
RTC-Tools

Software Tools for Modeling Real-Time Control

Reference Manual

Dirk Schwanenberg, Bernhard Becker

Version: 0.1.22313

9 December 2012

RTC-Tools, Reference Manual

Published and printed by:
Deltares
Rotterdamseweg 185
p.o. box 177
2600 MH Delft
The Netherlands

telephone: +31 88 335 82 73
fax: +31 88 335 85 82
e-mail: info@deltares.nl
www: http://www.deltares.nl

Contact:
RTC-Tools is still in beta version. If you have suggestions or ideas for enhancing the software,
please contact:

Bernhard Becker
telephone: +31 88 335 8507
fax: +31 88 335 8582

e-mail: rtc-tools@deltares.nl
www: http://oss.deltares.nl/web/rtc-tools

Dirk Schwanenberg
telephone: +31 88 335 8447
fax: +31 88 335 8582

Copyright © 2012 Deltares
All rights reserved. No part of this document may be reproduced in any form by print, photo
print, photo copy, microfilm or any other means, without written permission from the publisher:
Deltares.

Contents

Contents

1 Introduction 1
1.1 Background . 1
1.2 Fields of application . 1
1.3 Architecture and supported interfaces . 4
1.4 Content of this document . 4

2 Modeling components 7
2.1 Overview . 7
2.2 Reservoir . 7

2.2.1 Mathematical model . 7
2.2.2 Numerical schematization . 7

2.3 Hydrological routing . 8
2.3.1 Introduction . 8
2.3.2 Routing . 8
2.3.3 Unit delay . 8
2.3.4 Unit hydrograph . 8
2.3.5 HBV model . 8
2.3.6 Lorent Grevers . 8

2.4 Hydraulic routing . 9
2.4.1 Introduction . 9
2.4.2 Kinematic wave model . 9

2.4.2.1 Numerical background 9
2.4.2.2 Schematization . 10

2.4.3 Diffusive wave model . 11
2.4.4 Kinematic versus diffusive wave routing 11
2.4.5 Model set-up . 11

2.4.5.1 Schematization of the water network 11
2.4.5.2 Level-storage relation . 12
2.4.5.3 Cross-section . 12

2.5 Other models . 12
2.5.1 Accumulation . 12
2.5.2 Arma . 12
2.5.3 Expression . 12
2.5.4 Gradient . 13
2.5.5 Neural Network . 13

2.6 Numerical schemes . 13
2.6.1 Ordinary differential equations . 13
2.6.2 Forward Euler scheme . 14
2.6.3 Implicit scheme . 14
2.6.4 Discussion . 15

2.6.4.1 Central versus upwind spatial schematization 15
2.6.4.2 Explicit versus implicit time stepping 15

3 Feedback control 17
3.1 Overview . 17
3.2 Operating rules . 17

3.2.1 constant . 17
3.2.2 dateLookupTable . 17
3.2.3 deadBandValue . 17

Deltares iii

RTC-Tools, Reference Manual

3.2.4 dedicated-Aebi . 17
3.2.5 dedicated-Thunersee . 17
3.2.6 expression . 18
3.2.7 guideBand . 18
3.2.8 interval . 19
3.2.9 limiter . 19
3.2.10 lookupTable . 19
3.2.11 lookup2DTable . 19
3.2.12 merger . 20
3.2.13 minSimple . 20
3.2.14 pid . 20
3.2.15 timeAbsolute . 21
3.2.16 timeRelative . 21

3.3 Triggers . 21
3.3.1 deadBandTrigger . 21
3.3.2 deadBandTime . 22
3.3.3 expression . 22
3.3.4 merger . 22
3.3.5 polygonLookup . 22
3.3.6 set . 22
3.3.7 spreadsheet . 23
3.3.8 standard . 23

3.4 Implementation of triggers and rules . 25

4 Model Predictive Control 27
4.1 Introduction . 27
4.2 Set-up of the optimization problem . 28

4.2.1 Control variables . 28
4.2.2 Constraints . 29
4.2.3 Cost function terms . 30

4.3 Adjoint models . 30

5 Interfaces 33
5.1 Matlab . 33
5.2 FEWS-PI . 34
5.3 OpenMI . 34

6 References 37

A Configuration / Schemas 39
A.1 General runtime definitions . 39
A.2 Modeling components . 39
A.3 Feedback control (rules and triggers) . 39
A.4 Setup of optimization problems . 39
A.5 Setup of scenrio trees . 40
A.6 Time series input and output . 40
A.7 State handling . 40
A.8 Command line options of RTC-Tools . 40
A.9 RTC-Tools in Delft-FEWS . 41
A.10 RTC-Tools in OpenMI . 41
A.11 RTC-Tools in Matlab . 41

iv Deltares

Contents

B Details on dedicated rules 55
B.1 Aebi . 55
B.2 Thunersee . 57

C Configuration examples 59
C.1 A kinematic wave model . 59
C.2 A neural network model . 61
C.3 A pool routing model . 62
C.4 A Delft-FEWS configuration . 64

D RTC-Tools Application Programming Interface (RTC-Tools API) 65
D.1 Extension of the model library . 65

D.1.1 Introduction . 65
D.1.2 Class design . 65

D.1.2.1 Basics on variables, member functions, inheritance 65
D.1.2.2 Implementing the simulation and adjoint mode 65

D.1.3 xsd design / xml data binding / factory method 66
D.2 Extension of the objective function library 66

D.2.1 Introduction . 66
D.2.2 xsd design / data binding . 66
D.2.3 Class design . 66

D.3 Adding optimizers . 66
D.3.1 Introduction . 66
D.3.2 xsd design / data binding . 66
D.3.3 Class design . 66

Deltares v

RTC-Tools, Reference Manual

vi Deltares

List of Figures

List of Figures

1.1 RTC-Tools configuration in typical simulation set-up: triggers, reactive operat-
ing rules and controllers, network components 2

1.2 RTC-Tools configuration in typical simulation set-up: triggers, reactive operat-
ing rules and controllers linked with a hydraulic model via OpenMI 3

1.3 RTC-Tools configuration in typical Model Predictive Control set-up: optimizer,
optimization problem definition and network components 3

1.4 Architecture and interfaces of RTC-Tools 4

2.1 Spatial schematization of the kinematic wave model on a staggered grid . . . 10

3.1 Graphical representation of guideBand rule 18
3.2 Hierarchical definition of deadBand and standard triggers 21
3.3 Example for the application of the polygon trigger for the definition of warning

levels for controlling a lake release, Lake Thun, CityCanton Bern, country-
regionSwitzerland . 23

3.4 Spreadsheet for combining alarm levels, Lake Thun, Canton Bern, country-
regionSwitzerland . 24

5.1 Conjunctive use of a SOBEK and an RTC-Tools model under Delft-FEWS . . 34
5.2 OpenMI-composition of Trigger, Sobek and RTC-Tools 35
5.3 Configuration window of the OpenMI connection from RTC-Tools to SOBEK . 36

A.1 Overview about the RTC-Tools runtime configuration 42
A.2 Configuration of input files . 43
A.3 Definition of the simulation / optimization period 44
A.4 Configuration of execution modes in RTC-Tools 45
A.5 IPOPT optimizer options, part 1 . 46
A.6 IPOPT optimizer options, part 1 . 47
A.7 Overview about the configuration of optimization problems 48
A.8 Overview about the configuration of optimization problems 49
A.9 Overview about the configuration of optimization problems 50
A.10 Overview about the configuration of optimization problems 51
A.11 Overview about the configuration of optimization problems 52
A.12 xml schema definition for rtctoolsDataConfig.xml 53

