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Storms andwater levels are subject to seasonal variations butmay also havedecadal or longer trends that need to
be included when estimating risks in the coastal zone. We propose a non-stationary multivariate generalised
extreme value model for wave height, wave period, storm duration and water levels that is constructed using
Archimedean copulas. The statistical model was applied to a South African case study to test the impacts of
decadal trends on beach erosion. Erosion was estimated using three process-based models— SBEACH, XBEACH,
and the Time Convolution model. The XBEACH model provided the best calibration results and was used to
simulate potential future long-term trends in beach erosion. Based on the simulated erosion results of 5 beach
profiles for storms with 25, 50 and 100 year return periods, it is estimated that the erosion rate could increase
by 0.20%/year/storm and should therefore be a significant factor in long-term planning.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Increasing awareness of future climate change impacts has added a
new dimension to traditional design practice. The predicted and/or
the measured increases in storm intensity and frequency should be
accounted for in failure risk assessment based on an average recurrence
interval. Erosion of coastlines is dominated by three factors: sediment
supply; wave forces and sea level rise. This paper attempts to consider
all these factors and forecast the erosion potential of future storms
using a non-stationary multivariate generalised extreme value statisti-
cal model based on Archimedean copulas together with process-based
models of the beach response.

Numerous authors have proposed a combination of process-based
models and statistical models to estimate the potential impacts of
climate trends. Only the most relevant examples are mentioned here.
Wang et al. (2004) analysed potential changes in significant wave
heights using a global climate model and a non-stationary generalised
extreme value distribution. They concluded that there was variability
of about 20% between decadal extreme significant wave heights. Coles
and Tawn (1990, 1991, 1994) provide methods relating to multivariate
statistical modelling in a coastal context while Coles and Tawn (1994)
used these methods with an empirical formula for overtopping of a
seawall to estimate a probability zone of failure. Wang and Reeve
(2010) presented a probabilistic model of long-term beach evolution
near detached breakwaters using the numerical model developed by
Hanson et al. (2006). Callaghan et al. (2008) used a joint distribution
rights reserved.
of wave parameters to estimate erosion in combination with the time
convolution shoreline response model of Kriebel and Dean (1993).
Zacharioudaki and Reeve (2011) performed a statistical analysis of
beach response to wave conditions arising from climate change scenar-
ios. Zacharioudaki and Reeve (2011) used a one-line beach response
model which is appropriate for beaches dominated by long-shore sedi-
ment transport. Our study is concerned with storm waves and so uses
cross-shore morphological models. Althoughmuchwork has combined
statistical models with numerical models this paper presents a unique
use of a copula based non-stationary multivariate statistical model
in combination with process-based models to quantify potential future
storm induced erosion.

We initially provide a brief theoretical background to the statistical
and process-based models and outline the methods used. The method-
ology is tested by applying it to a case study on the east coast of South
Africa. The results are then presented and discussed before concluding.

2. Theoretical background and methods

2.1. Case study site

The east coast of South Africa has 18 years of reliable wave data from
wave recording buoys near the city of Durban (Fig. 1). Corbella and
Stretch (in press) provide details of the data set. A storm event was
defined in terms of a significant wave height threshold similar to the
triangular storm concept proposed by Boccotti (2000): a storm event
begins when a significant wave height Hs exceeds a threshold of 3.5 m
and ends when the significant wave height falls below 3.5 m for a period
of at least 2 weeks based on the decay time of the autocorrelation. The
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Fig. 1. A map of (a) South Africa showing Durban and a map of (b) the Durban Bight showing the locations of profile A, C, D, F and 13 and the Durban harbour.
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reduced storm data set was then manually assessed to ensure that each
storm event represented one meteorological event. Finally we selected
the largest storms from the remaining group — the number chosen
corresponded to an overall average of 3 storms per year. The period
between the start and the end time is the storm duration D and
the time between the events is the calm period I. The storm definition
is illustrated in Fig. 2.

Corbella and Stretch (2011a) analysed Durban's wave data and
identified increasing trends in significant wave heights exceeding
the 3.5 m threshold. They also noted an increase in peak period T
and in the frequency of storm events (or similarly a decrease in the
average calm period). Only the increase in peak period was found to
be statistically significant.

The case study site at Durban also has a 37 year record of beach
profiles which exhibit a long term erosion trend (Corbella and Stretch,
2011a). The records of interest to this study are those that bound
storm events. Only the 1998 and 2007 events met these requirements.
The analysis is limited to profiles A, C, D, F and 13 (Fig. 1) as they have
the most frequent bathymetry data and provide a good representation
of the Durban Bight while avoiding most of the sheltering near the
harbour entrance and the influence of perpendicular beach structures
and sand bypass scheme.

