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Non-hydrostatic models such as Surface WAves till SHore (SWASH) resolve many of the relevant physics in
coastal wave propagation such as dispersion, shoaling, refraction, dissipation and nonlinearity. However, for ef-
ficiency, they assume a single-valued surface and therefore do not resolve some aspects of breaking waves such
aswave overturning, turbulence generation, and air entrainment. To study the ability of suchmodels to represent
nonlinear wave dynamics and statistics in a dissipative surf zone, we compare simulationswith SWASH to flume
observations of random, unidirectional waves, incident on a 1:30 planar beach. The experimental data includes a
wide variation in the incident wave fields, so that model performance can be studied over a large range of wave
conditions. Our results show that, without specific calibration, the model accurately predicts second-order bulk
parameters such as wave height and period, the details of the spectral evolution, and higher-order statistics,
such as skewness and asymmetry of the waves. Monte Carlo simulations show that the model can capture the
principal features of the wave probability density function in the surf zone, and that the spectral distribution of
dissipation in SWASH is proportional to the frequency squared, which is consistent with observations reported
by earlier studies. These results show that relatively efficient non-hydrostaticmodels such as SWASH can be suc-
cessfully used to parametrize surf zone wave processes.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In the nearshore region and surf zone, ocean waves undergo a dra-
matic transformation mostly due to nonlinear wave–wave interactions
and breaker dissipation. These dynamics play a central role in nearshore
circulation and transport processes, e.g. by controlling wave setup
(e.g. Longuet-Higgins and Stewart, 1964), driving nearshore currents
(e.g. Longuet-Higgins, 1970; Longuet-Higgins and Stewart, 1964;
MacMahan et al., 2006; Svendsen, 1984), and causing morphodynamic
evolution (e.g. Hoefel and Elgar, 2003). Understanding these processes
and the development of predictive models is important for both scien-
tific research and engineering in the coastal zone. Since most coastal
and coastline processes take place on much longer scales than that of
the individual waves, predictive models are generally used to estimate
wave statistics (e.g. significant wave height, mean period) and varia-
tions therein. However, modeling wave statistics in the nearshore is
complicated both by the strong influence of nonlinear processes and
an incomplete understanding of dissipation of wave energy in shoaling
and breaking waves.

Stochastic (or phase-averaged) wave models for coastal applica-
tions are usually based on some form of energy (or action) balance
equation (e.g. Komen et al., 1994; The WAMDI Group, 1988; Wise
Group, 2007), which assumes that the wave field is (and remains)
ghts reserved.
quasi-homogeneous and near-Gaussian. However, due to nonlinearity,
surf zone wave statistics are generally strongly non-Gaussian, and
apart from variance, higher cumulants (e.g. skewness and kurtosis) are
required to completely describe the wave statistics. This poses high
demands on the model representation of the nonlinear and non-
conservative dynamics. In particular, for statisticalmodels, the represen-
tation of nonlinearity invariably requires some form of closure
approximation and involves evolution equations for higher-order corre-
lations, both of which generally render the model considerably more
complicated and computationally intensive (e.g. Herbers and Burton,
1997; Herbers et al., 2003; Janssen, 2006; Smit and Janssen, 2013).

Deterministic (and phase-resolving) wave models can generally in-
corporate nonlinearity more easily, and naturally include full coupling
to the wave-induced nearshore circulations. However, although a
model based on theReynolds-averagedNavier–Stokes (RANS) equations
can model surfacewave dynamics in great detail, and resolve very small
scales of motion (e.g. Torres-Freyermuth et al., 2007), the computational
cost can become prohibitive, even for small-scale applications. For wave
modeling of most coastal-scale applications, and in particular for coastal
engineering, more approximate but efficient models, such as so-called
non-hydrostaticmodels ormodels based on a Boussinesq approximation
are generally more useable. Boussinesq-type wavemodels have evolved
from weakly nonlinear and weakly dispersive models (see Peregrine,
1967), to nearly fully dispersive and highly nonlinear models
(e.g. Madsen et al., 2002; Nwogu, 1993;Wei et al., 1995), at the expense
however, of much increased complexity of the underlying model
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equations and numerical implementations. In contrast, non-hydrostatic
models are essentially numerical implementations of the basic conserva-
tion equations formass andmomentum(e.g.Ma et al., 2012; Stelling and
Zijlema, 2003; Yamazaki et al., 2009), which can be directly used for
wave propagation problems if sufficient spatial resolution, in particular
in the vertical, is provided. As a consequence, such models are relatively
simple, and grid resolution can be readily adapted to a particular applica-
tion and allow propagation of waves from deep to shallow water.

However, such non-hydrostatic models (and Boussinesq models for
that matter), do not model all aspects of surf-zone waves. In particular,
for the sake of efficiency, these models assume a single-valued repre-
sentation of the free surface in the horizontal plane, which implies
that processes such as overturning, air entrainment, and wave-
generated turbulence are not resolved. Instead, integral properties of
breaking waves (including energy dissipation rate) are estimated by
treating the breaking wave as a discontinuity in the flow variables
(free surface, velocities) and maintaining momentum (and mass) con-
servation across the discontinuity (Smit et al., 2013). Although this
gives good results for the second-order bulk statistics (such as the sig-
nificant wave height), it is not clear whether such an integral approach,
where someof the details of breakingwaves are treated as sub-grid pro-
cesses, can actually resolve the nonlinear and dissipative processes in
the surf zone, and thus predict the details of the spectral evolution
and nonlinear statistics there.

In the present work we set out to study these issues by comparing
simulations with the non-hydrostatic model Surface WAves till SHore
(SWASH, Zijlema et al., 2011) to flume observations of random waves
over a 1:30 planar beach (see Smith (2004)). The motivation behind
this work is to assess whether an efficient non-hydrostatic model such
as SWASH can be a viable tool to study surf zone dynamics and accu-
rately capture the statistics of strongly nonlinear and breaking waves.

In Section 2 we present themodel equations, numerical approxima-
tions, and breakermodeling in SWASH. The laboratory experiments and
specificmodel settings are described in Section 3 andwe present our re-
sults (model-data comparison) in Section 4.We discuss and sumup our
principal findings and their implications in Sections 5 and 6.

2. Model description

The non-hydrostatic model SWASH (Zijlema et al., 2011), is an
implementation of the Reynolds-averaged Navier–Stokes equations
for an incompressible, constant-density fluid with a free surface. In
the present work we use this model to study one-dimensional
wave propagation in a flume. In Cartesian coordinates, with x and z
the horizontal and vertical coordinate respectively, and with z mea-
sured up from the still-water level z0, the governing equations can
be written as

∂u
∂t þ

∂uu
∂x þ ∂wu

∂z þ ∂wu
∂z ¼ − 1

ρ
∂ ph þ pnhð Þ

∂x þ ∂τxz
∂z þ ∂τxx

∂x ; ð1Þ

∂w
∂t þ ∂uw

∂x þ ∂ww
∂z ¼ − 1

ρ
∂pnh
∂z þ ∂τzz

∂z þ ∂τzx
∂x ; ð2Þ

∂u
∂x þ

∂w
∂z ¼ 0; ð3Þ

where t is time, u(x,z,t) and w(x,z,t) are the horizontal and vertical
velocities, respectively, and ρ is the (constant) density. Further,
the hydrostatic pressure ph = ρg(ζ ‐ z) (with g being gravitational
acceleration) and pnh represents the non-hydrostatic pressure con-
tribution. The turbulent stresses ταβ are obtained from a turbulent
viscosity approximation (e.g. τxz = ν∂zu, with v the kinematic
eddy-viscocity) using a standard k − ε model closure approxima-
tion (Launder and Spalding, 1974). The water column is vertically
restricted by the (time-varying) free-surface z = ζ(x,t) and
immobile bottom z = ‐ d(x). Here d is the still water depth and the lo-
cation of the free surface ζ is found from continuity, expressed as

