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ABSTRACT 

Roelvink, J.A., 1993. Dissipation in random wave groups incident on a beach. Coastal Eng., 19:127- 
150. 

Variations in short-wave properties on the time-scale of wave groups provide important mecha- 
nisms in the generation of long waves. An essential component of models that describe the propaga- 
tion of wave groups is the description of the slowly varying dissipation due to wave breaking. A model 
is proposed for the time-varying dissipation rate. 

As the time-varying dissipation rate cannot be obtained from direct measurements, calibration and 
verification is performed in an indirect way. The formulation is incorporated in several models of the 
time-averaged dissipation by combining it with a number of theoretical probability distributions for 
the wave energy. These models predict measurable quantities such as the mean dissipation, the frac- 
tion of breaking waves and some statistical wave height parameters. The parameters in the dissipation 
formulation are calibrated against some available measurements of the mean wave energy. A verifi- 
cation is then performed for some internal parameters in the models and for other datasets. 

The calibrated models of the mean dissipation rate in random waves show some improvements in 
the prediction of internal parameters. The usefulness of these models is also enhanced because the 
calibration coefficients can be kept constant over a wide range of conditions. 

The calibrated formulation of the time-varying dissipation rate is quite simple and can be readily 
used in wave propagation models that take into account variations on the time-scale of wave groups. 

INTRODUCTION 

T h e  t r a n s f o r m a t i o n  o f  c e r t a i n  p a r a m e t e r s  o f  a n  i n c i d e n t  r a n d o m  w a v e  t r a i n  

ac ross  t he  s u r f  z o n e  has  b e e n  the  s u b j e c t  o f  m u c h  s t u d y  a n d  m o d e l l i n g  effor t .  

I n  r e c e n t  l i t e r a t u r e ,  two  c lasses  o f  m o d e l s  h a v e  b e e n  d e v e l o p e d ,  w h i c h  a re  

b o t h  b a s e d  o n  the  w a v e  e n e r g y  b a l a n c e  o r  t h e  w a v e  a c t i o n  e q u a t i o n ,  b u t  use  

m a r k e d l y  d i f f e r e n t  a p p r o a c h e s .  

I n  t he  f i rs t ,  parametr ic ,  class  o f  m o d e l s  ( B a t t j e s  a n d  J a n s s e n ,  1978;  T h o r n -  

t o n  a n d  G u z a ,  1983 ), a s h a p e  o f  t he  b r e a k i n g  w a v e  h e i g h t  d i s t r i b u t i o n  is as- 
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sumed, with parameters that are a function of local, time-averaged wave pa- 
rameters. The dissipation per breaking wave is modelled using the analogy 
between fully breaking waves and bores, which was first pointed out by Le 
Mehaute ( 1962 ). By combination of the breaking wave height distribution 
and the dissipation function, the average dissipation as a function of local 
wave parameters is obtained. By solving the wave energy balance equation, 
these local wave parameters can be computed over an arbitrary profile, given 
the conditions at a seaward boundary. 

The second, probabilistic, class of models takes the probability density 
function of wave height (and sometimes wave period) at a seaward bound- 
ary, schematizes it to a discrete number  of wave height (period) classes, and 
assumes that each class behaves like a periodic sub-group that propagates in- 
dependently of the others (Mizuguchi, 1982; Mase and Iwagaki, 1982; Dally 
et al., 1984). The wave energy balance equation is then solved separately for 
all waves. As a result, at each point along the profile, the wave height distri- 
bution can be determined. All models in this class separate the description for 
each wave into its behaviour before and after its breakpoint. 

Both classes of models, when calibrated, may serve well to predict the trans- 
formation of certain properties of the wave height distribution across the surf 
zone. Also, wave-averaged parameters such as radiation stress and mass flux, 
required for the prediction of the mean set-up and the undertow, are pre- 
dicted satisfactorily by both classes of models. 

Recently, there has been a growing recognition of the importance of varia- 
tions in short-wave properties on the time-scale of wave groups. Such varia- 
tions can force long-wave motions that may be important in themselves or 
through their interaction with wave groups (Symonds et al., 1982; Symonds 
and Bowen, 1984; List, 1992; Sch~iffer and Jonsson, 1990). A new class of 
dynamic models (Sato and Mitsunobu, 1991; Roelvink, 1991; Symonds and 
Black, 1991 ) takes into account variations on this time-scale. The dissipation 
of the short-wave motion in this class of models is slowly varying on the time- 
scale of the wave groups. Although the propagation and decay of wave groups, 
and hence the excited long-wave motions, often depend critically on the for- 
mulation of this dissipation term, a satisfactory formulation has not yet been 
presented. 