In March 2007 Durban experienced its largest wave event
on record. The 8.5 m significant wave height and 16.6 second peak
period coincided with an extreme high tide of 2.2 m above chart
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Fig. 2. Illustration of the storm definition showing the significant wave height Hs, storm
duration D and calm period I.
datum1 (CD) and devastated the coastline. This storm was a realisa-
tion that much of the current infrastructure is not capable of with-
standing potentially more frequent and intense events in the future.
Since the damage of the 2007 event can be easily quantified it will be
used as a base line to demonstrate the potential impacts of storm and
water level trends.

2.2. The Generalised Extreme Value model

The Generalised Extreme Value (GEV) distribution has been used
extensively for extreme value analysis of hydrological events and
specifically for wave heights by Chini et al. (2010), Mendez et al.
(2008), Minguez et al. (2010), Guedes Soares and Scotto (2004) and
Ruggiero et al. (2010). The GEV encompasses three distributions often
referred to as Types I, II and III. Theprobability density function is givenby

y ¼ σ−1exp − 1þ k
x−μ
σ

� �−1
k

� �
1þ k

x−μ
σ

� �−1−1
k ð1Þ

for 1þ k x−μ
σ

� �
b0, where μ is the location parameter, σ is the scale

parameter and k is the shape parameter. This traditionally stationary
model can be adapted to model non-stationary events by making the
GEV parameters time dependent (Katz et al., 2002; Mendez et al., 2008;
Minguez et al., 2010). Non-stationarity is usually limited to time varying
location and scale parameters μ(t) and σ(t). For example Ruggiero et al.
(2010) and Zhang et al. (2004) model the location parameter as a linear
function of time and the shape parameter as an exponential function
of time. Others who have been interested in cyclic behaviour (such as
seasonality) have used trigonometric functions to model the location
and shape parameters (Katz et al., 2002; Mendez et al., 2008; Minguez
et al., 2010). For the present studywehave assumed that the time depen-
dency can be expressed simply as

μ tð Þ ¼ μ0 þ μ1t; σ tð Þ ¼ σ0; k tð Þ ¼ k0; ð2Þ

where the location parameter is assumed to be linearly dependent on
time and the shape and scale parameters are assumed to be constant
based on the findings of Wang et al. (2004). Corbella and Stretch
(2011a) identified increasing trends in Hs, T and the frequency of
storm events. However, only the wave height Hs was modelled with a
1 Mean sea level is approximately 1 m above chart datum at this location.
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non-stationary GEVmodel in the present study, while changes in T andD
were included through their dependence on Hs as captured by a multi-
variate statistical model based on copulas and described in Section 5.

2.2.1. Sea level estimating with the GEV model
Sea level can be broadly divided into astronomical forcing and sea

level rise. Sea level rise is well documented and the trend is usually
described linearly (Mather, 2008 and references therein). A rate of
2.7 mm/year for sea level rise was assumed for the present study
based on the work of Mather (2007, 2008). The increase in sea level is
included in the GEV through the location parameter and is expressed as

μSLR tð Þ ¼ 0:0027t; ð3Þ

where μSLR(t) denotes the sea level rise component of the location
parameter.

The sinusoidal nature of astronomical forcing aswell as the numerous
cyclesmakes it more complicated to include in the GEVmodel. Examples
of the long-term astronomical forcings include the 18.6 year nodal cycle
due to the regression of the lunar nodes and the 4.5 year cycle when
the lunar perigee coincides with the equinox (Pugh, 1987). These two
cycles do not have the same phase and the interaction of these two cycles
should be included in the model. To reduce the complexity of the model
we only consider the 18.6 year nodal cycle in the present study. We
include the nodal cycle in the location and scale parameter as described
by Mendez et al. (2008), whence

μN tð Þ ¼ βN1
cos 2πt=18:6ð Þ þ βN2

sin 2πt=18:6ð Þ; ð4Þ

σN tð Þ ¼ αN1
cos 2πt=18:6ð Þ þ αN2

sin 2πt=18:6ð Þ; ð5Þ

where μN(t) andσN(t) denote the nodal cycle component of the location
and scale parameters respectively, and β and α describe the amplitudes
of the nodal cycle. The nodal cycle components were estimated from
simulated tidal data between the years 1980 and 2010.

2.3. Fitting the Generalised Extreme Value model

The fitting of these distributions requires the sampling of extreme
events. The simplest samplingmethod is the annual maximummethod
which fits a probability distribution to the annual maxima wave
heights. The peak over threshold method samples all events exceeding
a specific threshold. Unlike the annualmaximummethod the peak over
threshold method allows more than one event per year to be sampled
and is therefore commonly used for analysing short data sets. Generally
the GEV is used to model block maxima while the generalised Pareto
distribution (GP) is used to model data that has a threshold. However,
there is no theoretical ground to recommend a specific distribution
function for the peak over threshold method (Goda, 2008). For our
data set the GEV and the GP provide similar results with the GEV having
a superior Akaike information criterion. We therefore use the GEV to
model all the parameters of interest. It should be noted that themargin-
al distributions do not affect the dependence structure modelled by the
copulas and may be replaced with any preferred distribution.