∂ζ
∂t þ

∂
∂x

Z ζ

−d
udz ¼ 0: ð4Þ

Eqs. (1)–(4) are solved for constant pressure at the free-surface (i.e.
p = 0), while accounting for the kinematic free-surface and bottom
boundary conditions,

w ¼ ∂ζ
∂t þ u

∂ζ
∂x z ¼ ζð Þ and w ¼ −u

∂d
∂x z¼−dð Þ: ð5Þ

At the up-wave boundary, waves are generated by prescribing the hor-
izontal velocity u(z, t) at that location, whereas opposite of the
wavemaker the boundary is formed by the moving shoreline.

Since the objective is to study surf zone wave dynamics, we need to
include motions in the infragravity band, which are generated in the
shoaling process and released during breaking. These low-frequency
components are much longer than the primary waves and much more
strongly affected by bottom friction. To incorporate this, we include a
bottom stress at the bottom boundary assuming a logarithmic velocity
profile (Launder and Spalding, 1974) and a typical roughness height dr.

2.1. Numerical approximations

For non-breaking waves these equations describe nonlinear
shoaling, and thus include the energy transfers across different length
scales in the wave spectrum due to triad and higher-order nonlinear-
ities. The accuracy with which these processes are represented in nu-
merical models such as SWASH, depends on the numerical methods
used to approximate the governing equations, and the spatial (horizon-
tal and vertical) and temporal resolutions used in the simulation. More-
over, when extending such models to the surf zone, careful attention
must be paid to the conservation properties (in particular of momen-
tum) of the numericalmethod (see Zijlema et al. (2011) for amore gen-
eral discussion of the numerical methods used in SWASH).

To accurately resolve wave motion in a phase-resolving model, the
horizontal resolution Δx must be a fraction of the shortest wave length
L that needs to be resolved, i.e. L/Δx = O(10). Similarly, the timestep Δt
is usually a fraction of the shortest wave period T, i.e. T/Δt = O(10). To
allow for accurate, undamped propagation over long distances, SWASH
uses a staggered horizontal grid combined with a second-order (in
space and time), explicit, finite-difference method that is neutrally
stable (no numerical damping) for small amplitude (linear theory)
waves. The vertical resolution, and numerical approximations of the
vertical pressure gradient, determines how well the model approxi-
mates the linear dispersion relation for surface gravity waves ω kð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh kdð Þ

p
, which strongly affects propagation and dispersive char-

acteristics of the wave field.
Non-hydrostatic models oftenmake use of a boundary-fitted ver-

tical grid that divides the instantaneous water depth h = (ζ + d) in
a constant number of layers N, with variable vertical mesh-size
Δz = h/N. The required number of layers N then generally depends
on the deepest parts of the domain, and increases with the vertical
variability of the wave-induced velocity profile, for free-surface
waves represented by the relative depth kd. Hence, in shallow
water (kd ≪ 1), a coarse resolution generally suffices, whereas in
deep water (kd ≫ 1) a vertical resolution similar to the horizontal
resolution is required, Δz/Δx = O(1) (at least near the surface). Tra-
ditionally, this has severely limited the application of these models
to wave propagation, as the number of layers required to accurately
capture dispersion (say a relative error smaller than 1%) at high kd
(O(10)) can become very large (N N 20), resulting in excessive com-
putational times. These constraints are significantly relaxed in
SWASH due to the use of an edge-based vertical grid combined



1 Note that fp(1) and fp
(2) specifically refer to the locations of the incident waves, whereas

we will use fp to refer to the local peak frequency. We will use the same convention for
peak wave periods and wave numbers.
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with a compact numerical scheme for the approximation of the ver-
tical pressure-gradient (i.e., the Keller-box scheme; see Lam and
Simpson, 1976). Hence, for N = 6, the maximum relative error of
the numerical dispersion relation ωn, compared with ω (or alterna-
tively the wave celerity), remains below 0.1% for kd b 40 (see
Appendix A). This numerical efficiency is important in the surf
zone where very short waves exchange energy through nonlinear
interactions, thus potentially imposing high demands on both hori-
zontal and vertical resolutions.

2.2. Wave breaking approximations

Since SWASH assumes the free surface to be a single-valued function
ζ(x,t), it cannot model processes such as overturning, air-entrainment,
and the production ofwave-induced turbulence after thewave formbe-
comes unstable and breaking is initiated. However, if we are not princi-
pally interested in the details of these fine-scale processes associated
with breaking waves, this approach can be very useful (and efficient)
to capture the larger-scale wave and current dynamics in the surf
zone (e.g. Ma et al., 2012; Smit et al., 2013).

In a non-hydrostatic model like SWASH, a breaking wave develops
into a discontinuity (or hydraulic jump),which is similar to that predict-
ed by the (non-dispersive) shallow-water equations. Ifmomentumcon-
servation is maintained across the discontinuity by employing shock-
capturing numerical methods (in SWASH this is done using themethod
by Stelling and Duinmeijer, 2003) then, in analogy to hydraulic jump
dynamics, energy is dissipated at a rate proportional to the cube of the
bore height. In this way the entire turbulent front is essentially reduced
to a sub-grid phenomenon.

However, when waves approach breaking, wave steepening intro-
duces strong vertical gradients in the flow variables, which requires a
very high vertical resolution locally to accurately capture the bore dy-
namics using shock-capturing numerics. If the resolution is insufficient,
velocities are generally underestimated, and the initiation of breaking is
delayed (Smit et al., 2013). We avoid using a fine vertical resolution by
using a hydrostatic front approximation (HFA), inspired by similar de-
velopments in Boussinesq models (e.g. Tissier et al., 2012; Tonelli and
Petti, 2012), and described in detail in Smit et al. (2013). The HFAmeth-
od implemented here considers the (non-dimensional) rate of change
of the free surface elevation, ζ ′

t ¼ ∂tζ=
ffiffiffiffiffiffi
gh

p
and forces the pressure at

thewave front to be hydrostatic, i.e. pnh = 0, once this exceeds a certain
threshold (i.e. ζ ′

t Nα). Effectively, near the bore front, the model reduces
to the nonlinear shallow-water equations, causing the front to assume a
characteristic sawtooth-like shape, and dissipate wave energy at a rate
consistent with that of a hydraulic jump. Once breaking is initiated,
the breaking threshold α is reduced to β (with β b α) in neighboring
points to allow the breaker to more easily persist and producemore re-
alistic breaker dynamics.