Deltares vii

RTC-Tools, Reference Manual

viii Deltares

List of Tables

List of Tables

2.1 Available triggers, reactive operating rules and controllers and network com-
ponents . 8

3.1 Available triggers, reactive operating rules and controllers and network com-
ponents . 18

4.1 Model predictive control features implemented in RTC-Tools 28
4.2 Implementation status of adjoint models . 32

A.1 RTC-Tools configuration files . 39

Deltares ix

RTC-Tools, Reference Manual

x Deltares

1 Introduction

1.1 Background

The RTC-Tools (Real-Time Control Tools) software package originates from the integration
of several project-specific reservoir simulation modules in flood forecasting systems for river
basins in Austria, Germany and Pakistan. Its original design in Java in 2007, also referred
to as the Delft-FEWS Reservoir Module, aims at the simulation of pool routing in reservoirs
including related feedback controllers and operating rules.

Features for supporting a sequential, nonlinear version of Model Predictive Control (MPC)
were introduced in 2008 and extended in 2009 and beyond. This includes the implementa-
tion of simplified hydraulic models such as the kinematic wave or diffusive wave models as
additional internal model for the predictive controller as well as the introduction of adjoint sys-
tems for selected modeling components. The latter resulted in significant speed-ups of these
controllers.

In 2010, the concept of triggers for switching on and off controllers and operating rules was
introduced for enabling the simulation of more sophisticated heuristic control schemes. The
software was redesign in C++ and enhanced by a C# OpenMI / DeltaShell wrapper for inte-
gration into modeling packages such as SOBEK or Delft3D. Furthermore, the new formats
for saving states and externalize parameters were introduced for compliant with OpenDA for
implementing automatic calibration and data assimilation applications.

In 2011, the software has been integrated further into Delta Shell for replacing existing RTC
functionality in SOBEK in the context of Deltares’ Next Generation Hydrosoftware develop-
ment.

The decision to release RTC-Tools within an open source project has been made in 2012.

1.2 Fields of application

The RTC-Tools package aims at the simulation of various real-time control techniques in ap-
plication to water resources systems. It includes feedback control strategies with triggers,
operating rules and controllers as well as advanced Model Predictive Control (MPC) setups
based on a combination of forecasting and optimization.

The MPC-based predictive control strategies require internal modeling of the controlled water
system in the optimization procedure. Therefore, the package includes a number of simple
hydrological and hydraulic models as well as various other simulation components for setting
up water resources models. The model implementation reflects the requirements of the opti-
mization procedure by supplying both a simulation mode and an adjoint mode for computing
first-order model derivatives. Having in mind its application in operational forecasting systems,
the software pays special attention to state handling. This includes by definition the system
states of all existing components such as triggers, controllers, operating rules and modeling
components.

RTC-Tools is designed for stand alone use or serves as a building block in a larger system
architecture. We pay special attention to various interfaces for integration it into frameworks
such as Delft-FEWS, Matlab or OpenDA. Furthermore, the OpenMI interface enables its on-

Deltares 1

RTC-Tools, Reference Manual

Figure 1.1: RTC-Tools configuration in typical simulation set-up: triggers, reactive oper-
ating rules and controllers, network components

line coupling to a wide range of hydraulic modeling packages.

The following examples present three typical applications of RTC-Tools:

I Stand-alone use as a forecasting model in Delft-FEWS:
Assume we require a forecasting model for a medium-sized river basin including an HBV-
style conceptual rainfall runoff model, a simple hydraulic routing components and the in-
tegration of several controlled flood detention polders. Although many other models sup-
ply the required features, the application of RTC-Tools can be advantageous, because
it enables the complete representation of the system in a single model (Figure 1.1) and
integrates seamless into Delft-FEWS with a minimum configuration effort and a maximum
of interaction.

I Integrated application with sophisticated hydraulic model via OpenMI:
Typical hydraulic models such as SOBEK, Mike11 or HEC-RAS have on-board features for
modeling the real-time control of hydraulic structures. If more advanced features beyond
the available ones are required, APIs may enable the user to link external code (Fig-
ure 1.2). A main advantage of RTC-Tools against a dedicated user-programming is the
availability of a wide range of already existing and tested features, the option for extending
or modifying them easily, and the overall framework with file io and interfaces.

I Predictive control of hydraulic structures:
In particular in forecasting system, MPC provides an advanced option for supervisory
control and decision-making for example for scheduling pump actions in polder systems
or the release of reservoirs. The set-up consisting of an optimization of the hydraulic
structure by MPC included the embedded representation of the water resources system
(Figure 1.3).

2 Deltares

Introduction

Figure 1.2: RTC-Tools configuration in typical simulation set-up: triggers, reactive oper-
ating rules and controllers linked with a hydraulic model via OpenMI

Figure 1.3: RTC-Tools configuration in typical Model Predictive Control set-up: optimizer,
optimization problem definition and network components

Deltares 3

RTC-Tools, Reference Manual

OpenDA / DATools
data assimilation for
achieving optimum

system states

RTC Tools
real-time control on
hydraulic structures

PI-interface

OpenMI interface

Delft-FEWS
integration

any OpenMI
compliant modelling
package such as:

SOBEK
Delft3D

feedback control:
- operating rules
- controllers
- triggers

model predictive control:
- nonlinear optimizers
- optimization problem

definition

various internal models

this block can be defined
in RTC Tools directly or
externally in Matlab

Figure 1.4: Architecture and interfaces of RTC-Tools

1.3 Architecture and supported interfaces

The software does not aim at a detailed simulation of large water resources systems. There-
fore, it does not include any GUI or case management support. However, it is intended to
solve specific RTC-related problems which we may want to integrate into larger models or
forecasting systems. To support this feature, the software provides interfaces to the fore-
casting system Delft-FEWS (PI-XML interface) and modeling packages such as SOBEK and
Delft3D via OpenMI. The latter enables a user to combine the operating rules and controllers
of RTC-Tools with more detailed hydraulic modeling components founds in the hydraulic mod-
eling packages mentioned above (see Figure 1.4).

The modeling components of RTC-Tools includes another important interface to OpenDA /
DA Tools for applying data assimilation techniques in order to improve the system state of the
modeling components. This feature may be used in the context of forecasting and predictive
control application for improving the system state at forecast time and therefore also the lead
time accuracy of the forecast itself.

The set-up of MPC can be done in RTC-Tools directly by using one of the integrated optimiz-
ers. Alternatively, a user may choose to externalize this part and use his preferred optimizer
and optimization problem definition in Matlab.

1.4 Content of this document

This chapter gives an overview about RTC-Tools. We describe its main components and
show how it used in typical settings as: a) a stand alone simulation model in a Delft-FEWS
forecasting system, b) a MPC application for controlling a water system, c) a real-time control
component linked via OpenMI to a simulation package such as SOBEK.

Chapter 2 provides background on the modeling components, governing equations and its
numerical schematization. Chapter 3 covers the hierarchy of triggers and controllers / oper-
ating rules for setting up feedback control of a water system. In Chapter 4, we present the
concept of Model Predictive Control (MPC).