The maximum likelihood method of parameter estimation maxi-
mizes the joint probability of observing the data in the sample. This
intuitive method has been referred to as the most popular and best
technique for deriving estimators (Casella and Berger, 1990;
Montgomery and Runger, 2003). The maximum likelihood method is
popular with statisticians because its characteristics are underpinned
by a well developed theory (Goda, 2008). Themethodwas therefore se-
lected for this study.

The significance of non-stationarity in the GEV distributions was
evaluated using a log-likelihood ratio test. The test identifies the statis-
tical significance of a trendwhen compared to amodel without a trend.
LetM1 be amodel with a trend andM0 be amodelwithout a trend. If the
corresponding log-likelihoods are given by lM0 and lM1 respectively,
then the log-likelihood ratio statistic given by

LRS ¼ 2 lM1
−lM0

� �
; ð6Þ

is asymptotically chi-squared distributedwith degree-of-freedomequal
to the difference between the number of free parameters in the two
models. We reject the no trend M0 hypothesis at a significance level
of 95% if LRS exceeds the upper 95th percentile of the chi-squared
distribution.

2.4. Event frequency

The non-stationary GEV distribution has been used to model the
change in wave height. The annual increase in the frequency of
these events still has to be included in the model. The definition of
an average recurrence interval for a partial duration series is given
by (Goda, 2008; Salvadori, 2004)

τ ¼ λ
1−p

; ð7Þ

where τ is the average recurrence interval, λ is the average event
inter-arrival time 1/(D+ I) (or inverse of the annual average event
frequency f0) and p is the non-exceedance probability of an event. A
trend in event frequency can be included by making λ time depen-
dent. Assuming a linear trend we represent the trend in λ(t) as

λ tð Þ ¼ 1
f 0 þ f 1 tð Þ : ð8Þ

Eq. (7) can then be used to express p as a time dependent function
of τ, namely

p ¼ 1− 1
τ f 0 þ f 1 tð Þð Þ : ð9Þ

This frequency model can now be used in combination with
the non-stationary GEV model to estimate a future wave height for
a given recurrence interval based on the trend in frequency and
intensity.

2.5. Archimedean copulas

Erosion is not only dependent on wave heights but also on wave
period, storm duration, wave angle and sea level. A multivariate sta-
tistical model was therefore used to model the dependency between
these parameters. Since the physical relationships between the pa-
rameters are not expected to change they can be used with both sta-
tionary and non-stationary GEV distributions.

The multivariate model was constructed using Archimedean
copulas. Copulas are mathematical functions that join or couple
multivariate probability distribution functions F(x1,…,xn) to their
one-dimensional marginal distribution functions F1(x1),…,Fn(xn).
For a detailed introduction to copulas refer to Nelsen (2006),
Salvadori and De Michele (2010), and De Michele et al. (2007).
Using a 2-dimensional case as an example, an Archimedean copula
C is defined as

C u; vð Þ ¼ φ−1 φ uð Þ þ φ vð Þ½ �; ð10Þ

where u=F(x) and v=F(y) are marginal distribution functions and
φ is the generator function.

Corbella and Stretch (2011b) found that only Hs, T and D of the
case study wave data are significantly inter-dependent. Based on
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this observation they created a fully nested trivariate hierarchical
Clayton copula. The same trivariate model was used for the present
study. The Clayton copula generator function is given by

φ sð Þ ¼ 1
θ

sθ−1
� �

ð11Þ

where θ is the dependence parameter and s∈ [0,1]. The
3-dimensional hierarchical copula has 2 generators, φ1 and φ2 and
is expressed as

C u1;u2;u3ð Þ ¼ φ−1
2 φ2 φ−1

1 φ1 u1ð Þ þ φ1 u2ð Þ½ �
� �

þ φ2 u3ð Þ
� �

: ð12Þ

This model can be used to simulate events conditionally given the
expected future wave heights estimated by the non-stationary GEV
model. We perform this simulation using the conditional inversion
method (De Michele et al., 2007; Nelsen, 2006; Savu and Trede,
2006, 2010). Given the non-exceedance probability of a wave height
h the non-exceedance probability of duration d can be estimated
from the conditional law G of the bivariate copula as

G2 dð jhÞ ¼ ∂hC h;dð Þ: ð13Þ

The non-exceedance probability of the wave period t can then be
estimated conditionally based on the given values of h and d from
the bivariate and trivariate copulas as

G3 tð jh;dÞ ¼ ∂h;dC h;d; tð Þ
∂h;dC h;dð Þ : ð14Þ

Sampled values for Hs, D and T can then be found by inverting
the associated GEV models. It should be noted that Hs, D and T
are also dependent on wave direction. Wave direction was not in-
cluded in the copula model because all the sampled storm events
fall between 110° and 180° with an average direction of 147°.
There is no significant rank correlation between wave height and
wave direction so we assume that all extreme events are equally
likely to arrive from any direction between 110° and 180°.