The threshold value, α, at which the HFA is initiated, depends on the
wave dynamics leadingup to breaking, and thus depends on the number
of layers used in themodel. For two layers, Smit et al. (2013) foundα =
0.6 by estimating the maximum value of ζ ′

t at the observed breaking
point in the experiments of Ting and Kirby (1994). Recalibration for 6
layers (as will be used here) using the same analysis method and data
set as in Ting and Kirby (1994), resulted in α = 1. This value produces
similar model-data agreement for the Ting data set with the six-layer
model (not shown) as found in Smit et al. (2013) for a two-layer
model. The persistence parameter β was found much less sensitive to
the number of layers used, and is therefore set to the value of β = 0.3
(suggested by Smit et al., 2013).

Lastly, to prevent generation of high-frequency noise in the wave
profile due to the discrete activation of the HFA, some additional hori-
zontal viscosity is introduced, of the form

ν ¼ L2mix
∂U
∂x

����
����: ð6Þ
Here Lmix is a typical horizontal mixing length, set as a fraction μ of
the local depth (i.e. Lmix = μh), and U is the depth-averaged horizontal
velocity. For 0.25 ≤ μ b 3, this parameter supresses the generation of
such noise, but has a marginal effect on the bulk energy dissipation. To
minimize its influence, we set μ = 0.25 in the present study.

3. Experiment and model setup

We compare SWASH simulations to a series of laboratory observa-
tions performed by Smith (2004) at the US Army Engineer Research
andDevelopment Center, Coastal andHydraulics Laboratory. The exper-
iments were performed in a 0.45 m wide, 45.7 m long and 0.9 m deep
flume (see Fig. 1), with glass walls and a smooth concrete bottom.
Waves are generated by a horizontally moving piston-typewave gener-
ator located at one end of the flume (at x = 0 m), and propagate over a
horizontal section onto a 1:30 beach that starts at x = 19.3 m.

The surface elevation was measured at 10 locations (see Fig. 1), and
sampled at 5 Hz for a duration of 550 s. Data acquisition was started
after 50 s, thus allowing for spin-up time and prevent transient effects
in the observations. The wave gauge closest to the wave maker, located
on the horizontal section, is used as a boundary condition for themodel.
The other gauges are placed on the slope, from a depth of 0.3 m to
0.05 m, at intervals varying from 0.5 to 1.6 m (see Table 1).

Irregular waves were generated using either a single- or double-
peaked spectrum. The individual spectral peaks are described by a para-
metric TMA shape (Bouws et al., 1985), and the high-frequency peak of
the double-peaked spectra always contained two-thirds of the total en-
ergy (see Smith (2004)). In our analysis, to avoid ambiguity, we refer to
the low-frequency peak as the primary peak, and to the high-frequency
peak (if present) as the secondary peak; additional peaks that arise in
the spectrum due to nonlinear interactions are referred to as (higher)
harmonic peaks, or simply harmonics.

The experiments consider a range of incident wave conditions (see
Table 2 for an overview) by varying the TMA peakedness parameter γ,
considering single and double-peaked spectra, varying the peak period
of the low frequency peak Tp

(1) = 1/fp(1), and including two different sig-
nificantwave heightsHm0. A total of 31 experiments, including 30differ-
ent wave conditions, were performed (case 11bwas repeated once). If a
secondary peak is included in the incident wave spectrum, it is generat-
ed at fp

(2) = 1 Hz. The Iribarren number, ξ (definition in caption to
Table) was below 0.5 (see Table 2), which suggests that the surf zone
for the cases consisted mostly of spilling breakers (see e.g. Holthuijsen,
2007). Since the wavemaker was not equipped with either second-
order control or reflection compensation, some spurious second-order
wave motion was generated, and long waves radiated back from the
beach were re-reflected into the flume.

The model domain extends from the first observation point at x1 =
6.7 m, to 45 m. To ensure that themodel accurately describes the wave
characteristics over a wide frequency range of at least 0 ≤ f ≤ 4fp (with
fp the peak frequency1), which includes the high-frequency tail, the hor-
izontal resolution is set at Δx = 0.01 m. Such high resolution is needed
to resolve the higher frequencies with wavelengths 0.1 to 0.4 m, and to
accurately propagate these components over O(102) wave lengths.
Moreover, to correctly describe linear dispersion at high kd values
(maximum value of kd at 4fp is approximately 40), the vertical resolu-
tion is set to 6 layers, so that within the prescribed frequency range
the relative error in wave celerity stays below 0.1%. From a nonlinear
perspective, this also ensures that the resonant mismatch is well
predicted for interactions below 4fp (see Appendix A). Time integration
was performed for a duration of 600 s with a time step of Δt =
0.005 s (so that 4fp Δt ≥ 50 in all cases). The bottom roughness
height dr was set to a value of 4.5 × 10−4 m, which is representative
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Fig. 1. Layout of the flume experimental setup by Smith (2004). The diamond markers at still-water level (z = 0) indicate measurement locations.

Table 2
Wave conditions considered in the experiments by Smith (2004). Tp(1) refer to the primary
peak period, whereas Tp(2) refers to the period of the secondary peak (if applicable). Wave
steepness is defined from the wave number spectrum E(k), with k the wave number, asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫k2E kð Þdk

q
. The Iribarren number ξ is defined as ξ ¼ tanα=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hm0=Lp

p
, with Hm0 the

significant wave height as listed, tanα = 1/30 the bottom slope and Lp = g(Tp(2))2/2π
the deep-water wavelength. Listed values for kp(1)d are calculated using the primary peak
period and d = 0.62 m. All other variables are defined as in the main text. Cases consid-
ered individually in figures or discussed in the main text are marked with an asterisk.

Case Tp
(1) TP

(2) Hm0 γ Wave steepness kp
(1)d ξ

(a) (b) (c) (a) (b) (c)

1 2.5 1.0 9.0 3.3* 20 100* 0.13 0.12 0.11 0.68 0.34
2 2.0 1.0 9.0 – 20* – – 0.12 – 0.88 0.27
3 1.75 1.0 9.0 3.3 20* 100 0.13 0.13 0.11 1.00 0.24
4 1.5 1.0 9.0 – 20 – – 0.13 – 1.3 0.20
5 1.25 1.0 9.0 3.3 20 100 0.14 0.13 0.12 1.7 0.17
6 2.5 – 9.0 3.3* 20 100* 0.07 0.05 0.05 0.68 0.32
7 2.0 – 9.0 – 20* – – 0.04 – 0.88 0.26
8 1.75 – 9.0 3.3 20* 100 0.1 0.07 0.05 1.00 0.23
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for smooth concrete (e.g. Chow, 1959). Each individual simulation
(each case) takes approximately 30 min to complete on a 6-core
Intel Xeon 3.2 GHz CPU desktop computer.