The main goal of this study is to develop a suitable formulation for the 
time-varying dissipation due to wave breaking. As it is impossible to measure 
the time-varying dissipation directly, the formulation can only be checked by 
building it into models that predict measurable parameters, such as the aver- 
age dissipation, the fraction of breaking waves and the mean wave energy, 
and by verifying these models both externally and internally. 

For this purpose, one wave propagation model of the probabilistic class and 
three models of the parametric class were formulated, calibrated and verified 
in this study, all based on the same dissipation formulation. Although it has 
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not been the primary goal of  the study, these models are an interesting by- 
product in themselves. 

The main product, however, is a calibrated formulation for the dissipation 
of  short-wave energy as a function of  energy and water depth, which can be 
easily implemented in models that are t ime-dependent on the wave-group 
scale. 

D I S S I P A T I O N  M O D E L  

Basic concept 

In a random wave train, the process of energy dissipation due to wave 
breaking is extremely complex. If it were possible to plot a t ime series of the 
instantaneous dissipation rate at a given location, this would show intermit- 
tent peaks with random height and spacing, which cannot be described in a 
deterministic way. Even when a moving average is applied over some short- 
wave periods, the slowly varying dissipation rate will still have a random 
component.  However, we can expect that this slowly varying dissipation rate 
will also have a systematic component  which depends on slowly varying char- 
acteristics of the short waves, in particular the wave energy. This systematic 
component,  which is the expected value of  the dissipation rate per unit area, 
D, can itself be seen as the product of two components: 

O=PbDb ( 1 ) 

where Pb is the probability that a wave is breaking and D b the expected value 
of the dissipation rate in a breaking wave, given that its energy density is E. 
Both Pb and D b vary on the time-scale of  the wave groups. 

Dissipation in a breaking wave 

In order to model the dissipation Db in a breaking wave, we use the well- 
known analogy between breaking waves and bores, which results in the fol- 
lowing approximate expression (Battjes and Janssen, 1978 ): 

where f i s  the frequency, H is the height of  the breaking wave, h the water 
depth and a a calibration coefficient. Battjes and Janssen assume all breaking 
waves to have the maximum wave height Hm, as this maximum wave height 
is of  the order of  the water depth, the expression reduces to: 

(9/ 2 
Db =4PgfHm (3) 
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As in our case the height of breaking waves is allowed to be considerably 
smaller than the maximum wave height, eq. (2) should be used in principle. 
However, it can be argued (Stive and Dingemans, 1984), that the water depth 
in eq. (2) should rather be seen as a "penetration depth", which is of the 
order of the wave height. In this case, the dissipation can be written as a sim- 
ple function of the energy of the breaking waves: 

Db = 2afpE (4) 

where the peak frequency fp has been taken as a characteristic measure of the 
frequency. 

Probability of breaking 

In general, waves break when locally the wave front becomes too steep. For 
irregular waves this may be the result of several mechanisms, such as inter- 
action between short waves, interaction between wave and bottom or be- 
tween wave and current or wind. For simplicity, we shall not consider the 
effects of current or wind on wave breaking. Even then, the processes in- 
volved are extremely complex and no accurate model is available to predict 
the probability of breaking in irregular waves. Therefore, a simple empirical 
approach is chosen, based on some crude assumptions. 

These assumptions are: 
1. The probability of breaking depends only on local and instantaneous wave 

parameters. In reality, it also depends on the history of the individual waves, 
but the breaking process, especially in random waves, has a time-scale which 
is short compared to the wave group scale, so this effect can be neglected. 

2. The basic parameters governing the probability of breaking are the local 
and instantaneous wave energy and the water depth. 

3. In principle, waves of any energy may be breaking or non-breaking. How- 
ever, the probability of breaking should increase monotonically towards 1 for 
increasing energy or decreasing water depth. 

Thornton and Guza (1983) propose the following empirical "weighting 
function", which can be interpreted as the probability of breaking: 

n H 2 pb = [~ ]  [l --exp[--[~] ]]_< 1 (5, 

According to this expression, the probability that a particular wave in an 
irregular wave train is breaking not only depends on the height of this wave 
relative to the water depth, but also on a characteristic height parameter of 
the whole wave train (i.c. Hrms). This would imply that the breaking process 
in a given wave group is influenced by events on a much greater time-scale, 
which seems unlikely and is in contradiction with our assumption 1. We 
therefore propose a different form: 
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Pb(E,h)=l-exp[ ( E l"' l 
- \72-T~f, / J (6)  

with:  

1 
E r e  f ~- ~pgh 2 

where 3' and n are coefficients. In Fig. 1 this function is plotted for several 
values of n. It can be seen that the steepness of the function increases with 
increasing n. The two coefficients 3, and n will have to be determined 
empirically. 