The main advantage of copulas is that they are not limited to depen-
dence described by linear correlation. Dependence measured as a linear
correlation is only suitable for a special class of distribution (i.e. elliptical
distributions) and its uses outside of these distributions leads to numer-
ous fallacies (seeMcNeil et al., 2005).We therefore use Kendall's tau rank
correlation as a measure of dependence. The Clayton copula interpolates
between dependency structures. For the limits θ→ 0 the Clayton copula
becomes the independence copula. For θ→∞ the comonotonicity copula
is produced and for θ→ −1 the Frechet–Hoeffding lower bound is
obtained. The Clayton copula therefore interpolates between
countermonotonicity, independence and comonotonicity.

2.6. Erosion estimation by numerical modelling

There are numerous numerical models available for estimating
cross-shore erosion (Schoonees and Theron, 1995). We limit our
analysis to SBEACH (Larson et al., 1990), the Time Convolution
model (Kriebel and Dean, 1993), and XBEACH (Roelvink et al.,
2009). Although SBEACH has been found to under estimate erosion
(Seymour et al., 2005; Zheng and Dean, 1997) it generally provides
reasonable predictions (Schoonees and Theron, 1995; Zheng and
Dean, 1997). Kriebel and Dean's model is the simplest of the three
models and is based on the theory of idealised equilibrium profiles
where the water depth

h ¼

−B x≤− B
m

mx − B
m

≤x≤ 4A3

9m3

A x− 4A3

27m3

 !3
2

x≥ 4A3

9m3 ;

8>>>>>>>>><
>>>>>>>>>:

ð15Þ

where x is the cross-shore distance offshore, B is the dune height
above mean sea level, and A is an empirical coefficient that depends
on the sediment settling velocity (Kriebel and Dean, 1993). Storm
surge for the Time Convolution model was limited to the sum of the
tidal anomaly and wave setup. Assuming saturated wave conditions
and ignoring bed shear stresses the maximum wave setup can be esti-
mated as (Callaghan et al. (2008) citing Dean and Dalrymple (1991))

�ηmax ¼
40−3γ2

b

128
γbHb; ð16Þ

where γb=Hb/hb and Hb is the wave height where wave breaking
initially occurs and hb is the depth that wave breaking occurs. The
values of Hb and hb were estimated for the simulated events in the
SWAN model (refer to Section 1).

The Time Convolution model has been previously applied to esti-
mating erosion (e.g. Callaghan et al., 2008). However, it is not intended
to accurately reproduce erosion processes but rather to provide a fast
and easy method to estimate profile retreat.

The XBEACH model is a relatively new public-domain model that
is still under development. Although XBEACH has not yet been tested
as extensively as the SBEACH model, it has been used for a number of
recent studies and has given satisfactory results (e.g. Hartanto et al.,
2011; Roelvink et al., 2009).

The three models were calibrated using the 2007 storm event and
verified using the 1998 event. The 1998 event had profile measure-
ments one day before the storm peak and two days after the peak.
The 2007 event had measured profiles one month before the event
and 9 days after the event. These were the only two storm events that
had profile data close enough to the event for calibration purposes.

All the models predict erosion of the profile but the sediment
remains within the model domain and there is no net loss of sediment.
Therefore, only the erosion above mean sea level (MSL) was calculated
and compared with the field data.

The wave events simulated by the statistical model are based on
recordings from the waverider buoy and so we use the numerical wave
model SWAN (Simulating WAves Nearshore) to transform these events
to the required locations. The significant wave height and storm duration
estimated from the statistical model are used to create an idealised time
series of a storm (Fig. 7). This time series is transformed to a nearshore
time series by the SWAN model and the transformed time series is used
in the cross-shore models.

Since the statistical model did not include wave direction we
simplify the erosion simulations by setting all the offshore deepwater
wave directions equal to 145°.