3.1. Wave forcing

The model is forced with the measured free-surface records at the
first wave gauge, which implies that the model-data comparisons are
essentially deterministic. To directly force the model using the data,
we relate the time-varying, layer-averaged horizontal velocity un(t)
for each vertical layer n (with n = 1…N, and n = 1 denoting the bot-
tom layer), required to drive the model at the up-wave boundary, to
the measured free-surface elevation at that location. Therefore we
consider the Fourier sum of the free-surface elevation and horizontal
velocity,

ζ tð Þ ¼
XJ

j¼‐ J

ζ̂ jexp i2π f jt
h i

; u z; tð Þ ¼
XJ

j¼‐ J

û j zð Þexp i2π f jt
h i

; ð7Þ

where fj = jΔf, Δf = 1/T and i2 = −1. The horizontal velocity (using
linear wave theory) is found from

û j zð Þ ¼ 2π f jζ̂ j

sinh kj zþ dð Þ
h i

sinh kjd
� � ð8Þ

where kj is the wavenumber related to fj by the linear dispersion rela-
tion. The layer-averaged velocity un(z,t) is then obtained by integration
over the nth layer, and subsequently dividing by the layer thickness,

un z; tð Þ ¼ 1
Δz

XJ

j¼‐ J

Z zn

zn‐1

û j z; tð Þexp i2π f jt
h i

dz; ð9Þ

where zn = nΔz ‐ d and Δz = d/N.
Although presumably, due to the lack of second-order control, some

spurious and second-order low-frequency motion is generated at the
wavemaker, most of the low-frequency energy present at the offshore
gauge consists of low-frequency energy generated in the breaking pro-
cess through subharmonic triad interactions, reflected off the beach,
and subsequently re-reflected off the wavemaker. Tomodel this consis-
tently, the model is forced with the high-pass filtered observed time
series (for f N fp

(1)/2) at the offshore gauge (gauge 1), and the offshore
boundary is set to be fully reflective (to mimic the reflecting
wavemaker). In this way, the low-frequency motion is thus not forced
into the model at the wavemaker, but allowed to develop in the surf
zone and reflect back into themodel domain (as happens in the flume).
Table 1
Instrument location (x) and still-water depth (d) during experiments (see Smith, 2004).

Gauge 1 2 3 4 5 6 7 8 9 10

x (m) 6.7 28.7 30.3 31.3 32.2 33 33.9 34.8 35.4 35.9
d (m) 0.62 0.3 0.24 0.21 0.18 0.15 0.12 0.09 0.07 0.05
4. Results

To asses overall model performance we first consider several bulk
parameters. In particular, we consider significant wave height Hm0 ¼ 4ffiffiffiffiffiffiffi
m0

p
and mean period Tm02 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2=m0
p

, where mn = ∫ fnE(f)df, and
higher-order bulk statistics of skewness Sk and asymmetry As, which
are defined as

Sk ¼
ζ3

D E

ζ2� �3=2 ; As ¼
ζ3
h

D E

ζ2� �3=2 : ð10Þ

Here ζh is the Hilbert transform of ζ (fromwhich themean contribution
is subtracted) and 〈 … 〉 denotes a time average.

The significant wave height and mean period are second-order bulk
statisticswhich are ameasure of the total amount of energy, and amea-
sure of period, respectively. The mean period Tm02 also provides some
insight in the distribution of wave energy across frequencies. Skewness
and asymmetry are third-order bulk statistics, measuring the wave
asymmetry, around a horizontal and vertical plane, respectively. Posi-
tive skewness is associated with steeper, higher peaks and flatter
troughs (e.g. second-order Stokes waves), and negative asymmetry is
associated with the forward pitching, saw-tooth like appearance of
waves in the surf zone (Elgar and Guza, 1985). Since for a Gaussian
wave field both skewness and asymmetry are zero (as are all cumulants
higher than the second), the comparison between observed and
modeled skewness and asymmetry values measures the accuracy of
9 1.5 – 9.0 – 20 – – 0.06 – 1.3 0.20
10 1.25 – 9.0 3.3* 20 100* 0.13 0.11 0.08 1.7 0.17
11 1.0 – 9.0 3.3* 20* 100* 0.15 0.12 0.13 2.5 0.14
12 2.5 1.0 6.0 – 20 – – 0.08 – 0.68 0.41
13 2.0 1.0 6.0 – 20 – – 0.08 – 0.88 0.32
14 1.75 1.0 6.0 – 20 – – 0.08 – 1.00 0.28
15 1.5 1.0 6.0 – 20 – – 0.09 – 1.3 0.25
16 1.25 1.0 6.0 – 20* – – 0.09 – 1.7 0.20
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the nonlinear dynamics in themodel, and – in the surf zone – the inter-
play between nonlinear and dissipative processes (Chen et al., 1997).

All spectral estimates (for calculations and observations) are obtain-
ed from detrended and windowed Fourier transforms of 18.3 s length
segmentswith 50% overlap,which are subsequently ensemble averaged
to yield estimates for E(f) with a resolution of Δf = 0.055 Hz and ap-
proximately 110 degrees of freedom.

The spatial evolution of the significant wave height and the mean
period in the surf zone is generally well captured by the model as illus-
trated by the eight cases shown in Fig. 2. These results are representa-
tive and similar results were found for the other cases (not shown). It
can be seen that the location where intense breaking starts (abrupt de-
crease in wave height), and the spatial variations in mean period
through the surf zone, are accurately resolved by the model. Only at
gauge 8 (x = 34.8 m third observation point from the right), the
model systematically under-predicts the observed wave heights. Varia-
tions in Tm02 are, apart from dissipation, also strongly affected by
nonlinearity. In the shoaling region, i.e. outside the surf zone proper,
Tm02 is reduced by the development of higher harmonics in the wave
spectrum (to be treated below, see Fig. 4), whereas inside the surf
zone shortwaves are rapidly dissipated and nonlinearity drives the gen-
eration of low-frequency infragravity waves, thus resulting in the ob-
served (and modeled) increase in Tm02.

On the horizontal section, the waves are weakly nonlinear, with low
asymmetry and skewness values, generally consistent with Stokes
second-order waves. On the slope, skewness increases as the waves be-
comemore ‘peaked’, and asymmetry takes on larger negative values, in-
dicative of the pitch-forward shapes developing as thewave approaches
breaking (or are breaking). Near the shore, the magnitude of skewness
and asymmetry generally reduces resulting in statistics that are closer to
Gaussian. The variability of these third-order statistics is quite accurate-
ly reproduced by the model (see Fig. 2). For the narrow-band case, 6c,
there is somewhat less good correspondence between observed and
modeled surf zone wave asymmetry than for the other cases (see
Fig. 2n, black line/markers). This is likely due to the hydrostatic bore
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Fig. 2. Comparison between modeled (lines) and observed (symbols) values of significant wav
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cases is the single- or double-peakedness of the spectrum). Case numbers (single/double) are
approximation which generates near-vertical fronts in breaking
waves, whereas in reality wave-induced turbulence would stabilize
the front toward a more moderate slope of the face of the breaking
wave (e.g. Madsen and Svendsen, 1983). This exaggeration of wave
asymmetry by the hydrostatic bore approximation, mostly affects
narrow-band waves; in wider-band wave fields (e.g. case 6a shown in
panel m of Fig. 2), which we are more likely to encounter on natural
beaches, the intermediate steep bores ride on a background of irregular
smooth waves, which apparently smoothes the statistics, and produces
model results in very close agreement with observations (see Fig. 2).

Considering all 31 cases, the comparison between observed and
modeled bulk statistics shows excellent agreement (see Fig. 3), with R2

values larger than 0.9. The agreement is best for the significant wave
height and period. For the wave heights, there is however a clustering
of points that lie below the main diagonal. This cluster is associated
with observations made by gauge 8, which (as seen before in Fig. 3a)
recorded consistently slightly higher values than model predictions for
all cases andwave conditions, andwhich stands out relative to other (sur-
rounding) observations (see Fig. 3a). Moreover, the fact that there are no
suchdifferences in the results for Tm02, the skewness or asymmetry, led us
to believe that these differences are due to a slight gauge calibration in-
consistency (experimental error), rather than a systematic model error.

