation pattern. Fig. 26 presents a comparison between the
measured and computedmean cross-shore current alongfive longshore
sections. These are close to the shoreline (x=14m), in the trough
behind the bar (x=13m), over the bar (x=12.2 m), on the offshore
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Fig. 26. Longshore variation of the mean cross-shore current at different sectio
edge of the bar (x=11.2 m), and 1 moffshore of the bar (x=10m). The
agreement is fairly good for all the sections. In particular, at both sides of
the bar, the model captures well the important details of the longshore
variation of the cross-shore velocity. The longshore variation of the
mean longshore current from the simulation compared to themeasured
one along the five transects is seen in Fig. 27. Again, model predictions
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are in overall good agreement with the observations. The quality of
these predictions is similar to the ones found in Chen et al. (1999) and
Haas et al. (2003).

The considered simulation was very compute intensive; it took
about 9 CPU hours on a single 2.0 GHz Intel Core 2 processor to
complete the run. In other words, for a simulation of an hour of real
time it requires approximately 20 h of computing time. This clearly
shows the need for parallelism. Numerical computations have been
carried out for the full simulation period on 1 through 32
computational cores of the Linux cluster mentioned in Section 5.6.
The computing times and speedup factors for these runs are shown in
Table 2. These results show a super linear speedup of up to a factor 8.6
on 8 cores, which is obtained through a reduction of simulation time
by memory sharing among the cores combined with effective cache
utilisation that is more substantial than the communication overhead.
However, at higher numbers of computational cores, the parallel
efficiency is being reduced as the communication begins to dominate
the computation time. Nonetheless, this efficiency is larger than 65%,
indicating that the parallel algorithm is rather scalable to larger
numbers of computational cores. Note that the computing time has
been reduced to less than 45 min/h to be simulated. Also, the required
CPU time on 32 cores amounted to about 76 ns at each grid point on
each time step.
Table 2
Parallel performance of SWASH for the rip current case.

p CPU time (s) Sp Ep

1 25,769 1.0 1.00
2 12,560 2.1 1.03
4 6371 4.0 1.01
8 3011 8.6 1.07
16 1764 14.6 0.91
32 1194 21.6 0.67
6. Concluding remarks

The paper has given a detailed exposition of the main elements of
the public domain SWASH model for simulating non-hydrostatic,
free-surface, rotational flows in one and two horizontal dimensions.
This model stands out in its ability to simulate complex nearshore
processes, including wave breaking, nonlinear interaction, wave
runup and wave-induced circulation. A further distinguishing feature
is the numerical implementation of momentum conservation, which
is a prerequisite for a plausible representation of hydraulic jumps and
bores. The computational algorithm combines efficiency and robust-
ness allowing application to large-scale, real-life problems. In
addition, the turnaround time of this algorithm can be effectively
reduced by means of parallelism. The resulting code can be executed
on computer clusters making use of an arbitrary number of
computational cores. Performance experiments reveal good run
time reduction and have illustrated the viability of the parallelization
strategy followed in SWASH.

The examples included not only demonstrate the capabilities of
the SWASH model, but also expose a number of interesting physical
issues. For instance, it was shown that this model with three non-
equidistant vertical layers exhibits accurate wave dispersion up to
kd≈16 when linear progressive waves are involved. However, using
two equidistant layers would be adequate to retain accurate
propagation of progressive waves for kd≤3, typically occurring in
most nearshore applications.

Considering a typical surf zone where the dominant processes of
triad interaction and depth-induced breaking can be isolated, it was
found that the model yields a realistic representation of the observed
frequency spectra, including the overall spectral shape at frequencies
above the spectral peak, and the inclusion of subharmonics. This is
followed by a transformation toward a broadband spectral shape as
the waves approach the shoreline. Accordingly, the integral wave
parameters are also predicted well. Such phenomena appear to be
rooted in the ability of the momentum-conservative scheme to mimic
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the dynamics within travelling bores associated with wave breaking
across the surf zone. In addition, the comparison of numerical results
with experiments shows the usefulness of the Prandtl mixing length
hypothesis in situations of practical interest including severe wave
breaking. Wave-induced nearshore circulation on a barred beach
incised by rip channels has been studied as well, showing the
potential of the model to reproduce adequately the variation of the
wave heights, the wave setup and the wave-driven currents.

Finally, we believe that SWASH is very likely to be competitive
with the extended Boussinesq-type wave models in terms of
robustness and the computational resource required to estimate
wave and flow quantities to an appropriate accuracy. In particular, the
model improves its frequency dispersion by increasing the number of
vertical layers rather than increasing the order of derivatives of the
dependent variables like Boussinesq-type wave models. Yet, it
contains at most second order spatial derivatives, whereas the applied
finite difference approximations are at most second order accurate in
both time and space. Moreover, the use of second order upwinding in
the momentum equations effectively eliminates short wave in-
stabilities and so, the model results remain stable without any
artificial filtering. Additionally, SWASH requires just one tuning
parameter for wave breaking, which in practice is relatively easy to
estimate. Lastly, SWASH utilises a simple and numerically stable
procedure yielding non-negative water depths with which an
accurate representation of the sea–land interface, necessary for
simulating swash motions, is obtained. These issues evidently
illustrate the robustness of the model. By providing the open source
SWASH code (swash.sourceforge.net) that can be freely redistributed
and modified, we hope to encourage everyone to further improve the
overall performance of the model.
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