2.6.1. The SWAN model
The SWAN model used in this study was set up using three grid

resolutions. The largest, offshore rectangular grid had approximately
1000 m×1000 m grid cells. A medium grid had 400 m×400 m cells
and the smallest curvilinear grid had approximately 100 m×50 m
cells. The statistically simulated wave conditions were transformed
to 20 m water depths in front of each of the selected profile loca-
tions. Hind-cast data for the two storms were obtained from the
WAVEWATCH-III global wave model (Tolman, 1999) and used as
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offshore boundary conditions to calibrate and verify the SWAN model
with the wave recording buoy data.

2.7. Summary

We have outlined the creation of a time dependent statistical
model and have described four numerical models. We now summa-
rise the section by providing an algorithm for the process used to
quantify future erosion.

1. Sample storm parameters Hs, D, T and λ using the POT method
and the storm definition given in Section 1.

2. Identify appropriate functions to model any trends in Hs and λ.
3. Fit a non-stationary GEV distribution to Hs.
4. Fit GEV distributions to D and T using the maximum likelihood

method.
5. Create a copula model of Hs, D and T.
6. Estimate the time dependent non-exceedance probability p

(Eq. (9)) of Hs corresponding to a 31-year recurrence interval τ
(the 2007 event) for a forecast of 10, 25, 50 and 100 years.

7. Simulate 1000000 non-exceedance probability samples, at specified
non-exceedance probabilities of h, for storm duration d and wave
period t from the conditional laws of the bivariate (Eq.(13)) and
trivariate copulas (Eq. (14)).

8. Calculate an event equivalent to the probability levels of the 2007
event from the 1000000 samples of d and t.

9. Estimate the value of Hs, D and T from the inverse of the cumula-
tive GEV distribution with the time dependent location parame-
ter (Eq. (2)).

10. Simulate sea levels for a 10, 25, 50 and 100 year forecast from
the inverse of the cumulative GEV distribution using the time
dependent parameters (Eqs. (3) to (5)).

11. Use the simulated values of Hs and D to create an idealised storm
time series with the maximum significant wave height occurring
at half the storm duration (Fig. 7).

12. Use the simulated sea level and a sine function to create a time
series of the tide. Make the high tide coincide with the maximum
wave height.

13. Calibrate the SWAN, SBEACH, XBEACH and Time Convolution
model using past storm events.

14. Use the SWAN model to transform the simulated wave events to
the required locations and to calculate the wave breaking heights
and water depths for the Time Convolution model.

15. Use the SBEACH, XBEACH and Time Convolution model to esti-
mate the erosion corresponding to the simulated wave events.

The shoreline response models require Hs, T, D, wave direction
and water level as inputs. Wave direction could not be included in
the statistical model because the 7 years of data is too short to estab-
lish a trend or dependence between the other parameters. We there-
fore use the most common wave direction of south east as a constant
wave angle in the models.

3. Results

3.1. Trend analysis

As previously mentioned we limit our analysis of trends to Hs
and water levels. We then use the dependency between the storm
parameters Hs, D and T to estimate the associated changes of D and T.
Water levels were modelled separately because Corbella & Stretch
(2011b) found them to be independent of the other storm parameters.

3.1.1. Trends in significant wave height
The observed trend in the significant wave height was not found to

be statistically significant at a 95% confidence level (Corbella and
Stretch, 2011a). The difficulty in establishing trends from a relatively
short data set is illustrated by the return period estimates using the sta-
tionary GEVmodel in Fig. 3. The limited data in the upper tail causes the
bootstrapped 95% confidence interval to become large very quickly.
Despite the uncertainty, the observed trend in Hs was modelled and is
shown in Fig. 4. The rate of increase of significant wave heights exceed-
ing 3.5 mwas estimated to be 0.02 m/year. This trendwas incorporated
into the GEVmodel using the location parameter as described in Section
2. The negative log-likelihood method estimated the rate of change of
the location parameter to be 0.0057 m/year. The log-likelihood ratio
test between the stationary and non-stationary models confirmed that
the trend in Hs was not statistically significant. The 0.02 m/year trend
is similar to the trends identified by Theron et al. (2010), Ruggiero et
al. (2010), Dodet et al. (2010), Bacon and Carter (1991), but because
there is limited statistical confidence in the data we analyse both the
0.0057 m/year and 0.020 m/year trends.

The significance of an increasing wave height is illustrated in
Fig. 5. The plot shows how the same recurrence interval corresponds
to larger events as time proceeds.

3.1.2. Trends in storm frequency
The trend in storm frequency was estimated from the occurrence of

wave heights exceeding 4 m. It was found that the average of f0=3
events/yr was increasing at an average rate of f1=0.01 events/yr.