Chapter 5 presents the integration of RTC-Tools into Delft-FEWS via the PI-XML interface

4 Deltares

Introduction

and modeling packages such as SOBEK via OpenMI. The configuration of RTC-Tools in xml
is discussed in Chapter A.

Deltares 5

RTC-Tools, Reference Manual

6 Deltares

2 Modeling components

2.1 Overview

2.2 Reservoir

2.2.1 Mathematical model

The basic equation for pool routing in a reservoir is:

ds(h)

dt
= I −Q (2.1)

where

I inflow into the reservoir
Q release of the reservoir
s storage in the reservoir (state variable)
h water level in the reservoir
t time.

We assume the relation between storage s(h) and water level h to be an arbitrary function or
a piecewise linear lookup table.

The release Q from the reservoir can be further spitted into an into a controlled release Qc
and an uncontrolled release Qu according to

Q(h, dg) = Qc(h, dg) +Qu(h) (2.2)

where dg is the setting of a hydraulic structure. Whereas the controlled release is a function
of the water level h (under assumption that its maximum capacity depends also on the water
level in the reservoir) and the setting of the structure dg. The uncontrolled release is only a
function of the reservoir’s water level h representing for example an uncontrolled spillway with
a fixed crest level.

2.2.2 Numerical schematization

The explicit schematization, also referred to as Forward Euler, for the pool routing equation
reads

s(hk) = s(hk−1) + ∆t(Ik −Qkc (hk−1, dgk)−Qku(hk)) (2.3)

and is conditionally stable for sufficiently small time steps. The unconditionally stable implicit
version reads

s(hk) = s(hk−1) + ∆t((1− θ)Ik−1 + θIk

−(1− θ)Qk−1
c (hk−1, dgk−1)− θQkc (hk, dgk)

−(1− θ)Qk−1
u (hk−1)− θQku(hk))

(2.4)

where 0.5 ≤ θ ≤ 1.0 is a time weighting coefficient shifting from a more accurate second-
order Crank-Nicholson scheme for θ = 0.5 to a more robust, first-order Backward Euler
scheme for θ = 1.0.

Deltares 7

RTC-Tools, Reference Manual

Table 2.1: Available triggers, reactive operating rules and controllers and network compo-
nents

Triggers Rules / Controllers Modeling Components

deadBand constant gradient
deadBandTime dateLookupTable hydraulicModel
polygonLookup deadBandValue node
spreadsheet dedicated-Aebi branch
standard dedicated-EifelRur hydraulicStructure

dedicated-ThunerSee reservoir
guideBand reservoirConnection
hydraulicController routing
limiter unitDelay
merger
minSimple
multiplier
pid

2.3 Hydrological routing

2.3.1 Introduction

2.3.2 Routing

A subsequent connection of multiple reservoirs allows to model a simple routing process.
This approach is a so-called water balance model or 0-dimensional model. Check section
Section ?? for its description and numerical implementation.

2.3.3 Unit delay

The unit delay operator is an auxiliary tool for making data from time steps prior to the previous
time step available in the simulation. By using this operator, we can refer to a historical
release, for example in an operating rule, without abandoning the restarting features of the
model based on the system state of a single time step. It reads

yk+1 = xk (2.5)

2.3.4 Unit hydrograph

Unit hydrograph provides a rainfall-runoff modeling based on the concept of the unit hydro-
graph.

2.3.5 HBV model

2.3.6 Lorent Grevers

8 Deltares

Modeling components

2.4 Hydraulic routing

2.4.1 Introduction

Hydraulic routing, compared to the hydrological routing techniques presented above, is a more
accurate approach and may include the simulation of hysteresis and backwater effects. On
the other hand, hydraulic routing has more demands with respect to the numerical solution,
computational effort, and may become unstable if not properly implemented and set-up.

RTC-Tools includes a hydraulic routing method based on a mixed kinematic and diffusive
wave approach. The most relevant decisions to make are the choice of an appropriate routing
(kinematic / diffusive), spatial schematization (central / upwind) and time stepping scheme
(explicit / implicit). The following section provides some hints on choosing the proper model
and how to set it up.

2.4.2 Kinematic wave model

2.4.2.1 Numerical background

The flow in one dimension is described by the De Saint-Venant equations consisting of mass
(continuity) and momentum conservation. The continuity equation reads:

∂A(h)

∂t
+
∂Q

∂x
= qlat (2.6)

while the non-conservative form of the momentum equation is defined by:

∂v

∂t
+ v

∂v

∂x
+ g

∂h

∂x
= −cf

v |v|
m

, cf =
g

C2
(2.7)

with

A wetted area [m2]
Q discharge [m3/s]
qlat lateral discharge per unit length [(m3/s)/m]
h water level [m above reference level]
v flow velocity [m/s]
g acceleration due to gravity [m/s2]
m hydraulic radius [m] (may be approximated to water depth for large rivers)
C Chézy coefficient [m1/2/s]
cf dimensionless bottom friction coefficient [-].

The kinematic wave equations can be derived from the complete system (2.6), (2.7) by ne-
glecting the terms for inertia (term 1) and convection (term 2). By additional substitution of v
= Q/A equation (2.7) becomes

g
∂h

∂x
= − gQ |Q|

C2A2m
(2.8)

and can be converted to

Q = −sign(
∂h

∂x
)CA

√∣∣∣∣∂h∂x
∣∣∣∣m (2.9)

Deltares 9

RTC-Tools, Reference Manual

s

s

s

s
QQ

Q

Figure 2.1: Spatial schematization of the kinematic wave model on a staggered grid

The continuity equation (2.6) stays unchanged. Under assumption of a representative cross
section for a river reach, both variables A and m become a geometrical function of water
level h. By equalizing water level and energy head, hydraulic structures are represented by a
simplified structure formula with the general form

Q = f(hup, hdown, dg) (2.10)

in which dg = gate or weir setting (in case of a controlled structure).

The hydraulic structures are modeled by the following formulas for a weir and an orifice with
fully opened gates

Q =

2
3ws

√
2
3g(hup−zs)

3/2, if hup−zs>
3
2(hdown−zs)

ws(hdown − zs)
√

2g(hup−hdown), otherwise
(2.11)

in which ws = width of the structure, zs = crest level. In the case of a partially or fully closed
gate (hup − zs ≥ 3

2dg), we apply

Q =

{
wsµdg

√
2g(hup − zs − µdg), if hdown< zs+dg

wsµdg
√

2g(hup − hdown), otherwise
(2.12)

in which dg = gate setting, µ = contraction coefficient.

2.4.2.2 Schematization

The spatial schematization of the kinematic wave model is done on a staggered grid. Com-
putation nodes include the state variable storage s. Branches always connect two nodes and
include the auxiliary variable discharge Q (a major difference to the full hydraulic model where
Q is another state variable).

The numerical solution of the continuity equation (2.6) is resulting in:

A(hk+1)−A(hk)

∆t
+
Qk+1
down −Q

k+1
up

∆x
= qk+1

lat (2.13)

By substituting S(h) = A(h)∆x, we may transform equation (2.26) into a water balance in
the domain of a node and get

s(hk+1) = s(hk) + ∆t(Qk+1
up −Qk+1

down +Qk+1
lat) (2.14)

10 Deltares

Modeling components

in which s = storage at a node (state variable), Qlat is the total lateral inflow into the domain
of the node.