Conditional expected dissipation rate for waves with given energy 

The expected dissipation rate, given a specific value of E, is now simply 
found by substituting eqs. (4) and (6) into eq. ( 1 ), which leads to: 

D = [ I - e x p [ - ( ~ ) " / 2 ] ] 2 a f p E  (7) 

This equation describes the dissipation rate for a given (random) wave en- 
ergy and water depth, as is the the main goal of this study. The calibration of 
the coefficients or, 3, and n and the verification of the formulation as such is 
described in the following sections. 

T 

1.0 

0 5  

o Oo 1.0 1.5 2.0 

X 
Fig. 1. Plot o f  the func t ion  Y = 1 - exp ( - X  n/2) for  n = 5, 10, 20. 
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TRANSFORMATION OF WAVE ENERGY DISTRIBUTION 

Probabilistic model 

The formulation for the probabilistic approach can be derived readily from 
the wave action equation by assuming that the slowly varying cross-shore ve- 
locity is small compared to the group velocity Cg. This is a reasonable as- 
sumption, except for a limited area near the swash zone, where the group 
velocity goes to zero and long-wave velocities cannot be neglected. 

Under  this assumption, the wave action equation reduces to the wave en- 
ergy balance: 

dE O 
ot + (ECg) = - D  (8) 

Assuming Cg to be constant in time, the rate of change of the energy flux of  a 
(part of  a) wave group as it travels towards the shore is described by: 

d 
~c(ECg) = - D  (9) 

The dissipation rate D depends on local wave parameters and the slowly vary- 
ing water depth. Except, again, for the swash zone, the slow fluctuations in 
the water level can be neglected. In this case, the time-dependence vanishes 
from the equation, so it can be solved for any given (seaward) boundary value 
of E. In other words, we can follow any part of a wave group through the surf 
zone using this equation. As a result, we can also compute the transformation 
of the energy distribution through the surf zone, starting from a given distri- 
bution of E in deep water. 

In deep water, it is reasonable to assume a Rayleigh distribution for the 
wave height; this is equivalent to an exponential distribution for the wave 
energy: 

P ( E < E ,  = l - e x p ( - E )  (10) 

where E is the stochastic variable, E is a specified level of the wave energy,/~ 
is the time-averaged wave energy and Pb is the probability of non-exceedance. 

In order to compute the transformation of this distribution, the distribu- 
tion in deep water is given as a number  of  energy levels with decreasing prob- 
ability of exceedance. For each deep water energy level, eq. (9) is solved by 
explicit numerical integration. The result is a number  of wave energy decay 
lines, which cannot cross each other. This is due to the assumptions made in 
this model, namely a constant group velocity and a dissipation model which 
is monotonically dependent on the local wave energy. 
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As a result, a line which starts at an energy level with a certain probability 
of exceedance will represent this probability throughout the surf zone. At any 
computation point along the profile, the distribution of the wave energy can 
be reassembled from these lines. The mean wave energy can be computed 
from this distribution. Also, the total fraction of breaking waves can be de- 
duced from the model. 

The distribution of wave energy can be used to predict the wave height 
distribution by means of a suitable non-linear local wave model, which uses 
energy, peak frequency and water depth as input. Here, we apply the high- 
order stream function method as described by Rienecker and Fenton ( 1981 ). 
Results are presented below. 

Parametric models 

Basic concept 
In the parametric class of models, the energy balance equation (8) is aver- 

aged over a time scale which is large compared with the wave group time 
scale: 

O • t  + O  (ECg) = - D  ( 11 ) 

Assuming a stationary wave field and no correlation between wave energy 
and group velocity, this equation reduces to: 

(~ _ _  

~x(ECg) = - / )  ( 12 ) 

The mean dissipation can be described as the weighted average of the dis- 
sipation function: 

oo 

Jp(E)D(E)dE (13) 
0 

where p(E) is the local probability density function (pdf)  of the wave en- 
ergy. In order to close the equations, an assumption must be made regarding 
the shape of this function, depending on the local wave parameters. The scal- 
ing of the function then follows from the requirements that the function is a 
pdf: 
oo 

f p ( E ) d E =  1 (14) 
o 

and that the first moment equals the mean energy: 



1 3 4  J,A. ROELVINK 

fp(E)EdE=ff, (15) 
0 

In the following, three parametric probability density functions are dis- 
cussed, viz. a depth-limited Weibull-distribution, the Rayleigh-distribution 
and the clipped Rayleigh-distribution according to Battjes and Janssen 
(1978). 