3.1.3. Trends in water level
Unlike the GEVmodel of Hswhich used the POTmethod, the GEV for

thewater levels was fitted to the annualmaxima tide levels. As previous-
ly mentioned an estimate of 0.0027 m/year was assumed for sea level
rise. Similar to Mendez et al. (2007) the contribution of the scale param-
eter to the nodal cycle was found to be negligible. The amplitude of the
nodal cycle (βN1

2+βN2

2)1/2=0.03 is similar to Mendez et al. (2007)
and Sobey (2001). Note that βN1

=0.004 and βN2
=0.03 while the nodal
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cycle contribution in the scale parameter (αN1,αN1) is not significant.
Fig. 6 shows the linear trend in sea level, the sinusoidal trend in the
nodal cycle, and the combination of the two trends in the GEV model.
3.2. Simulated events

Table 1 shows the simulated events. The copula model incorporates
the dependence between the significant wave height, duration and peak
period. This dependence allows the trends in duration and peak period
to be modelled conditionally on the trend in significant wave height.
Table 1 shows an increasing trend in duration. The simulated rates of D
and T are not consistent with the findings of Corbella and Stretch
(2011a). The reason for this is because the trivariate copula has no
upper tail dependence and does not represent the average trend of the
data set. If an event in the centre of the distribution, such as awave height
of 5 mwas used, then therewould be a larger change inD and T. For a de-
tailed explanation of this concept the reader is referred to Corbella and
Stretch (2011b). This concept of tail dependencemakes the use of copulas
very powerful when forecasting conditionally dependent events.

Fig. 7 illustrates the evolution of an idealised 2007 storm event over
time. If we define the storm magnitude as the area under the plots in
Fig. 7 it can be seen that the overall storm magnitude increases with
time. This increase in combination with the increase in peak period
means that the total wave power will increase. Furthermore this in-
creased stormmagnitude andwave power are able to act further inland
as a result of the increase in water level, which will in turn increase
erosion.
3.3. Comparison of the numerical erosion models

We do not present the Time Convolution results as a goodness of
fit because the method only shifts an equilibrium profile that has
been fitted to a historic profile. Instead the results are presented in
Table 2 as relative percentage errors between the measured and
modelled retreat and erosion volumes.
The average error for the two events and for all the profiles is 48%.
This may be an acceptable initial estimate but is not a suitable alterna-
tive to a process-based model. The profiles that show the best results
are those that have the closest approximation to the equilibrium profile
described by Eq. (15). The limitation of assuming a constant wave
breaking height is one of the reasons why the erosion of profiles F and
13 is over estimated in Table 2.

SBEACH is a more sophisticated model than the Convolution model
but because its calibration parameters are limited it does not have the
same flexibility as XBEACH. Fig. 8 shows the modelled beach response
of profile A for both the SBEACH and XBEACHmodels. XBEACHmodelled
the response of profile 13 worse than any other profile while it was the
best of the SBEACH simulations. SBEACH estimates the correct profile
shape but shows no net erosion while XBEACH has a similar shape and
over estimates the erosion by almost 20%. The SBEACH results are not tab-
ulated as they mostly show no net erosion above the 0 mMSL contour.

The XBEACH calibration results are shown in Table 3. The model was
calibrated on the 2007 event and predicts the erosion volumes within
10%on average. The calibrationwas verifiedwith the 1998 event and sim-
ulated erosion volumes were between 1% and 57% of the measurements
with an average error of 30%. XBEACH is the preferred of the threemodels
andwill be used to estimate the erosion of the forecasted events. The cal-
ibration is acceptable given that it does not include longshore currents
and that we are essentially interested in relative erosion volumes.
3.4. Predicted erosion

The forecast storm conditions and modelled erosion trends are
shown as relative percentage changes in Fig. 9. The significant wave
height and water levels were modelled with increasing trends with the
18.6 year nodal cycle included in the water level trend. The peak
period and duration have aminor increasing trend, neither ofwhich con-
tributes to the estimated increase in erosion. The average annual erosion
trend of the profiles was estimated to be 0.14%/year/storm and 0.20%/
year/storm as a result of the 0.16% and 0.32% increase per year in wave
height respectively and the 0.21%/year increase in water level.
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4. Model limitations

The non-stationary GEV and copula method proposed here for fore-
casting storm events is more appropriate than simulating events based
purely on marginal distributions because it includes the dependence
between parameters. The method however assumes that the depen-
dence relationships that exist between storm parameters do not change
over time. Thismay not be correct because there could be changes in the
meteorological forcing processes. For example Durban's storm waves
are produced by either cut-off lows, cold fronts or tropical cyclones. It
is estimated that only 5% of Durban's storm waves are produced by
cyclones and so the currentmodel ismainly representative of a mixture
of cold fronts and cut-off lows. Although the relationship between the
Table 1
The storm parameters of the 2007 event significant (wave height Hs, duration D, peak
period T and water levelWL) and the equivalent event storm parameters forecasted 10,
25, 50 and 100 years. Values for Hs trends of both 0.0057 m/yr and 0.02 m/yr (brack-
eted) are given in the table.