The discharge in a flow branch is schematized based on equation (2.9) by

Qk+1 = f(hkdown, h
k
up) = −sign(

hkdown − hkup
∆x

)C(h̄k)A(h̄k)

√√√√∣∣∣∣∣hkdown − hkup∆x

∣∣∣∣∣m(h̄k), (2.15)

in which h̄k =
hkdown+hkup

2

In a branch with a hydraulic structure, the flow branch is replaced by the formula of the hy-
draulic structures modeled by an arbitrary equation in the form

Qk+1 = f(hkdown, h
k
up, dg

k+1) (2.16)

Stability of this method turns out to be reasonable as long as the Courant-Friedrichs-Lewy
(CFL) condition is fulfilled.

2.4.3 Diffusive wave model

2.4.4 Kinematic versus diffusive wave routing

The fact that the diffusive wave model takes into account more terms of the full dynamic
Saint Venant model does not mean that it is always preferred over the simpler kinematic wave
approach. Simplicity and computational performance of the latter may have advantages; in
particular if results of both approaches are the same, e.g. in river reaches with steep gradients.

The following aspects may guide you to the proper approach:

I Is the slope of your river reach smaller than xxx?
I Is backwater a relevant effect you need to consider?
I Do you want to consider hysteresis?

If you answer one of these questions with “Yes”, consider the diffusive wave approach. Oth-
erwise, you may try the kinematic wave method first. Note that you can mix both methods by
defining the related tag in each flow branch.

2.4.5 Model set-up

2.4.5.1 Schematization of the water network

The spatial schematization of your routing network is a trade-off between accuracy (a higher
resolution means more accuracy) and CPU time. For flow routing purposes only, already a
very course spatial schematization may achieve the required accuracy from the control point
of view. We recommend the following procedure for defining your routing network:

1 Indicate all nodes you need to include: boundary conditions, upstream and downstream
node of hydraulic structures, stream flow gauges, bifurcations and confluences, nodes
with lateral inflows or extractions (can be also lumped into neighboring nodes).

2 Place additional nodes between the existing ones, if required for accuracy.

Deltares 11

RTC-Tools, Reference Manual

2.4.5.2 Level-storage relation

All nodes require a level-storage relation. One way to get those is a detailed analysis of
the surrounding channel network (typically halfway to the next node) in terms of the area
and storage at different elevations. An easier and often sufficient option is the selection of a
typical cross section at the node and its multiplication by the length of the reaches around. If
you selected the upwind schematization (see section 3.4.3), take the cross section you are
using in the flow branch.

If you routing network includes flooding and drying, take care that the lowest level of your
level-storage table or equation in your node is lower than the lowest elevation in the cross
sections around. Since the model implementation does not include any dedicated procedure
for flooding and drying, violating this condition may result in negative water depth at nodes
and problems with robustness. If you use the upwind schematization together with the level-
storage relation derived from it, this condition is already fulfilled.

2.4.5.3 Cross-section

Flow branches require a cross section. You may again aim at deriving an aggregated cross
section from the available data of the branch. The simpler approach is again the selection of
a typical cross section. Depending on the spatial schematization (see 3.4.3), select a typical
cross section close to the upstream node for the upwind option and one halfway along the
branch for the central option.

2.5 Other models

2.5.1 Accumulation

2.5.2 Arma

The arma model (just an ar-model at the moment) reads

ek+1 =

{
xk+1
sim − x

k+1
obs , if xk+1

obs is available
care

k, otherwise

yk+1 = xk+1
sim + ek+1

(2.17)

where xobs is an (external) observation, xsim a simulation, e is the difference between obser-
vation and simulation, car is the auto regression coefficient.

2.5.3 Expression

The expression consists of a mathematical expression of the following form:

yk+1 = xk1 + xk2 (2.18)

The following operators are supported:

+ (summation)
− (subtraction)
∗ (multiplication)
/ (division)

12 Deltares

Modeling components

min (minimum)
max (maximum).

The recursive use of expressions (another expression as one of the two terms or both) enables
the implementation of more complex mathematical expressions (check the example in the
configuration section).

2.5.4 Gradient

The governing equation of the gradient reads:

yk+1 =
xk+1 − xk

∆t
(2.19)

2.5.5 Neural Network

Define a neural network using the following equations for the neuron sum and the (nonlinear)
transfer function:

ykµ =
∑µ−1

v=1 w
neuron
µ,v xkv +

∑K
v=µw

neuron
µ,v xk−1

v +
∑L

v=1w
input
µ,v ukv

xkµ = hµ
(
ykµ
) (2.20)

where:

xkν is the value of neuron v at time step k.
ykµ is the weighted sum of inputs to neuron µ at time step k.
wneuron
µ,v is the weighting given to neuron v when calculating the sum for neuron µ.

winput
µ,v is the weighting given to input v, when calculating the sum for neuron µ.

ukν is the value of input v at time step k.
K is the number of neurons.
L is the number of inputs.
hµ is the activation function for neuron µ.

Note that the for µ = 1, the first summation term in (2.20) is empty and hence should be taken
as zero.

2.6 Numerical schemes

2.6.1 Ordinary differential equations

Most network components in RTC-Tools can be described by a set of non-linear ordinary
differential equations (ODE) according to:

dx

dt
= f(x, u, d) (2.21)

where x ∈ Rl is the system state vector, u ∈ Rm the vector of controlled variables, d ∈ Rn
the vector of disturbances, l the number of states, m the number of controlled variables, and
n the number of disturbances. The equation above can be transformed into a discrete state
space formulation by applying a finite difference quotient for the time derivative resulting in

xk+1 − xk

∆t
= f(xk,k+1, uk,k+1, dk,k+1) (2.22)

Deltares 13

RTC-Tools, Reference Manual

where the indices k and k+1 denote the discrete values at two subsequent time steps and
∆t is the time interval tk+1 − tk. Note that the function f () may include values both at the
old time step k as well as the new time step k+1. In case of the controlled variable u and
the disturbance d, this does not have any impact on the further numerical schematization,
because these variables are considered as external inputs. However, the presence of the
state vector x at time step k+1 at the right hand side will require an iterative solution of the
equation system in most cases.

2.6.2 Forward Euler scheme

A straightforward option for further schematization of the equation above is the forward Euler
approach, a simple explicit scheme according to

xk+1 − xk

∆t
= f(xk, uk+1, dk+1)⇔ xk+1 = xk + ∆t f(xk, ...) (2.23)

Dropping the term xk+1 enables us to solve the state space system without iterations. The
scheme has first-order accuracy and performs well, if the CFL stability condition is satisfied.
The latter is mainly achieved by limiting the maximum time step, which can become a limiting
factor depending on the process model.

Note that we use u and d at the new time step k+1 which is uncommon in an explicit scheme.
This is done by intention to obtain consistency in supplying data to different time stepping
schemes and optionally incorporate the results of reactive controllers uk+1, computed before
at the same time step.

2.6.3 Implicit scheme

The theta scheme is an implicit scheme according to:

xk+1 − xk

∆t
= f

 θxk + (1− θ)xk+1,
θuk + (1− θ)uk+1,
θdk + (1− θ)dk+1

 (2.24)

where θ is the time weighting factor. The scheme is unconditionally stable for a weighting
factor of 0.5 ≤ θ ≤ 1. The scheme becomes second order accurate for θ = 0.5 and fully
implicit, although first order, for θ = 1.