The following parameters will be used in order to simplify the equations: 
o o  

, f E~f=-8pgh 2, a=~f(/~/E~ef), E . =  E, Qb = P~(E)p(E)dE 
o 

Weibull distribution 
Klopman and Stive ( 1989 ) propose a wave height distribution, based upon 

a shape originally proposed by Gluldaovskiy ( 1966 ), which degenerates to a 
Rayleigh-distribution in deep water, but has a depth-limitation resulting in a 
gradual deformation of the distribution for decreasing water depth. In terms 
of wave energy, this distribution can be written as: 

P( E <E) = 1 - exp{ -A  ( E/ff, ) m} (16) 

Here, m is a free parameter for which Klopman and Stive propose a formu- 
lation, which is rewritten here in terms of energy: 

m = l + 0 . 7 t a n  ~ ) = l + 0 . 7 t a n  ~ (17) 

The value of)'2 as given by Klopman and Stive is the theoretical maximum 
of the wave height over depth ratio, 0.833. The maximum value for the en- 
ergy-related a-value as defined above is in the order of 30% lower, due to the 
non-linearity of depth-limited waves. Therefore a value of 0.65 has been used 
here. 

The parameter A is linked to m through the requirement given by eq. ( 15 ): 

,1,) 

where F is the gamma function. 
The probability density function is found by differentiating eq. ( 16 ): 

mA p(E) =~-(E/E) m-I exp{-A(E/E) m} (19) 

The mean dissipation is now found by integration of eq. ( 13 ): 
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GO 

D= ~p( E)Pb( E)Db( E)dE= 
o 

i~-- [ [ (E )n/2]] 
= (E/E)"-'exp{-A(E/E)"} 1 - e x p  - ~ ,2aLEdE 

o 

=2otf~mAiEmexp(-AE.)[1-exp[-(~E.)n/2]]dE. 
o 

= 2aft, Eft (a,y,n) (20) 
The result is that the mean dissipation is the dissipation in waves with the 

mean energy, times a function of the wave energy relative to the water depth. 
This function f, is less than or equal to 1, and depends on the local wave 
height to water depth ratio a and on the empirical coefficients y and n. 

Rayleigh distribution 
The Rayleigh distribution is a special case of eq. (16) for m equal to 1. It 

has been used by Thornton and Guza ( 1983 ), in combination with a slightly 
different formulation for the dissipation. The mean dissipation follows im- 
mediately from eq. (20) and is given by: 

D=2otfol~iE.exp(-E .)[1 2n/2 - e x p [ - ( ~ )  ]]dE.=2afpEf:(a,y,n) 
o 

(21) 

Clipped Rayleigh distribution 
The clipped Rayleigh distribution as proposed by Battjes and Janssen 

(1978) is based on the assumptions that the wave heights are Rayleigh-dis- 
tributed up to a maximum wave height, that all higher waves are simply cut 
off to this height, that all waves having this maximum height are breaking and 
that only these waves are breaking. This can be translated to our concept by 
letting the value of n in the probability of  breaking go to infinity, in which 
case the function becomes a step function: zero for E/Eref < y2, unity for El 
Eref >/yz. The maximum wave energy is defined by: 

E m =  7 2 E r e f  (22) 

Since the probability density function has a "spike" at E = Em, with an area 
equal to the fraction of  breaking waves Qb, and since the probability of  break- 
ing equals unity at this energy, we get for the mean dissipation: 
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GO 
/ t  

Jp( E)Pb( E)Db( E)dE= QbDb (Era) D= 
o 

_~2 
= Qb2 c~fpEm = 2 otfpE ~sQb ( 23 ) 

In the clipped Rayleigh distribution, the fraction of breaking waves is de- 
fined by the implicit relation: 

Q F 1 - Qb] 
b=exp[ - - /~ /EmJ  (24) 

This relation yields a unique function of/~/Em = a2/? 2, so: 

/9 = 2afo/~f3 (a,~) (25) 

For the three parametric energy distributions, we get similar expressions 
for the mean dissipation. For given values of  the calibration parameters ? and 
n the functionsf~, f2 and f3 depend only on a. Therefore it is easy to generate 
tables of these functions and to interpolate from these tables when solving the 
mean energy balance equation. 