Forecast (years) 0 10 25 50 100

Hs (m) 8.5 8.64 (8.78) 8.84 (9.20) 9.18 (9.89) 9.82 (11.3)
D (hrs) 55.4 55.5 (55.6) 55.6 (55.9) 55.7 (56.1) 55.9 (56.4)
T (s) 16.6 16.6 (16.6) 16.6 (16.6) 16.6 (16.6) 16.6 (16.6)
WL (m) 1.33 1.36 1.42 1.45 1.62
meteorological forcing and storm durations is still unclear at the case
study location, it appears that the largerwave heights and longer period
waves are associatedwith cut-off lows. If there is a trend in only a single
forcing process it may eventually affect the relationship modelled by
themultivariate copula. If only one of the forcing processes is increasing
our assumption of a constant dependence relationshipwill be incorrect.

The proposed method of conditionally simulating peak wave period
from a significant wave height should be applied cautiously. In the case
study presented here the method performs well because of the forcing
processes described above. If local storm conditions produce extreme
waves the proposed method will overestimate the peak wave period
and thus the extreme storm conditions. If there is a possibility of this oc-
curring at the location of interest the copula based simulation of peak
wave period may be replaced by the method described by Monbet
and Prevosto (2001) and references cited therein.

Further cautionmust be observed in the use of Archimedean Copulas.
Copulas provide a very general model of dependence and although they
have found various successful applications their generality makes them
difficult to estimate fromdata. Copulas that are derived frommultivariate
distributions (e.g. theGaussian copula) provide powerfulmodels because
the marginal distributions and the dependence structure can be
disentangled and handled independently. Archimedean copulas however
do not stem from multivariate distributions and are designed in part for
mathematical tractability. Therefore their appropriateness as natural
models for dependence should be verified for each application.

The erosion simulations have been performed from a constant
antecedent profile. This method does not allow for long term retreat
due to sea level rise. The method also neglects any trends in wave
direction. The long term erosion effects of changing wave directions
are an important factor (Zacharioudaki and Reeve, 2011) and a notable
weakness in the current study. Although themethod is not fully realistic
it allows the effects of storms to be quantified separately to that of long
term sea level rise and wave direction effects. Since cross-shore erosion
processes are dominant during storms the absence of wave direction
trends does not significantly affect the quantification of storm erosion
trends.

The trends used for the case study are based on analysis of limited
data and are not statistically significant. This is expected to be a com-
mon problem since most areas in the world have short wave data
sets. The absence of statistically significant trends is not a sufficient
justification to dismiss the inclusion of such trends in medium to
long term planning. The methods outlined in this paper are intended
to allow potential future impacts to be quantified so that they can be
assessed as part of a holistic planning and design process.

5. Discussion

Three cross-shore erosion models have been evaluated for predicting
the impacts of wave andwater level trends. The Time Convolutionmodel
(Kriebel and Dean, 1993) was the simplest model evaluated and showed
an average relative error between the measured and modelled erosion
volumes of 48%. SBEACH is considered a far more sophisticated
model than the Time Convolution model. SBEACH modelled the erosion
volumes well with regards to shape but the erosion volume was largely
balanced by the accretion volume above 0 m MSL and therefore yielded
no net erosion. The Time Convolution model provides reasonable initial
estimates of profile erosion relative to its simplicity. SBEACH is an appeal-
ing model because it has an easy to use graphical user interface and the
simulation times are short. The user interface unfortunately removes a
degree of flexibility. The calibration parameters are also limited to
the Transport Rate Coefficient and the Coefficient for Slope-Dependent
term (Sommerfeld et al., 1996). XBEACH gave the best calibration results
andwas therefore selected for predicting future trends. A disadvantage of
XBEACH is that the simulation times are significantly longer than the
other two models. Simulation times can be reduced to some extent by
using a morphological time factor. The required length of the XBEACH
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simulations necessitates the use of a multivariate statistical model. The
more pragmatic engineering approach (e.g. Reeve, 1998) would require
a lengthy time series as an input into XBEACH. Although the results of
the engineering approach can be simply analysed as univariate erosion
the extensive XBEACH simulations make the engineering approach
impractical.

Average erosion was estimated to increase at a rate of 0.14%/year/
storm and 0.20%/year/storm for increases in wave height Hs of
0.0057 m/yr and 0.02 m/yr respectively. Corbella and Stretch
(2011a) found that most of the Durban beach profiles have a long
term erosion trend and they identified numerous reasons for the
erosion trends. Although this paper has only analysed the erosion
associated with storm trends at a single probability level, the results
provide an indication of general storm erosion trends. We can there-
fore estimate the proportion of long-term erosion due to either trends
in storm characteristics or to sea level rise. Table 4 shows the long
Table 2
Relative errors of the Convolution method for profile retreat and volume erosion fro
profiles A, C, D, F and 13.

