subroutine splev(t,n,c,k,x,y,m,e,ier) c subroutine splev evaluates in a number of points x(i),i=1,2,...,m c a spline s(x) of degree k, given in its b-spline representation. c c calling sequence: c call splev(t,n,c,k,x,y,m,e,ier) c c input parameters: c t : array,length n, which contains the position of the knots. c n : integer, giving the total number of knots of s(x). c c : array,length n, which contains the b-spline coefficients. c k : integer, giving the degree of s(x). c x : array,length m, which contains the points where s(x) must c be evaluated. c m : integer, giving the number of points where s(x) must be c evaluated. c e : integer, if 0 the spline is extrapolated from the end c spans for points not in the support, if 1 the spline c evaluates to zero for those points, if 2 ier is set to c 1 and the subroutine returns, and if 3 the spline evaluates c to the value of the nearest boundary point. c c output parameter: c y : array,length m, giving the value of s(x) at the different c points. c ier : error flag c ier = 0 : normal return c ier = 1 : argument out of bounds and e == 2 c ier =10 : invalid input data (see restrictions) c c restrictions: c m >= 1 c-- t(k+1) <= x(i) <= x(i+1) <= t(n-k) , i=1,2,...,m-1. c c other subroutines required: fpbspl. c c references : c de boor c : on calculating with b-splines, j. approximation theory c 6 (1972) 50-62. c cox m.g. : the numerical evaluation of b-splines, j. inst. maths c applics 10 (1972) 134-149. c dierckx p. : curve and surface fitting with splines, monographs on c numerical analysis, oxford university press, 1993. c c author : c p.dierckx c dept. computer science, k.u.leuven c celestijnenlaan 200a, b-3001 heverlee, belgium. c e-mail : Paul.Dierckx@cs.kuleuven.ac.be c c latest update : march 1987 c c++ pearu: 11 aug 2003 c++ - disabled cliping x values to interval [min(t),max(t)] c++ - removed the restriction of the orderness of x values c++ - fixed initialization of sp to double precision value c c ..scalar arguments.. integer n, k, m, e, ier c ..array arguments.. real*8 t(n), c(n), x(m), y(m) c ..local scalars.. integer i, j, k1, l, ll, l1, nk1 c++.. integer k2 c..++ real*8 arg, sp, tb, te c ..local array.. real*8 h(20) c .. c before starting computations a data check is made. if the input data c are invalid control is immediately repassed to the calling program. ier = 10 c-- if(m-1) 100,30,10 c++.. if (m .lt. 1) go to 100 c..++ c-- 10 do 20 i=2,m c-- if(x(i).lt.x(i-1)) go to 100 c-- 20 continue ier = 0 c fetch tb and te, the boundaries of the approximation interval. k1 = k + 1 c++.. k2 = k1 + 1 c..++ nk1 = n - k1 tb = t(k1) te = t(nk1 + 1) l = k1 l1 = l + 1 c main loop for the different points. do 80 i = 1, m c fetch a new x-value arg. arg = x(i) c check if arg is in the support if (arg .lt. tb .or. arg .gt. te) then if (e .eq. 0) then goto 35 else if (e .eq. 1) then y(i) = 0 goto 80 else if (e .eq. 2) then ier = 1 goto 100 else if (e .eq. 3) then if (arg .lt. tb) then arg = tb else arg = te endif endif endif c search for knot interval t(l) <= arg < t(l+1) c++.. 35 if (arg .ge. t(l) .or. l1 .eq. k2) go to 40 l1 = l l = l - 1 go to 35 c..++ 40 if(arg .lt. t(l1) .or. l .eq. nk1) go to 50 l = l1 l1 = l + 1 go to 40 c evaluate the non-zero b-splines at arg. 50 call fpbspl(t, n, k, arg, l, h) c find the value of s(x) at x=arg. sp = 0.0d0 ll = l - k1 do 60 j = 1, k1 ll = ll + 1 sp = sp + c(ll)*h(j) 60 continue y(i) = sp 80 continue 100 return end