CALIBRATION OF THE MODELS 

Three datasets, containing a total of  11 tests, were used to calibrate the 
probabilistic model and the parametric models, viz. those reported in Battjes 
and Janssen ( 1978 ), Stive ( 1985 ) and Hotta and Mizuguchi (1980). A sum- 
mary of the characteristics of the profile and incident wave conditions is given 
in Table 1. All sets pertain to irregular waves incident perpendicular to a beach. 
The letter L under "Type" stands for laboratory test, F stands for field test. 

The parameter for which the calibration was performed is the overall en- 
ergy-based wave height often (confusingly) referred to as Hrms. Here it will 
be termed HE: 

HE =~/ ( 8ff~/pg) (26) 

In deep water, HE is equal to the root-mean-square wave height Hrms; in 
shallow water, due to non-linearity of the waves, the parameters deviate from 
each other. 

The seawardmost data point, having a wave height HE.O and a water depth 
ho, is used as a boundary condition for the models. For a given set of calibra- 
tion points, the energy distribution across each profile is computed and com- 
pared to the measured distribution. Two indicators of the overall accuracy of 
the models are computed,  viz. the root-mean-square relative error ~rms and 
the relative bias (mean error) emea,: 
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TABLE 1 

Experimental parameters calibration sets 

137 

Test Source Type ho (m) Hr,o (m) fp (Hz) 

MSI0 Stive (1985) L, plane 
MS40 Stive ( 1985 ) L, plane 
B J2 Battjes and Janssen ( 1978 ) L, plane 
BJ3 Battjes and Janssen ( 1978 ) L, plane 
BJ4 Battjes and Janssen (1978) L, plane 
BJ 11 Battjes and Janssen ( 1978 ) L, barred 
BJ 12 Battjes and Janssen ( 1978 ) L, barred 
BJ 13 Battjes and Janssen (1978) L, barred 
BJ 14 Battjes and Janssen ( 1978 ) L, barred 
BJ 15 Battjes and Janssen ( 1978 ) L, barred 
HotMiz Hotta and Mizuguchi (1980) F, barred 

0.70 0.142 0.341 
0.70 0.135 0.633 
0.70 0.144 0.511 
0.70 0.122 0.383 
0.70 0.143 0.435 
0.70 0.137 0.450 
0.70 0.121 0.443 
0.70 0.104 0.467 
0.70 0.118 0.481 
0.70 0.143 0.498 
1.65 0.527 0.113 

]_~_ | ~ ] 1  F n E c o m p  HE,meas~ 2 /!~-~nE,meas (27) 

e - - F H E  c°mp HE m e a s ] / ~  HE meas 
mean= Z [ -  ~ ~ J/ ~ (28) 

L J~E,O 

As is apparent from the formulae, the errors were scaled with the incident 
wave height; this is to give data points comparable weights regardless of  the 
scale of  the tests or the incident conditions. 

From preliminary computations, it turned out that the results were not very 
sensitive to the value of  n, which indicates the steepness of  the curve which 
describes the probability of  breaking. Realistic results were obtained both for 
n = 10 and for n = 20. 

TABLE 2 

Optimum y-values and relative rms error for a =  1 and n =  10, 20. 11 datasets, 159 points 

Model n a y ' ~ s  Fig. 

Probabilistic 10 1.0 0.55 0.045 2a 
20 1.0 0.53 0.054 2b 

Weibull 10 1.0 0.54 0.057 2c 
20 1.0 0.52 0.057 2d 

Rayleigh 10 1.0 0.57 0.062 2e 
20 1.0 0.57 0.063 2f 

Clipped Rayleigh - 1.0 0.66 0.056 2g 
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The optimum combination of  the coefficients a and 7 was obtained by 
drawing isolines of  the error indicators in the a,7 plane, for both values of  n, 
and visually determining the approximate location of  zero mean error and 
minimum rms error. Plots of  these isolines are given in Figs. 2a to 2g. By 
refining the a,7 grid locally and looking at the numerical output, a more ac- 
curate location of  this optimum was then found. 

In all cases the optimum a,y-combination is found close to the line a =  1. 
As a constant value of  a facilitates the comparison of  the different models, 
the value of  a was fixed at 1, and optimum },-values were determined for each 
model and n-value. The results are given in Table 2. 