By rearranging equation (2.24) to

h(xk+1) =
xk+1 − xk

∆t
− f (...) = 0 (2.25)

the equation system can be solved numerically by a Newton-Raphson algorithm with back-
tracking according to

xk+1
l+1,m = xk+1

l − rm
h(xk+1

l)

h′(xk+1
l)

(2.26)

in which l is the outer Newton-Raphson iteration counter, and m is the inner backtracking
counter. The backtracking factor r is reduced in the inner loop by a configurable backtracking
reduction coefficient cr by

14 Deltares

Modeling components

rm+1 = crr
m with 0 < cr < 1

The term h(xk+1
l)/h′(xk+1

l) becomes a simple division in case of single equation and re-
quires the solution of a system of linear equations in case of a set of equations. The following
pseudo code points out the detailed workflow of the algorithm for a single equation.

k = 0

xk = xOld

//Newton -Raphson loop

do{

k++

r = 1.0

// backtracking loop

do{

xkl = xk -r*f(xk)/fDer(xk)

r = backtrackingReduction*r;

}

while{

abs(f(xkl))>abs(f(xk)) & r>backtrackingLimit

}

xk = xkl

}

while{

abs(f(xk))> fTol & k < maxIter

}

xNew = xk

2.6.4 Discussion

2.6.4.1 Central versus upwind spatial schematization

The central approach, i.e. the water level in a flow branch is the mean of the upstream and
downstream node, is more accurate. The upwind schematization is more robust. From a
technical point of view, you can easily switch between the two, but keep in mind that its choice
has some impact also on the definition of the level-storage relations at the node level and the
cross sections in the flow branches.

In combination with a kinematic wave model, we recommend to use the upwind schematiza-
tion. In case of a diffusive wave flow branch, use also the upwind schematization if there is a
clear flow direction, otherwise, if water flows in both directions, the central schematization is
better. If you still don’t know what you should do, use the upwind schematization.

2.6.4.2 Explicit versus implicit time stepping

The explicit time stepping is a simple and fast numerical scheme. The CFL condition (todo:
equation) needs to be satisfied for the flow branches and hydraulic structures for keeping it
stable. This can be a severe restriction, if some of your network nodes are close together. In
this case you may aggregate these nodes or proceed with the implicit time stepping scheme.

The implicit time stepping is unconditional stable, thus, allowing any time step. However, one

Deltares 15

RTC-Tools, Reference Manual

issue you may face is a failure of the solver to fully converge. Therefore, have an eye on the
optional residuum output.

If you set-up a model, our practical suggestion is as follows:

1 First choose an explicit time stepping with a very small time step. It is helpful to indicate
bugs in your schematization, e.g. no data values will propagate from its origin into the
network. Implicit models may not converge in this case and finding out the problem can
become a difficult task.

2 Increase the time step and watch out for instabilities of the solution (wiggles going up and
down from one time step to the other). Choose the final time step to be about 50

3 Switch to the implicit time stepping and a larger time step you may need from you ap-
plication perspective and check if it performs faster. If so, proceed with the implicit time
stepping.

16 Deltares

3 Feedback control

3.1 Overview

3.2 Operating rules

3.2.1 constant

This simple rule defines a user-defined constant output y according to

yk+1 = constant (3.1)

It is typically applied in combination with triggers (see next section) for switching between
several defined states of a structure, e.g. fully opened or fully closed.

3.2.2 dateLookupTable

The date lookup table is a 2D lookup table with the time axis on one of the dimension. It reads

yk+1 = f(t, xk,k+1) (3.2)

The resolution of the time axis t is in days of the year. The value axis x may have any range.
A typical application of the rule would be the definition of a minimum release of a reservoir as
a function of the season and the water level of the reservoir.

3.2.3 deadBandValue

The dead band value rule is a discrete rule for suppressing the output of another rule until the
change of an output becomes higher than a certain threshold. It reads

xk+1 =

{
xk

xk+1
if
∣∣xk+1 − xk

∣∣ < threshold
otherwise

(3.3)

It is often applied to limit the number of adjustments to movable elements of hydraulic struc-
tures in order to increase their life time.

3.2.4 dedicated-Aebi

This rule is dedicated to the representation of the so-called Aebi rule for controlling the lake
Bieler in Canton Bern, Switzerland (check appendix A).

3.2.5 dedicated-Thunersee

This rule is dedicated to the water level control of lake Thun in Canton Bern, Switzerland
(check appendix A).

Deltares 17

RTC-Tools, Reference Manual

Table 3.1: Available triggers, reactive operating rules and controllers and network compo-
nents

Triggers Rules / Controllers Modeling Components

deadBand constant gradient
deadBandTime dateLookupTable hydraulicModel
polygonLookup deadBandValue node
spreadsheet dedicated-Aebi branch
standard dedicated-EifelRur hydraulicStructure

dedicated-ThunerSee reservoir
guideBand reservoirConnection
hydraulicController routing
limiter unitDelay
merger
minSimple
multiplier
pid

xmin xmax

ymin

ymax

Figure 3.1: Graphical representation of guideBand rule

3.2.6 expression

see section 3.2.1 TODO(??): Referentie aanpassen

3.2.7 guideBand

The guide band rule provides a linear interpolation from input x to output y, if the input value
is in the bandwidth between two input threshold. Otherwise, the output is limited to defined
minimum and maximum output threshold. The rule reads

yk+1 =

ymin

ymin + xk,k+1(ymax−ymin)
xmax−xmin

ymax

, if
xk,k+1 ≤ xmin

xmin < xk,k+1 < xmax

xmax ≤ xk,k+1
(3.4)

A graphical representation of the rule is presented in Figure 3.1.

18 Deltares

Feedback control

Both input and output thresholds can be a function of time, e.g. depending on the day of the
year, as well as a result from the execution of a prior rule.

The rule may be applied to keep the storage S of a reservoir within a certain bandwidth and
uses the available storage in-between for equalizing the release. If the storage is approaching
or down-crossing the lower storage limit Smin, the release is set to the minimum flow (zero
is no minimum flow is defined). If the storage is approaching or up-crossing the upper limit
Smax, the release is set to the maximum capacity.

3.2.8 interval

The interval controller is a simple feedback controller according to the control law:

yk+1 =

yabove, if x

k > spk + 1
2D

ybelow, if x
k < spk − 1

2D
yk, otherwise

(3.5)

where xk is a process variable, spk is a setpoint, D is a dead band around the setpoint, and
yk+1 is the controller output.

3.2.9 limiter

In contrary to the deadBand rule defined above, the discrete limiter rule restricts the change
of a variable to a certain absolute or relative threshold. It reads

yk+1 =

(1− p)xk
(1 + p)xk

xk+1

if xk+1 < (1− p)xk
if xk+1 > (1 + p)xk

otherwise
(3.6)

where p is the maximum rate of change, defined as a relative or absolute value.

A typical application of the rule is the limitation of release changes from a reservoir in order to
avoid problems downstream.

3.2.10 lookupTable

The rule supplies a 1D lookup table according to

yk+1 = f(xk,k+1) (3.7)

The controller is a simpler version of the dateLookupTable rule defined above. It is also a one
on one implementation of the hydraulic controller in SOBEK.

3.2.11 lookup2DTable

The rule supplies a 2D lookup table according to

yk+1 = f(xk,k+1
1 , xk,k+1

2) (3.8)

Deltares 19

RTC-Tools, Reference Manual

3.2.12 merger

The merger rule provide a simple data hierarchy.