The higher-order statistics of skewness and asymmetry are in excel-
lent agreement, but have slightly more scatter. Skewness is generally
slightly under-predicted, whereas the modeled asymmetry is slightly
more negative than observed. However, these higher-order statistics
strongly depend on both nonlinearity and a correct representation of
wave dissipation, and the good agreement suggest that the model cap-
tures these processes very well.

4.1. Evolution of wave spectra

Apart from dissipation and linear shoaling effects, the enhancement
of skewness, asymmetry, and the evolution of Tm02 in the surf zone (see
Fig. 2), indicate that redistribution of energy due to nonlinear triad
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interactions plays an important role in the wave evolution. To investi-
gate this in more detail we consider the evolution of observed and
modeled spectra.

Harmonic amplification due to triad interactions becomesmore pro-
nounced in shallow water since the interactions approach resonance.
The development of such higher harmonic contributions is most pro-
nounced for narrow-band waves where the primary and harmonic
peaks are well defined, with limited phase mixing. For instance, for
case 6c (kp(1)d = 0.68, γ = 100) some harmonic amplification already
occurs on the flat (see Fig. 4a), and at gauge 2we can clearly distinguish
– in both the model and the observations – the first three harmonics of
the peak (0.4 Hz), located at 0.8, 1.2 and 1.6 Hz respectively (see
Fig. 4a). In the surf zone (Fig. 4b–c), the combined effects of three-
wave interactions and dissipation due to wave breaking strongly atten-
uate the spectral peaks, so that in the inner surf zone only the primary
peak and sub-harmonics remain. Qualitatively, the picture is similar
for other cases although for higher-frequency incident waves
(e.g. case 11c, Fig. 4d–f) and more broad-banded wave fields (e.g. case
1a, Fig. 4j–l) the harmonic development is less pronounced.

There are several sources of long wave motion in the flume. In the
shoaling process, three-wave interactions amplify bound long-wave
components (here roughly defined as components with frequencies
f b 0.5 fp), which are subsequently released in the breaking process
(e.g. Battjes et al., 2004; Janssen et al., 2003). Most of the energy
contained in these frequencies subsequently reflects at the beach and
radiates back out through the surf zone as free long waves. In the field
such components would continue to propagate offshore (unless refrac-
tively trapped), but in the flume they are almost completely re-reflected
by the wavemaker. Although some low-frequency energy is associated
with second-order bound waves, and some spurious wave motion due
to the first-order wavemaker control, by far the largest contribution to
the low-frequency energy is associated with these reflected and re-
reflected free-wave components generated in the shoaling and breaking
process by nonlinear three-wave interactions (see e.g. Battjes et al.,
2004). The level of agreement between model and observations
suggests that the nonlinear surf zone wave-dynamics are captured ac-
curately. The remaining differences between model and observations
could be due to errors in the estimate for bottom friction, which is one
of the primary mechanisms (in addition to breaking of long waves,
e.g. van Dongeren et al., 2007) by which the longer waves loose energy.

One aspect that makes the present experimental dataset (Smith,
2004) particularly interesting, is the fact that it includes several cases
with double-peaked spectra. These cases show a dramatic spectral evolu-
tion across the flume. Similar to previous laboratory observations by
Smith and Vincent (1992), the secondary peak, which initially contains
the bulk of the energy, diminishes rapidly on the slope, whereas the low
frequency peak appears to grow at its expense. This behavior, which is
also largely due to triad interactions, is clearly seen in the observed spec-
tra for the double peaked cases, both for narroworwide-band initial spec-
tra, as exemplified here in cases 1c and 1a, respectively (see Fig. 4, panels
g–l). The model also reproduces this reduction of the secondary peak (at
1 Hz),which is initially still visible at gauge2 (panels g/j), but has virtually
disappeared at gauges 6 (panels h/k) and 10 (panels i/l).

4.2. Energy fluxes

The effects of nonlinearity and dissipation on the various spectral re-
gions can be further illustrated by considering the spatial evolution of
the linear energy flux, F(f,x) = cgE(f,x) at distinct frequencies. Since for
linear and conservative wave propagation the wave energy flux is con-
stant, changes in this flux indicate where nonlinear effects and dissipa-
tion are present. To reduce the sensitivity of the results to the details
of the spectral analysis (e.g. such as the frequency resolution), we
consider the normalized flux integrated over a finite frequency bandΔfn,

ΔFn xð Þ ¼

Z
Δ f n

F f ; xð Þdf
Ftot x1ð Þ ; ð11Þ

where we normalized with the total energy flux Ftot(x) = ∫ F(f,x)df at
the up-wave boundary (located at x1). The frequency bandΔfn is defined
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as a narrow frequency band around the nth harmonic frequency, i.e. Δfn
is defined as the interval 0.95(n + 1)fp(1) b f b 1.05(n + 1)fp(1). In the
following we consider the integrated energy flux for the primary peaks
(ΔF0), and their respective first (ΔF1) and second harmonics (ΔF2).
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part due to transfers to higher and lower frequencies, consistent with the
increase in energy flux at the harmonic peaks at roughly the same
location.

At the start of the slope (x = 19 m, see Fig. 1), dissipation is still weak
as the total energy flux remains constant, so that for relatively long,
narrow-band waves (e.g. case 7b, with kp

(1)d = 0.88, γ = 20) the ampli-
fication of the higher harmonics can be clearly distinguished (panels a, d,
and g in Fig. 5). In case of relatively high-frequency, broad-banded waves
(e.g. case 11a, with kp

(1)d = 2.5, γ = 3.3) such amplification is less pro-
nounced, as the waves are in relatively deeper water and three-wave in-
teractions therefore further from resonance. Moreover, for broad-banded
waves, each frequency participates in more triads, thus broadening the
resulting secondary peaks and resulting in less distinct spectral features
than for narrow-band waves. Further up the slope, for higher-frequency,
broader-band cases, amplification generally occurs only in the very shal-
low part of the flume (e.g. panels b, e, and h in Fig. 5). For both broad
and narrow-banded cases, once dissipation becomes dominant, the ener-
gy fluxes around the peak and its harmonics are rapidly reduced. Overall,
observed and modeled evolution of the primary and harmonic energy
bands is in very good agreement.

The difference between the evolution of a single and double peaked
spectrum is illustrated by comparing case 7b with case 2b, which differ
only in their spectral shape. The evolution of the total energy flux, and
that of the primary peak is relatively similar (viz. panels a and c in
Fig. 5). However, for 20 b x b 30 no amplification occurs at the second-
ary peak (see Fig. 5f), despite the fact that in this case it coincides with
the 1st harmonic of the primary peak (i.e. fp(2) = 2fp(1). In contrast,
even before the onset of strong dissipation (which occurs for x N 30,
see Fig. 5c), the energy flux around the secondary peak is attenuated,
presumably due to nonlinear transfer to other frequencies. The regions
where amplification and attenuation of the energy flux around the 2nd
harmonic (3fp(1)) occur, and the relative magnitudes of the respective
fluxes, are again very similar (viz. Fig. 5g and i).