Probebilistic model Probobilistic mode l  
n = l O  n = 2 0  
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Rayleigh 
n= lO  

Rayteigh 
n=20  

0.60 

0.55 

~0.50 
g 

0.45 

0"4%. b 

i[ 
, / 

/ 
' / /  

/ 
/ 

o.5 1.b 1.g 2.o 
ALPHA ( - )  " 
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7" 
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0,45 

0"400. 0 

(f) /~, 

/' 

/ 
/ 

/ ,2 / / 
/ 

/ 
/ 

0.5 ' l . b  1.g 
ALPHA ( - )  

2.b 

Clipped Rayleigh 

0.70 

0.65 

< 
30.60 
,,< 

0.55 

o.5Oo, b 

'g' 

0.5 1.0 1.5 2.0 
ALPHA ( - )  - 

Fig. 2. (a -g)  Isolines of  rms-error (drawn lines) and mean error (interrupted lines) for all 
points in calibration sets. 

Apparently, all models can be calibrated to give reasonably accurate predic- 
tions of  the spatial wave energy variation for a fixed combination of  calibra- 
tion coefficients. The probabilistic model seems to be the most accurate, 
whereas the parametric Rayleigh model with n set at 10 or 20 gives the great- 
est error. 

The clipped Rayleigh model (n = oo ) seems to do well with a constant or,y- 
combination. Battjes and Stive ( 1985 ) used an expression for the maximum 
wave height which includes the effect o f  wave steepness; consequently they 
found that the calibration coefficient 7 showed a dependence of  the deep water 
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wave steepness. It seems that using the simpler relation (22) removes this 
dependence. The optimum ),-values for the Weibull parametric model and the 
probabilistic model agree closely, which indicates that the energy distribu- 
tions resulting from the probabilistic model are similar to the shape assumed 
beforehand in the parametric model. 

In the Rayleigh model with finite n, higher wave energy is possible than in 
the Weibull model, so the probability of  breaking for a given energy must 
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decrease in order to get the same mean dissipation. This results in a higher 
optimum value o f  y. 

In the clipped Rayleigh model, it is assumed that all breaking waves have 
the maximum wave energy. The y-value in this case indicates the level where 
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most  dissipation takes place. The opt imum value o f  0.66 is not in contradic- 
tion with the other models.  

A value o f  n equal to 10 gives slightly better results than n equal to 20; for 
the probabilistic model  a value o f  5 was tried but produced no better results. 
The value o f  n was kept at 10 in all further computations.  
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In Figs. 3a through 3i, the wave height profiles as computed with the prob- 
abilistic model, for n = 10, are compared with the measured wave height 
profiles, for all calibration tests. The agreement is quite good, especially con- 
sidering that all computations were performed with the same set of coefficients. 

VERIFICATION 

The primary goal of this study is to formulate the time-varying dissipation 
as a function of local wave parameters. As this is only one of the internal 
parameters in the models described above, the fact that the mean wave energy 
(the external parameter) is predicted accurately is not sufficient; errors in 
internal parameters may be cancelled out by each other. 

The dependence scheme in Fig. 4. indicates which other internal parame- 
ters must be checked in order to gain confidence in the formulation of the 
expected value of the slowly varying dissipation. 

In the following sections, the numbered items in the dependence scheme 
will be discussed seperately; afterwards, conclusions are drawn on the accu- 
racy of the model of the expected slowly varying dissipation. 

Average dissipation 

As has been shown in the previous Section, the average dissipation is mo- 
delled accurately. An independent verification is given by two additional da- 
tasets, viz. those reported by Ebersole and Hughes (1987) and by Van der 
Meet (1990). The incident wave conditions are given in Table 3. 

The dataset by Ebersole and Hughes was obtained in the field during the 
DUCK85 campaign. It concerns long-period swell incident perpendicular to 
an almost prismatic beach. The measurements were carried out with the pho- 
topole technique (Hotta and Mizuguchi, 1980). The measurements have been 
studied in detail by Dally (1990). A problem with hindcasting these experi- 

dissipation i 5] probability 4] 
breaking waves[ of breaking[ 

I> I < I I ~ I ' 
3 q 

expected fraction of | 
slowly-varying I breaking waves ] 
dissipation 

I ) avera]eg 1] ( 

dissipation] 

wave energy ] 
d i s t r i b u t i o n  / 

statistical 2] 
distribution | 
of wave heightsl 

Fig. 4. Dependence scheme dissipation model. 
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TABLE 3 

Experimental parameters verification sets 

J.A. ROELVINK 

Test Source Type ho (m)  lIE, o (m)  fp (Hz) 

D41400 Ebersole and Hughes ( 1987 
D41510 Ebersole and Hughes ( 1987 
D50955 Ebersole and Hughes ( 1987 
D51055 Ebersole and Hughes ( 1987 
D51352 Ebersole and Hughes ( 1987 
D51525 Ebersole and Hughes (1987 
D60915 Ebersole and Hughes ( 1987 
D61015 Ebersole and Hughes ( 1987 
D61300 Ebersole and Hughes ( 1987 