3.2.13 minSimple

The rule reads

yk+1 = f(t, xk,k+1) (3.9)

The formulation is identical to the dateLookupTable. Check the configuration for details and
differences.

3.2.14 pid

The Proportional-Integral-Derivative controller (PID controller) is a generic feedback controller
including an optional disturbance term commonly used in industrial control systems. It reads

e(t) = x(t)− sp(t)

y(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t) +Kfd(t)

(3.10)

where e(t) is the difference between a process variable x(t) and a setpoint sp(t), Kp,Ki,Kd

are the proportional, integral and derivate gains, respectively, the optional feed forward term
consists of a multiplicator Kf and an external disturbance d(t), y(t) is the controller output.

The discrete form of (3.10) in RTC-Tools reads

ek = xk−1 − spk−1

Ek = Ek−1 + ∆t ek

yk = Kpe
k +KiE

k +Kd
ek − ek−1

∆t
+Kfd

k

(3.11)

where E is the integral of e. The implentation includes a limitation of the maximum velocity
according to

yk =

(1−∆t∆ymax)yk−1

(1 + ∆t∆ymax)yk−1

yk

if yk < (1−∆t∆ymax)xk−1

if yk > (1 + ∆t∆ymax)xk−1

otherwise
(3.12)

Furthermore, the integral part is corrected by a wind-up correction according to

eIk ≤
ymax −Kpe

k +KiE
k −Kd

ek−ek−1

∆t −Kfd
k

Ki

eIk ≥
ymin −Kpe

k +KiE
k −Kd

ek−ek−1

∆t −Kfd
k

Ki

, (3.13)

if the minimum and maximum settings of the actuator are met.

20 Deltares

Feedback control

Figure 3.2: Hierarchical definition of deadBand and standard triggers

3.2.15 timeAbsolute

This simple rule reads:

yk+1 = dk+1 (3.14)

in which d is an externally provided time series.

3.2.16 timeRelative

This rule reads:

yk+1 = xτ (3.15)

where τ is a relative time reference. When the rule is switched on, the relative time is i) put to
zero, ii) put to a value based on an existing y for which equation (3.15) is fulfilled.

3.3 Triggers

3.3.1 deadBandTrigger

The dead band trigger checks the input data for an upper or lower threshold crossing. The
trigger is active, in case of an up-crossing of the upper threshold. It is inactive, in case of a
down crossing of the lower threshold. In the range in-between, the trigger keeps its former
status. The rule reads

yk+1 =

1
0
yk

if xk,k+1
1 > xk,k+1

2

if xk,k+1
3 < xk,k+1

4

otherwise

(3.16)

The following operators are supported: >,≥,=, 6=,≤, <.

The dead band trigger as well as the standard trigger (see section 0) may include other trig-
gers which are evaluated in case of an active or inactive trigger state. This feature enables
a user to build complex decision trees for selecting unique rules for controlling a structure
(Figure 3.2).

Deltares 21

RTC-Tools, Reference Manual

Rules which are referenced in a trigger and are associated with an inactive path will be deac-
tivated. This procedure supports that a hydraulic structure is controlled by a unique controller
or rule.

3.3.2 deadBandTime

The dead band time trigger checks a time series for a number of subsequent up-crossings
nUp or down-crossing nDown from its current value. If the crossing is observed for at least a
user-defined number of time steps, the new value is used. The trigger reads

xk+1 =

xk+1

xk+1

xk

if {xk−nUp+1, ..., xk+1} > xk−nUp+1

if {xk−nDown+1, ..., xk+1} < xk−nDown+1

otherwise
(3.17)

An application for the trigger is the activation or deactivation of alarm levels. The increase
of alarm level may happen immediately (nUp = 0), whereas the decrease of an alarm level
should be done only after a number of time steps (nDown = n) without further threshold
crossings.

3.3.3 expression

see section 3.2.2

3.3.4 merger

The merger provides a simple data hierarchy.

3.3.5 polygonLookup

The polygon lookup trigger checks, if a point is inside of a set of polygons. If this is the case,
it returns the user-defined value of the specific polygon. The point is defined by the values of
two time series, referred to as the x1 and x2 coordinate of the point. The rule reads

yk+1 =

y1
...
yn

ydefault

if (xk,k+1
1 , xk,k+1

2) ∈ P1
...

if (xk,k+1
1 , xk,k+1

2) ∈ Pn
otherwise

(3.18)

where y is the result of the rule and {P1, ..., Pn} is a set of polygons.

Figure 3.3 presents an example for the application of the trigger for the definition of warning
level for controlling a lake release in Canton Bern, Switzerland.

3.3.6 set

The trigger enables a logical combination of other triggers, combined by a logical operator. It
reads:

yk+1 = xk,k+1
1 ∧ xk,k+1

2 (3.19)

The following operators are supported: ∧ (AND), ∨ (OR), XOR.

22 Deltares

Feedback control

Figure 3.3: Example for the application of the polygon trigger for the definition of warning
levels for controlling a lake release, Lake Thun, CityCanton Bern, country-
regionSwitzerland

If more than two terms have to be combined, the set can be used recursively by defining
another set as one of the two terms. Therefore, the expression yk+1 = xk1 ∧ (xk2 ∨ xk3) is
represented by a hierarchy of two sets (check the example in the configuration chapter).

3.3.7 spreadsheet

The spreadsheet trigger allows the definition of a new trigger state based on its old state and
a maximum number of three additional inputs. Besides off (0), on (1) states, all other positive
integer values larger than 1 can be processed.

Figure 3.4 shows an application of the trigger for the combination of alarm level for Lake Thun,
Canton Bern, Switzerland.

3.3.8 standard

The trigger reads

yk+1 =

{
1
0

if xk,k+1
1 > xk,k+1

2

otherwise
(3.20)

The following operators are supported: >,≥,=, 6=,≤, <.

Deltares 23

RTC-Tools, Reference Manual

Figure 3.4: Spreadsheet for combining alarm levels, Lake Thun, Canton Bern, country-
regionSwitzerland

24 Deltares

Feedback control

3.4 Implementation of triggers and rules

Most triggers, operating rules and controllers have discrete algebraic formulations in the form
of

xk+1 = g(xk, uk,k+1, dk,k+1) (3.21)

Deltares 25

RTC-Tools, Reference Manual

26 Deltares

4 Model Predictive Control

4.1 Introduction

We consider a discrete time dynamic system according to

xk = f(xk−1, xk, uk, dk)

yk = g(xk, uk, dk)
(4.1)

where x, y, u, d are respectively the state, dependent variable, control and disturbance vec-
tors, and f(), g() are functions representing an arbitrary linear or nonlinear water resources
model. If being applied in Model Predictive Control (MPC), (4.1) is used for predicting future
trajectories of the state x and dependent variable y over a finite time horizon represented by
k = 1, ..., N time instants, in order to determine the optimal set of controlled variables u by
an optimization algorithm. Under the hypothesis of knowing the realization of the disturbance
d over the time-horizon, i.e. the trajectory {dk}N1 , a Sequential MPC approach, also referred
to as Single Shooting, can be formulated as follows

min
u∈{0..T}

N∑
k=1

J(x̃k(u, d), ỹk, uk) + E(x̃N (u, d), ỹN , uN)

subject to h(x̃k(u, d), ỹk, uk, dk) ≤ 0, k = 1, ..., N

(4.2)

where x̃k(u, d), ỹk are the simulation results, J() is a cost function associated with each state
transition, E() is an additional cost function associated to the final state condition, and h()
are hard constraints. In the corresponding simultaneous or collocated optimization approach,
the states x become additional variables of the optimization problem, and the process model
(4.1), gets an equality constraint of the optimization problem according to

min
u,x,y∈{0..T}

N∑
k=1

J(xk, yk, uk) + E(xN , yN , uN)

subject to h(xk, yk, uk, dk) ≤ 0, k = 1, ..., N

xk − f(xk−1, xk, uk, dk) = 0

yk − g(xk, uk, dk) = 0

(4.3)

Both methods lead to identical solutions, but have pros and cons for specific optimization
problems in terms of runtime performance. The sequential approach (4.2) is more efficient,
if hard constraints are defined on the control variables u only and gets inefficient for hard
constraints on states x. Because of the state dependency on all prior control variables u, the
constraint Jacobian becomes dense in the lower trianglar matrix. In this case, the simultane-
ous approach (4.3) shows better efficiency, since states become an input of the optimizer and
the constraint Jacobian gets sparse.