The overall performance of the model with regard to ΔFn, including
contributions up to the second harmonic, is summarized in the scatter
plots in Fig. 6a–c. The absence of outliers, and the high R2 values, confirms
that themodel captures the development up to and including the second
harmonic verywell. It shouldbenoted thatR2 values in this case are inflat-
ed due to the large range within the data, where the highest and lowest
ΔFn candiffer a factor factor 102; even for large relative errors, small values
in the data contribute little to the total variance of the error, but signifi-
cantly to the observed variance, thus somewhat inflating values of R2.

4.3. Shape of the high-frequency tail in the surf zone

The wave spectra presented in Fig. 4 demonstrate that the strong
amplification of the spectral energies in the high-frequency tail
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harmonic. The gray line indicates one-to-one correspondence, whereas the dashed line is the b
(f N 2.5fp), by at least an order of magnitude when compared to the in-
cident spectra, is reproduced by themodel. Furthermore, in all cases the
model relaxes the high frequency tail into a fairly featureless shape in
the surf zone. The development of such an asymptotic form in shallow
water has been previously observed in both field and laboratory obser-
vations, which led Smith and Vincent (2003) to propose a universal
parametric tail in the surf zone. Expressed in terms of thewave number
spectrum E(k) (obtained form a linear transformation), their parametric
tail consists of two ranges: the Toba range (kd N 1), and the Zakharov
range (2kpd ≤ kd ≤ 1, with kp the peak wave number). For the Toba
range, Smith and Vincent (2003) found that the spectrum scales as
E(k) ∼ k‐ 5/2. For the Zakharov range they found that the spectrum
scales as E(k) ∼ k‐ 4/3, similar to the tail in shallow water proposed by
Zakharov (1999). As noted by Kaihatu et al. (2007), referring to these
ranges as the Toba and Zakharov range is somewhat questionable for
strongly nonlinear, breaking surf zonewaves. Tobaproposed his asymp-
totic form based on observations of wind-driven, deep-water waves
(which obviously does not apply here), and the strongly nonlinear con-
ditions found in the surf zone are outside the rangewhere the theory by
Zakharov (1999) can be applied. Regardless of whether the eponymous
naming of these spectral ranges is entirely justified, the observations
considered by Kaihatu et al. (2007) generally supported the results of
Smith (2004) at the edge of the surf zone, although they also found
that the spectrum has a clear E(k) ∼ k‐ 2 asymptote in very shallow
water.

Because in the present data set the Zakharov range only exists at the
most shoreward location (elsewhere 2kpd N 1), we extended – follow-
ing Kaihatu et al. (2007) – this range to kpd ≤ kd ≤ 1. For each case
we transformed the spectra to wavenumber space using linear theory,
and determined the exponent, n, of the shape function αkn that best
fitted the data from the slope of the linear regression line between log
[E(k)] and log (k). This analysis was performed for the Zakharov and
Toba ranges separately, yielding a value for n in either range at each sep-
arate gauge for all of the 31 experiments. Subsequently, at each gauge
the mean value and the standard deviation were determined, yielding
a mean value nZak and nToba, and standard deviation σZak and σToba, for
the Zakharov and Toba range respectively, the results of which are
shown in Fig. 7.

In very shallow water (d b 015 m), the mean value of ntoba
compares well with the earlier reported values (see Fig. 7a); it tends
to −5/2 with relatively small scatter around the mean in both the ob-
served or computed data (σToba b 0.1 for 0.05 b d b 0.12 m). For in-
creasing depth, values for ntoba obtained from computed spectra are at
some variancewith the observations (d N 0.2 m),with increased scatter
around the mean (σToba N 0.3), but generally larger scatter in the com-
puted than in the observed results. This larger scatter in the spectral
shape for the Toba range in the deeper parts of the flume, and also the
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lesser agreement with observations, are likely due to being in the vicin-
ity to thewavemaker, so that the spectrum is still adjusting from the ar-
tificial wavemaker input, and has not yet developed into an equilibrium
shape. A better correspondence with the observed tail most likely re-
quires that the numerical wavemaker exactly reproduces the high-
frequency tail, including possible nonlinear contributions.

For the Zakharov range, the agreement with observations, both in
the mean trend and in the scatter, is excellent (Fig. 7b), with good cor-
relation (R2 = 0.97) between results obtained from observations and
computations (not shown). However, although the averages in the
surf zone are close to theoretical value of nzak = −4/3 (they are −1.3
and −1.41 for observations and model, respectively), neither the
model nor the observations appear to converge to this value when
nearing the shoreline. In general, the scatter is quite large, but near
the shoreline (between a depth of 0.05 to 0.1 m) σZak this scatter is sig-
nificantly reduced, both in the observations (from 1.3 to 0.3) and com-
putations (from 1.3 to 0.1). As d → 0 the model seems to converge to
nzak = −1.9 with σZak = 0.08, in accordance with E(k) ∼ k‐ 2 asymp-
tote in very shallow water as found by Kaihatu et al. (2007).

4.4. Nonlinear energy transfer

In shallowwater, the dominant nonlinear energy transfer is associated
with near-resonant triad interactions, the strength of which generally de-
pends on the coupling coefficient, energy content of the components in-
volved in the interaction, and how close the interaction is to resonance.
To compare transfer rates inferred from observations and model results
therefore requires the evaluation of a nonlinear source term Snl that
depends on the bipectrum B(f1,f2,x), and which has the general form
(e.g. Becq-Girard et al., 1999; Herbers and Burton, 1997; Janssen, 2006)

Snl fð Þ ¼ 4
Z f

0
C f ′; f ‐ f ′
� �

Bim f ′; f ‐ f ′
� �

df ′‐8
Z ∞

0
C f þ f ′; ‐ f ′
� �

Bim f ; f ′
� �

df ′;

ð12Þ

whereC is a (real) coupling coefficient andBim denotes the imaginary part
of the bispectrum. The bispectrum captures the phase relationship be-
tween a triad of waves f1, f2 and f3 = f1 + f2, and describes the third-
order statistics of the wave field. For instance, skewness and asymmetry
can be obtained from the real or imaginary part of the integral over the
bispectrum, respectively, i.e. Skþ iAs ¼ ∬B f 1; f 2ð Þdf 1df 2=m3=2

0 . The
source term Snl(f) includes all sum and difference contributions to fre-
quency f. For second-order Stokes waves on a horizontal bottom Bim
f 1; f 2ð Þ ¼ 0, and no energy transfer occurs.
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Since the observation points are in shallow water (kpd b 1) we use
Boussinesq theory (Herbers and Burton, 1997; Herbers et al., 2000) to
evaluate Snl, so that C(f1,f2) = 2π(f1 + f2)/d. The use of Boussinesq the-
ory only affects the interaction kernel, which will be the same for both
model results and observations (the bispectrum is estimated from ob-
servations and model results directly), so that the intercomparison is
consistent. We approximate the integrals over the bispectrum using
the trapezoidal rule with an upper-frequency of 6 Hz in the second
termon the RHS of Eq. (12). Bispectra are obtained using the same spec-
tral analysis of observed and computed time series as before.