F, barred 1.75 0.600 0.089 
F, barred 1.49 0.706 0.089 
F, barred 2.14 0.431 0.088 
F, barred 1.80 0.353 0.089 
F, barred 2.19 0.452 0.092 
F, barred 1.94 0.374 0.090 
F, barred 1.40 0.360 0.078 
F, barred 2.14 0.296 0.076 
F, barred 2.43 0.346 0.099 

T007 Van der Meer (1990) L, step 0.56 0.049 0.403 
T015 Van der Meer (1990) L, step 0.56 0.071 0.438 
T110 Van der Meer (1990) L, step 0.56 0.099 0.513 
T I2 Van der Meer (1990) L, step 0.71 0.059 0.488 
T13 Van der Meer (1990) L, step 0.66 0.109 0.488 
T212 Van der Meer (1990) L, step 0.61 0.072 0.645 
T216 Van der Meer (1990) L, step 0.61 0.068 0.403 
T322 Van der Meer ( 1990 ) L, step 0.66 0.121 0.513 

ments with the present model  is that the wave height distributions at the out- 
ermost measuring point deviate significantly from either Rayleigh or Weibull 
distributions; therefore we cannot expect very good agreement. Still, the mea- 
surements have been included as a severe test case. The models  were applied 
with their pre-calibrated coefficient values: o~ = 1, n = 10 and y as in Table 2. 
Model  performance was reasonable for all models: for the 9 experiments, the 
mean error was less than 2% for all models  and the rms error was in the order 
of  13%. The probabilistic model  was not significantly better than the para- 
metric models.  

The dataset by Van der Meer concerns laboratory cases of  waves incident 
on a profile with a steep step followed by a very gently sloping bottom. Here, 
the parametric models  show a mean error in the order o f  1% and a rms error 
in the order of  11% over a total o f  8 tests. The probabilistic model  shows a 

TABLE4 

Relative mean and rms error. 28 tests, 389 points 

Model n ~'~ ~ ~mean ~rms 

Probabilistic 10 1.0 0.55 0.013 0.088 
Weibull 10 1.0 0.54 0.000 0.099 
Rayleigh 10 1.0 0.57 0.011 0.099 
Clipped Rayleigh - 1.0 0.66 0.000 0.096 
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mean error of  almost 5%, but a lower rms error of 8%. The general shape of  
the energy distributions over the profile is represented best by the probabilis- 
tic model; hence the lower rms error. 

The error indicators were also computed over all tests considered in this 
study; the results are given in Table 4. 

All models can be used to predict the variation of the mean wave energy 
over the profile; the probabilistic model is slightly more accurate in this re- 
spect. A comparison between the measured wave height profiles and those 
computed with the probabilistic model is given in Figs. 3a to 3z. 

Statistical distribution of wave heights 

At present, no data are available on the probability distribution of  the wave 
energy; data on wave height probability distributions are available. With the 
help of non-linear theory, wave heights can be estimated from wave energy 
levels. If the variation of  statistical wave height parameters over the profile is 
predicted correctly, the underlying energy probability distributions are likely 
to be correct as well. 

The statistical wave height parameters are deduced from the predicted wave 
energy probability distribution by the following method. The distribution of  
the linear estimate of  the wave height, HI, was derived from the wave energy 
distribution, where H~ = x / (8E/pg) .  The statistical parameters H~,rms, H~,sig and 
HLI~ were computed from this distribution, using the usual definitions. The 
matching non-linear crest-to-trough heights were then computed with the help 
of  Rienecker and Fenton's ( 1981 ) stream function method. 

The dataset used is from Stive (1985), tests MS10 and MS40. In Figs. 5a 
and 5b, the distributions of the rms wave height Hrms, the significant wave 
height Hsig and the wave height exceeded 1% of the time, H ~ ,  as measured 
and as computed,  are given. Qualitatively, the agreement is quite good; quan- 
titatively, the values of  H ~  are underestimated within the surf zone. This 
may be due to the presence of  long waves; the higher waves are limited in the 
model by the mean depth, whereas in reality they are limited by the slowly 
fluctuating depth. Also within the surf zone, as can be expected, the values of 
the rms wave height are overpredicted by non-linear theory, due to the decou- 
pling of  the higher harmonics. Still, the wave height distributions are pre- 
dicted well enough to lend some confidence to the computed energy distri- 
butions. Further study is required to confirm this. 