RTC-Tools does not strictly distinguish between one and the other approach. In fact, opti-
mization problems can be set up either in a sequential or simultaneous way. Furthermore,
both methods can be mixed leading to the so-called multiple-shooting approach. The choice
depends on the setup of the specific modeling components. For example, the pool routing
in a reservoir can be configured in such a way that the control variable is the release only,
and the reservoir level is a result of a simulation. Alternatively, the optimizer may provide
both release and reservoir level for computing the mass balance residuum which becomes an

Deltares 27

RTC-Tools, Reference Manual

Table 4.1: Model predictive control features implemented in RTC-Tools

Optimizer MPC problem definition

IPOPT (embedded) constraints
MINOS (Matlab/TOMLAB) min/max bounds and rate of change limits
SNOPT (Matlab/TOMLAB) for optimization variables, system states, outputs

cost function terms
rate of change with variable exponent
absolute with variable exponent
several performance indicators

equality constraint of the optimization problem. It is obvious that the first setup corresponds
to the sequential (4.2), the second one to the simultaneous approach (4.3).

4.2 Set-up of the optimization problem

4.2.1 Control variables

The setup of the optimization problem (see Section A.4) starts with the definition of the input
variables of the optimizer, i.e. the control u in the sequential setup as well as the optional state
x and dependent variable y in the simultaneous setup. Each variable can be of the types

I CONTINUOUS, representing a continuous variable
I INTEGER, representing an integer variable (Note that there is still no RTC-Tools-internal

solver supporting Mixed Integer Nonlinear Programming (MINLP), therefore, this options
depends on interfacing a suitable solver via the Matlab interface)

I TIMEINSTANT for the setup of a Time-Instant Optimization MPC (TIO-MPC) (experimental
version!)

The input variable (Figure A.8) may includes optional bounds for the according to umin ≤ u ≤
umax. In case of the TIMEINSTANT of the TIO-MPC, the minimum and maximum bounds are
compulsary and represent the two states of the control variable. At a time instant, the state is
switches from one to the other.

Each variable can include a scaling factor (Note that this option is now only available for the
internal IPOPT optimizer!). It is good practice to scale all variables in such a way that they
are in the same order of magnitude. For example, if control variables cover both reservoir
levels and releases, the scaling factor of the level should be defined in such as way that itsl
range, i.e. the difference between maximum and minimum operating levels of the reservoirs,
multiplied by the scaling factor lies in the range of the releases. User-defined scaling usually
outperformed automatic, built-in scaling options of the optimizers.

The time step of the control variable u and the simulation can be different. This enables
a courser discretization in the optimization compared to the simulation, for example in case
of using an explicit model with severe time step restrictions. At this moment, the following
aggregation options are supported:

I BLOCK, keeping the the recent value persistent until a new value is specified
I LINEAR, conducting a linear interpolation of the control variable between two instants at

28 Deltares

Model Predictive Control

which it is defined by the optimization algorithm

4.2.2 Constraints

RTC-Tools takes into account constraints in two ways: i) as a soft constraint in the objective
function or ii) as a hard constraint. This section covers the definition of hard constraint (Fig-
ure A.9) either as an inequality constraint or equality constraint of the optimization problem.
The next section provides more details on the definition of soft constraints and the objective
function in general.

Hard constraints are available for control variables, states or dependent variables. In all cases,
the entity may have bounds and a maximum rate of change according to

umin ≤ uk ≤ umax

∆umin ≤ uk − uk−n ≤ ∆umax n = k −N, ..., k − 1
(4.4)

where N is the number of time steps of the rate of change constraint looking back in time.

The definition of constraints on control variables is straightforward and requires no additional
information. Constraints on states and dependent variables require information on how these
are traced back to control variables. This includes the definition of the control variables, the
modeling components involved and the number of time steps looking back in time.

Example 1:

Consider a reservoir represented by the mass balance equation below in simultaneous opti-
mization mode, represented by

rk = sk − sk−1 −∆t(Qkin −Qkout) (4.5)

where r is the residuum of the mass balance, s andQout are the two optimizer inputs for reser-
voir storage and release, respectively. For defining an equality constraint on the residuum r,
we consider a bound constraints with rmin = rmax = 0 and define a state constraint referring
to the two variables s and Qout, the modeling component above and N = 2 time steps (note
that the storage at sk−1 and sk contributes to the mass balance equation).

Example 2:

Let’s add a tailwater curve to the reservoir according to

twk = f(Qkout) (4.6)

and define two constraints for i) keeping a minimum tailwater level and ii) limiting the maximum
tailwater rate of change

i) twk ≤ twmin

ii) ∆twmin ≤ twk − twk−1 ≤ ∆twmax

(4.7)

The implementation of the first constraint considers the variable Qout, refers to the modeling
components (4.6) and requires N = 1. The second constraint works the same except for the
need for looking an additional time step back in time leading to N = 2.

Keep in mind that Matlab interface provides a platform for defining more general constraints
via a user programming.

Deltares 29

RTC-Tools, Reference Manual

4.2.3 Cost function terms

RTC-Tools supports the following cost function terms (Figure A.10):

absolute (difference related to a set point)

J = w
T∑
k=1

∣∣∣uk − usp∣∣∣a (4.8)

where w is a weighting coefficient, usp is a constant or time-dependent set point. The abso-
lute term can be applied either on a control, state or dependent variable. The configuration
supports the neglection of the upper branch (u > usp) or lower branch (u < usp) of the value
range primarily for implementing a soft constraint on a variable up-crossing or down-crossing
a threshold.

rate of change (difference of two subsequent values)

J = w
T∑
k=1

∣∣∣uk − uk−1 − usp
∣∣∣a (4.9)

where u is either a control, state or dependent variable, w is a weighting coefficient, and usp
is an optional set point for the rate of change. The latter is again primarily used within soft
constraints in combination with the neglection of the upper branch (uk−uk−1 > usp) or lower
branch (uk − uk−1 < usp) of the value range.

Furthermore, additional objective function terms of arbitrary type can be defined in Matlab.

4.3 Adjoint models

Gradient-based solvers of the Sequential Quadratic Programming (SQP) or Interior Point (IP)
types require a gradient vector of the cost function dJ(x, u)/du and the constraint Jacobian
dh(x, u)/du for performing efficiently. The computation of these derivatives by numerical dif-
ferentiation is a straighforward approach, but requires at least n + nnz + 1 model execution
for an optimization problem of n control variables and nnz non-zero entries in the constraint
Jacobian. It becomes computationally inefficient for several hundreds or thousands of dimen-
sions, and disqualifies the approach from being applied in an operational setting.