Results for three representative cases, including a wide (10a), nar-
rowband (10c), and double-peaked (3b) incident spectrum, are
shown in Fig. 8. The transfer rates computed from themodel simulation
results are in good agreement with the values computed from the ob-
servations, with overall better correspondence in the energetic part of
the spectrum (f b 2fp), and slightly worse correspondence in the tail.
The nonlinear interactions transfer energy from the primary peak(s)
of the spectrum to the higher (and lower) frequencies. For instance, in
case 10c at gauge 5 (Fig. 8c), energy is transferred from the spectrum
peak (f = 0.8 Hz), to its first (f = 1.6 Hz), second (f = 2.4 Hz) and
(presumably) higher harmonics. In the case of more broad-banded ir-
regular waves, the great number of interactions that take place result
in a more uniform shape of Snl at the frequencies above the peak (e.g.
Fig. 8a/c). In the inner surf zone (gauge 10), energy ismostly transferred
from 0.5fp ≤ f ≤ 2fp, toward higher frequencies (f N 2fp), regardless of
the width of the incident spectrum (viz. case 10a with case 10c in
Fig. 8e/f, respectively).

In the absence of dissipation Snl approximately balances with Fx, and
large differences between Snl and Fx are therefore indicative of dissipa-
tion. The gauge spacing (varying from 0.5 to 1.6 m) is too large to obtain
estimates for Fx from the observations directly in the highly dynamic
surf zone. However, such estimates can be readily obtained from the
more finely spaced model results using second-order finite differences,

Fx f ; xð Þ≈ F f ; xþ Δxð Þ−F f ; x−Δxð Þ
2Δx

ð13Þ

where Δx is the computational mesh-size. Near the peak of the spec-
trum (see Fig. 8 panels a–c) changes in Fx are approximately balanced
by Snl, suggesting that for f b 2fp the evolution of the spectrum is pri-
marily determined by nonlinearity whereas the dissipation rates –

even in the inner surf zone – remains relatively small in this spectral
range (e.g. panels d–f). For f N 2fp the evolution of Fx is minimal, sug-
gesting that dissipation and nonlinear transfers are nearly in balance.
This (model) behavior shows that energy is not dissipated in the ener-
getic range of the spectrum, but instead is transferred from the peak
to the higher frequencies, where it is subsequently dissipated, consis-
tent with observations by other researchers (e.g. Herbers et al., 2000).

5. Discussion

The results presented thus far are quasi-deterministic, in the sense
that all results were derived from a single, relatively short realization
using deterministic boundary conditions. The differences between
model and observations can therefore be ascribed tomodeling inaccura-
cies (we ignore measurement noise or errors, except for the possible
gauge calibration issue at gauge 8) and are not due to uncertainty in sta-
tistical estimates, which would be inevitable for a finite-length time se-
ries. Since the deterministic comparison showed excellent agreement
betweenmodel and data for all relevant surf zone wave processes stud-
ied here, we expand on this here to study the surf zone statistics and dis-
sipation characteristics from Monte Carlo simulations with the model.
TheMonte Carlo simulations consist of 10 realizations for each case con-
sidered. Each realization is forced with randomized initial conditions
(from the observed spectrumwith added random phases). This extends
the total number of data points Ntot from 12 × 104 to 1.2 × 105.
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For these 2DV simulations (1D wave propagation), the complete
Monte Carlo simulation (10 realizations) takes about 300 min per case
on a 6-core Intel Xeon 3.2 GHz CPU.When considering 2Dwave propa-
gation, computational times are considerably higher but feasible on
larger multi-processor systems, in particular since even a more coarse
vertical grid (i.e. 2 vertical layers) can still yield reliable estimates for
the bulk parameters and wave spectrum up to three times the peak fre-
quency (see e.g. Smit et al., 2013).

5.1. Free-surface statistics

The probability density function for Case 10b, characterized by rela-
tively short incident waves (kp(1)d = 1.7) with a fairly narrow-band
spectrum (γ = 20), is shown in Fig. 9. The theoretical distribution in
that figure is a two-term Gram–Charlier expansion (Longuet-Higgins,
1963), which can be expressed as

p ζ ′
� �

¼
P ζ ′

; Sk
� �
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2π

p exp −1
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Fig. 9. Probability density functions (pdf) for the normalized free surface ζ ′ ¼ ζ=
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p
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comparedwith aGaussiandistribution (dashed red line) and a two-termGram–Charlier (Eq. (14
For P = 1 this is the normalized Gaussian distribution, whereas for the
nonlinear pdf the polynomial P(ζ′,Sk) depends only on variance and
skewness (for details of P, see Longuet-Higgins, 1963).

At the edge of the surf zone (left panel of Fig. 9) the pdf is strongly
skewed, which increases at the locations further inside the surf zone
(center and right panel of Fig. 9). The deviation from the Gaussian
distribution shows that the waves are nonlinear, with relatively
sharp and tall peaks, and shallow and elongated troughs, which
shows that a nonlinear wave model is required to reliably estimate
surf zone statistics. Although a direct comparison with the observed
pdf for |ζ′| N 3 is difficult due to the relatively short time series (and
thus relatively low data density to populate the tails of the distribu-
tion), the agreement between the observations, Monte Carlo simula-
tions, and the theoretical distribution is very good. Comparisons for
other cases showed similar agreement (not shown). This shows
that nonlinear effects are important for surf zone statistics, but that
knowledge of the lowest two moments, variance and skewness, suf-
fices to capture the principal characteristic of the pdf. As shown in
the model results, SWASH can accurately model and predict these
moments.
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5.2. Spectral distribution of dissipation

Energy dissipation due towave breaking is arguably themost impor-
tant, andyet the least understood process in the surf zone (e.g. Peregrine,
1983). In general, bulk dissipation rates are reasonablywell estimated by
semi-empirical formulations based on a bore analogy (e.g. see Salmon
and Holthuijsen, in preparation, for an extensive overview), however,
spectral models require a spectral distribution of the dissipation, which
is not available from theory or observations. As a consequence, spectral
breaker dissipation functions D(f) are invariably expressed as D(f) =
D0D′(f), where D′(f) is an unknown distribution function, for which
∫ D′(f)df = 1 and D0 is the bulk dissipation. Eldeberky and Battjes
(1996) assumed that the distribution function D′(f) is proportional
to the normalized spectrum, D′(f) = E′(f) = E(f)/m0, where E′(f) =
E(f)/m0, so that dissipation is stronger in the more energetic ranges of
the spectrum. Other studies found that better results for third-order
bulk statistics are obtained byweighting the dissipation function toward
higher frequencies using D′(f) = f 2E′( f) (e.g. Chen et al., 1997; Kirby
and Kaihatu, 1996), or a linear combination of the two shapes (Mase
and Kirby, 1992). Weighting the dissipation toward higher frequencies
is consistent with the observation that dissipation takes place mostly at
the higher frequencies but is not very strong in the energy-carrying
ranges (see e.g. Section 4.4 of the present work or e.g. Herbers et al.,
2000).