Fraction of breaking waves 

The fraction of breaking waves, Qb, is the integral of the product of the 
energy distribution and the probability of  breaking at a given energy. There- 
fore, if the energy distribution is modelled correctly, the fraction of breaking 
waves can only be correct if the probability of  breaking is correct too. In the 
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same two tests from Stive (1985), the fraction of  breaking waves was counted 
visually; measured and predicted values are shown in Figs. 5a and 5b. For test 
MS 10, the agreement is quite good, although well inside the surf zone Qb is 
somewhat underpredicted, by up to 30%. For test MS40, the underprediction 
is much more serious: up to a factor 3. This seems strange since the dissipa- 
tion is modelled so well. 

A possible explanation is that the peak period during this test was twice as 
short as during test MS 10. The waves therefore tended to be spilling, whereas 
the bore model only really applies to fully breaking waves with a roller over 
the whole wave front. In such a case, the criterion that a breaking wave is "a 
wave with foam on it" will overestimate the fraction of  bore-like breaking 
waves. 

The question is, whether this analysis should lead to an adjustment of  the 
definition of  "breaking wave" or to an adjustment of the model of  the dissi- 
pation in a breaking wave. This should be resolved in further study; for now, 
the computed fraction of  breaking waves should be interpreted as the fraction 
of  fully breaking, bore-like waves. 

Probability of breaking 

The probability of  breaking as a function of  wave height has been investi- 
gated by some authors (Thornton and Guza, 1983; Dally, 1990). This gives 
a qualitative check on the shape of  this probability as a function of  energy. 
However, the available data do not enable a direct plot of  the probability of  
breaking against the wave energy, for given water depths, so a direct quanti- 
tative check cannot be made. As is also apparent from the previous Section, 
further study is required on this aspect of  the model. 

Dissipation in breaking waves 

An interesting verification of  the formulation of  the dissipation in breaking 
waves is obtained from the measurements of Stive (1984), for regular waves. 
On page 109 of his paper, he presents graphs of  a non-dimensional dissipation 
A,, defined as the ratio of  the dissipation rate derived from measured energy 
flux gradients and the dissipation according to a hydraulic jump: 

1 3 h 
19.o =A,4pgl7-I dt d2 (29) 

where dl is the depth in front of  the breaker and d2 is the depth at the crest. 
The values of  A, are in the range of  1.5 to 2.5. If we now assume: 

Hh 
d, d2 -73 (30) 
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we get a similar expression to our eq. (4) if a = A ~  3. With the order of mag- 
nitude estimates H / h  ~- 0.5, d~/h  ~- 0.8 and d2/h  ~- 1.3, 73 is in the order of 
0.5, which leads to an a-value in the order of I. This is in agreement with the 
op t imum value found in the calibration. 

Conclusions on verification 

From the verification presented here we may draw the conclusion that the 
mean dissipation is modelled correctly and that there are indications that the 
wave energy distribution is also modelled correctly; therefore, the expected 
time-varying dissipation must be reasonably accurate. This term is again 
composed of  two terms, viz. the time-varying dissipation in breaking waves 
and the probability of breaking. There is an indication that the first of these 
terms is modelled correctly; on the probability of breaking there is still some 
uncertainty. Qualitatively, there is agreement between measured and pre- 
dicted fractions of breaking waves; quantitatively, they are somewhat under- 
predicted, although of the right order of  magnitude. 

CONCLUSIONS 

The existing parametric model according to Battjes and Janssen has been 
improved in the sense that the internal parameters are more realistic; also, 
the dependence of the calibration coefficients on wave steepness has van- 
ished. A parametric model based on a Weibull distribution has been added to 
this class of models, for which the distributions closely resemble those result- 
ing from the probabilistic model. All three parametric models can be used to 
predict with reasonable accuracy the spatial distribution of the mean wave 
energy; the one based on a Weibull distribution is the most accurate, and the 
model based on the Rayleigh distribution the least accurate. 

The probabilistic model presented has been shown to follow from the wave 
action equation if the group velocity is assumed to be constant in time and 
effects of surf beat can be neglected. These restrictions are less severe than 
those for the earlier models in this class, which require a negligible variation 
of  the propagation velocity of individual waves. One set of equations is used 
throughout the shoaling and breaking region, as opposed to earlier models in 
this class. The model can be used to predict the transformation of the proba- 
bility distribution of  the wave energy through the surf zone. With the help of 
a non-linear wave theory, wave height characteristics can be derived from the 
energy distributions. 

The calibrated and verified eq. (7) for the expected time-varying dissipa- 
tion can be readily used in wave propagation models that take into account 
variations on the time-scale of wave groups. 
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