Storm event Profile Retreat error (%) Volume error (%) Average error (%)

1998 A −66 −6 36
C 9 −35 22
D −61 24 42
F 101 −49 75
13 −58 95 76

2007 A −67 −38 52
C 75 −47 61
D −57 −44 50
F −35 −29 32
13 −53 −19 36
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Fig. 8. A model comparison of the response of profile 13 to the 2007 storm event.
The solid line shows the pre-storm profile and the double line shows the post-storm
profile. The dashed line is the SBEACH simulated storm response and the dotted line
is the XBEACH simulated storm response.
term erosion trends estimated from historical profile data compared
to the erosion estimated due to storm and water level trends.
Table 4 shows that the storm and water level trends potentially
contribute 25% to 42% of the overall erosion trend. The remaining
58% to 75% of the erosion can be attributed to a decrease in sediment
budget and long term sea level rise. Corbella and Stretch (2011a)
suggested that the decrease in sediment budget is due to a combination
of sediment mining and trapping by dams and the episodic nature of
large flood events. These results should be interpreted cautiously. The
simulations show that the maximum potential contribution to long
term erosion may be the result of storm and sea level trends. However,
these trends may not contribute to long term erosion at all if there is
sufficient recovery time between the storms for the beaches to recover
to their pre-storm volumes. Corbella and Stretch (2012) found that on
average the shoreline recovery takes 2 years, regardless of the storm
magnitude. In this regard, based on our current model and estimates,
it is not anticipated that storm trends will contribute to long term
erosion for the next 100 years. Sea level rise on the other hand will
influence long term erosion based on the Bruun Rule. Corbella and
Stretch (2011a) found that the Bruun Rule attributes 75% of the current
beach erosion to sea level rise. The combination of sea level rise and
storm trends is therefore likely to become an issue prior to the year
2100, without storm trends contributing to long term erosion.

6. Conclusion

In this paper we have introduced an integrated modelling ap-
proach for assessing future coastal erosion trends under changing
climatic conditions. The method combines a multivariate, copula based,
non-stationary statistical model for storm waves with deterministic
shoreline response models.

The non-stationary GEVmodel is a usefulmeans for forecasting time
dependent wave parameters. Coupling non-stationary GEV models
via copulas allows the time dependent parameters to be modelled
Table 3
XBEACH 1D model relative profile erosion volume errors and Chi-squared statistics for
profiles A, C, D, F and 13.

Storm event Profile Volume error (%) Chi-squared (χ2)

1998 A −31 0.98
C 36 3.94
D 57 0.63
F −27 4.93
13 1 0.86

2007 A −9 2.17
C 4 1.00
D −4 0.64
F −7 0.72
13 19 0.45
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Table 4
Comparison between long-term profile erosion and erosion estimated from storm and
water level trends as percentage relative change. The percentage contribution of the
estimated erosion to the long-term erosion is also shown.

Profile Long-term
annual erosion
(%)

Storm/water level
erosion (%)

Contributions to erosion
(%)

0.0057 m/
year

0.02 m/
year

0.0057 m/
year

0.02 m/
year

A NA 0.12 0.17 NA NA
C 0.32 0.10 0.20 31 61
D −0.21 0.13 0.13 NA NA
F 1.43 0.19 0.22 14 16
13 0.57 0.18 0.28 32 50
Averages 0.53 0.14 0.20 25 42
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conditionally based on the dependence betweenparameters. This paper
has used both of these methods to create a multivariate statistical
model of a time dependent sea state.

The statistical model has been used to estimate future storm erosion
trends for a South African case study. The investigation of three mor-
phological models (Time Convolution, SBEACH and XBEACH) showed
the XBEACH model to have the best results while the Convolution
model provided a simple means to find reasonable erosion estimates.
Callaghan et al. (2008) concluded that their reliance on the Kriebel
and Dean (1993) model was a limitation to their full temporal simula-
tion method. The use of the XBEACH process-based model is an
improvement on the Convolution model. We have also improved the
statistical description of storm events by including the dependence
between wave height, wave period and storm duration using copulas.
The predicted future erosion due to storm and sea level trends was
estimated to increase at a rate of 0.14%/year/storm and 0.20%/year/
storm as a result of the 0.0057 m/yr and 0.02 m/yr increasewave height
respectively. It has been estimated that storm trends are unlikely to
contribute to long term erosion prior to the year 2100 while it is plausi-
ble that sea level rise is already contributing to long term erosion.

The methods presented in this paper should be useful for medium
to long term planning by coastal managers and decision makers.
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