In SWASH, we do not impose any distribution as wave breaking is
handled in the time domain, but the resulting spectral signature can
be estimated from the model results. Assuming that dissipation is
the term responsible for closing the balance between Fx and Snl, i.e.
D(f,x) = Fx(f,x) − Snl(f,x), D′(f) can be directly estimated from the
Monte Carlo simulation. In Fig. 10, we show the mean and standard
deviation from the 31 Monte Carlo simulations for the ratio D′(f)/E′(f),
which measures the dissipation rate at each frequency relative to the
amount of energy. In the presence of strong dissipation in the inner
surf zone, the mean of D′/E′ strongly emphasizes higher frequencies
(see Fig. 10). At deeper, more offshore, locations (i.e. gauge 2–5) dissi-
pation is weak, so that D′(f)/E′(f) is more variable and noisy, and no
clear pattern can be discerned (not shown). For f b 2 Hz the computed
ratio can become slightly negative, whichwould seem to imply ‘positive
dissipation’, but is likely caused by small relative errors in the estima-
tion of Snl and F, which dominate the balance in this region (although
dissipation is small here, it results as the difference of two large, but op-
posing, terms). Overall, the model-predicted dissipation rate D′(f)
agrees fairly well with the earlier suggested f2 weighting (see Fig. 10).
Since in SWASH D′(f) is not prescribed but rather follows from the
Monte Carlo data directly, this result appears to corroborate the use of
an f2 weighting for breaking dissipation. More generally, this also illus-
trates how a fairly detailed non-hydrostatic model can be a valuable
tool in developing or testing parameterizations uses in operational
(e.g. Booij et al., 1999; Tolman, 1991) or research spectral wavemodels.
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6. Conclusions

In the present work we considered modeling of wave dynamics in
the surf zone using the non-hydrostatic model SWASH. Detailed com-
parison to flume observations shows that a relatively efficient model
such as SWASH, in which the details of the breaking process such as
overturning and turbulence are not resolved, can reliably predict surf
zone (non-Gaussian)wave statistics. Our results show that evenwithout
calibration or fine-tuning, the model accurately predicts both second-
order bulk parameters such aswave height and period, higher-order sta-
tistics, including skewness and asymmetry of the waves, and the details
of the spectral evolution (up to 10 times the peak frequency). The gener-
ally excellent agreement between the model results and the observa-
tions, demonstrates that the model accurately captures the macro-
effects of the dominant nonlinear and dissipative processes in the surf
zone, in particular the triad wave–wave interactions and the dissipation
due to breaking. These results show that for the predominantly spilling
breaker conditions considered, a non-hydrostatic model with a single-
valued representation of the free surface, can provide an accurate pre-
sentation of the wave statistics in the surf zone. Hence, the representa-
tion of the free-surface as a single-valued function appears not to
prevent an accurate representation of the wave statistics in the surf
zone, at least in case of spilling breakers. The pdf of the free-surface, es-
timated by Monte Carlo simulations, compares well with a theoretical
nonlinear pdf that depends on the first two moments, variance and
skewness, both of which can be reliably estimated from SWASH simula-
tions. From the energy balance we derived that the wave dissipation in
SWASH is proportional to a frequency-squared distribution function,
which is consistent with observations in other studies. Although the
present study considers one-dimensional wave propagation in a flume,
we note that triad nonlinear and dissipation processes are not fundamen-
tally different for 2D surf zoneswith short-crestedwaves, so that our con-
clusions are probably also valid under such conditions. Overall, the
findings of this study suggest that SWASH is a viable tool for modeling
wave and wave-driven dynamics in a nonlinear, dissipative surf zone.
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Appendix A. Frequency dispersion in SWASH

To a large extent, the magnitude of the nonlinear transfers is
determined by the resonant mismatch, Δω(k1,k2) = ω(k1) + ω(k2) ‐

ω(k1 + k2) among a triad of waves with wavenumber k1, k2, k3 so
that k3 = k1 + k2. A correct representation of nonlinear interactions
therefore not only requires a good approximation to linear dispersion
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Fig. A.1.Absolute relative error (in percent) in (a) the angular frequencyω(k), and (b) resonantmismatch for self–self interactionsΔω(k,k) = 2ω(k) − ω(2k), when using the dispersion
relation obtained from an N layer system,ωN compared to using the linear dispersion relation,ω, as a function of the relative depth kd. Depicted are the error curves for N between 2 to 7,
which shows that for N = 6 (thick solid line) the error remains below 0.1 and 5% (horizontal dashed lines), respectively, for kd b 40 (vertical dashed line).
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of the three interacting components, but also of their resonant
mismatch. In general, for non-hydrostatic models, the horizontal scales
are well resolved, whereas the vertical resolution is relatively coarse.
Hence the accuracy of the linear dispersive behavior of the numerical
model is largely determined by the vertical resolution, and can therefore
be estimated from the semi-discrete system obtained by discretization
of the vertical. In the case of SWASH, the linear, semi-discrete system
corresponding to Eqs. (1) to (4), for N vertical layers, is given by appli-
cation of an edge-based grid in the vertical combined with the Keller-
box approximation for the vertical pressure gradients,

∂un−1
2

∂t þ g
∂ζ
∂x þ 1

2
∂pnhn
∂x þ 1

2
∂pnhn−1

∂x ¼ 0; n ¼ 1 ::N; ðA:1Þ

∂wn

∂t þ ∂wn−1

∂t þ 2
pnhn −pnhn−1

Δz
¼ 0; n ¼ 1 ::N; ðA:2Þ

∂un−1
2

∂x þwn−wn−1

Δz
¼ 0; n ¼ 1 ::N; ðA:3Þ

∂ζ
∂t þ Δz

XN
n¼1

∂un−1
2

∂x ¼ 0: ðA:4Þ

Here, the nth pressure and vertical velocity components, pn and wn

(with n ∈ {0 … N}) are located on the layer interface, whereas the
layer averaged velocity un‐12

(with n ∈ {1 … N}) are located in the cen-
tral plane, where {…}n = {…}(x,zn,t) with zn = nΔz - d, with Δz = d/
N. From the dynamic boundary condition at the free surface we have
pN
nh = 0. Moreover, if we assume a horizontal bottom, we obtain from

the kinematic boundary condition at the bed that w0 = 0. If we then
consider the initial value problem on an infinite domain, we can associ-
ate ∂tζ→‐iωζ̂ k;ωð Þ, and ∂x→ikζ̂ k;wð Þ, and similarly for un−1

2
;wn, to ob-

tain for eachmodeω, k a (3N + 1) × (3N + 1) linear system A(k,ω) in
terms of the Fourier amplitudes

ŷ ¼ û1
2
;…; ûN‐12

; ŵ1;…; ŵN ; p̂0;…; p̂N‐1; ζ̂
h i

; ð19Þ

so thatAŷ ¼ 0. For this system to have solutions other than the trivial so-
lution, Amust be singular, or Det(A) = 0, resulting in a polynomial re-
lating ω and k, from which the linear dispersion relation ωN(k) that
corresponds to the N layer system can be determined. As the calcula-
tions quickly become involved for N N 1, this is done using a symbolic
algebra system.2

FromωN thus obtained, it can be seen that, assuming the horizontal
scales are well resolved, the number of layers required to accurately
model dispersion mainly depends on the maximum relative depth
2 Implemented by using the Matlab Symbolic Toolbox.
within the frequency range of interest (see Fig. A.1a). In the present
work this corresponds to waves with f b 4 Hz, or kd b 40. By using 6
layers, the maximum relative error for kd b 40 remains below 0.1%. A
similar analysis can be made for the frequency mismatch Δω(k1, k2),
when considering the mismatch for the self–self interactions, Δω(k,
k), for different values of kd (see Fig. A.1b). This shows that for 6 layers,
the relative error is less than 6% for kd b 40.
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