A significantly more efficient method for computing the derivatives at computational costs in
the order of a single model execution is the set-up of an adjoint model for each modeling
component. The RTC-Tools framework takes care for integrating these models both in the
simulation mode as well as the reverse adjoint mode.

The set-up of an adjoint model is outlined for the explicit version of the diffusive wave model
presented in section 3.2.1. Consider the mass balance equation given by

sk = sk−1 + ∆t
∑
i

f(sk−1, sk−1
i , dgki) (4.10)

where s represent the storage at the node of interest and si is the storage at a connected node
i and the function f() denotes the flow contribution of a flow branch or hydraulic structure.

A straightforward way for the derivation of an adjoint model of an explicit calculation workflow
is the application of algorithmic differentiation in reverse mode. It is basically a consequent

30 Deltares

Model Predictive Control

application of the chain rule leading to

ŝk−1 = ŝk

[
1 + ∆t

∑
i

∂f(sk−1, sk−1
i , dgki)

∂sk−1

]

ŝk−1
i = ŝk

[
1 + ∆t

∂f(sk−1, sk−1
i , dgki)

∂sk−1
i

]

d̂g
k

= ŝk

[
∆t

∂f(sk−1, sk−1
i , dgki)

∂dgki

] (4.11)

where û is the adjoint variable of u.

We compute the cost function gradient according to the following procedure:

1 Model simulation, (4.10), for computing all states and dependent variables
2 Initialization of the adjoint variables by the partial derivatives of the objective function,
ûk = ∂J(uk, xk, yk)/∂uk, with respect to control variables, states and dependent vari-
ables.

3 Model execution in adjoint mode, (4.11), in reverse order (with respect to the time loop
and the execution of subsequent modeling components)

After conducting the steps above, the resulting adjoint variables represent the total derivatives
of the cost function dJ(uk, xk, yk)/duk, i.e. the cost function gradient.

The computation of the constraint Jacobian is similar. The following procedure holds for a
single constraint at a specific time step k:

1 ditto (once for all constraints)
2 Initialization of the adjoint variables by the partial derivatives of the constraint,
ûk = ∂h(uk, xk, yk, dk)/∂uk, with respect to control variables, states and dependent
variables.

3 Model execution in adjoint mode, (4.11), over N time steps which contribute to the non-
zero Jacobian entries of the specific constraint.

Adjoint systems are still not implemented for all available components in RTC Tool. An
overview about the status of implementation is given in Table 4.2

Deltares 31

RTC-Tools, Reference Manual

Table 4.2: Implementation status of adjoint models

Adjoint available Comments

Modeling components

accumulation yes -
arma yes -
expression yes -
gradient yes -
hydraulicModel yes implementation is only available for the ex-

plicit scheme, implicit scheme will become
available soon

hydrologicalModel no -
merger yes -
neuralNetwork yes -
reservoir yes -
reservoirBPA yes -
unitDelay yes -
unitHydrograph yes -

Rules

all no the adjoint of smooth rules such as the PID
controller may become implemeneted in the
future for modeling mixed systems with MPC
and feedback control

Triggers

all no triggers switching on external input will be
supported in the future

32 Deltares

5 Interfaces

5.1 Matlab

The RTC-Tools integration in Matlab requires the same file structure than already presented
in the section about the Delft-FEWS interface. Furthermore, we assume that the boundary
conditions and the states are provided in XML format according to the definition above.

Registration of *.jar files of RTC-Tools, startup of TOMLAB optimizers in Matlab

addpath c:\ tomlab;

startup;

% register jars of rtcModule

javaaddpath (\{’..\..\ lib\castor\castor -0.9.5. jar’ ,...

’..\..\ lib\Delft_RTC_castor\Delft_RTC_castor.jar’ ,...

’..\..\ lib\jdom\jdom.jar’ ,...

’..\..\ lib\junit\junit -4.1. jar’ ,...

’..\..\ lib\rtcModule.jar’\});

Model Predictive Control set -up in Matlab

% prepare arguments for initialisation of module

args = javaArray(’java.lang.String ’ ,4);

args (1) = javaObject(’java.lang.String ’,pwd);

args (2) = javaObject(’java.lang.String ’,’rtcModuleConfig.xml’);

args (3) = javaObject(’java.lang.String ’,’rtcDataConfig.xml’);

args (4) = javaObject(’java.lang.String ’,’rtcObjectiveConfig.xml’);

% pre -processing and initialisation of the rtcModule

global rtcModule;

rtcModule = nl.deltares.fews.rtc.RtcModule ();

rtcModule.init(args);

% initial guess for controlled variable

input = zeros (100 ,1);

% problem definition

Prob = conAssign(

’jRes’, ’jResDer ’, [], [], 0*ones (100,1), 20* ones (100,1),

’Name’, input , [], [], [], [], []);

Prob.SOL.optPar (10) = 0.00001;

% derivative check

[exitFlag ,output] = checkDerivs(Prob , input , 1, 1, [], []);

% optimization

tic

Result = tomRun(’minos’, Prob , 1);

time=toc

tic

Result = tomRun(’snopt’, Prob , 1);

time=toc

% save

rtcModule.save(args);

function [j] = jRes1(input)

% function [j] = jRes1(input)

Deltares 33

RTC-Tools, Reference Manual

RTC Tools
real-time control on
hydraulic structures

SOBEK
hydraulic model

accepts

setting of
structure

pump
capacity

provides

water level

discharge

flow velocity

accepts

water level

discharge

flow velocity

provides

setting of
structure

pump
capacity

OpenMI
online data
exchange

Delft-FEWS

XML-PI
offline data
exchange

Figure 5.1: Conjunctive use of a SOBEK and an RTC-Tools model under Delft-FEWS

global rtcModule;

j = rtcModule.simulate(input);

function [jDer] = jDerRes1(input)

% function [jDer] = jDerRes1(input)

global rtcModule;

jDer = rtcModule.simulateGradient(input);

5.2 FEWS-PI

With the PI-XML interface RTC-Tools can be used in an Delft-FEWS environment. Under
Delft-FEWS models are coupled offline, this means they do not exchange data during runtime.
The models are run sequentially.

Figure 5.1 shows an example for a usage of RTC-Tools in a Delft-FEWS environment and
compares the way of data exchange with the online coupling method. For online coupling
RTC-Tools provides an interface according to the OpenMI standard.

5.3 OpenMI

OpenMI is a standard for coupling of water-related computer models (OpenMI Association,
2007; Moore and Tindall, 2005; Gregersen et al., 2007). Models coupled via OpenMI can
exchange data during runtime. RTC-Tools OpenMI compliant according to OpenMI version
1.4. This feature enables its online linkage to hydraulic modeling packages such as SOBEK

34 Deltares

Interfaces

Figure 5.2: OpenMI-composition of Trigger, SOBEK and RTC-Tools in OpenMI-
Configuration-Editor (Schwanenberg et al., 2011)

on a time step level, where the coupled models influence each other.

Figure 5.2 and Figure 5.3 show an example for an OpenMI composition with SOBEK and
RTC-Tools in the OpenMI configuration editor as well as the configuration of a connection
between the two models.

Deltares 35

RTC-Tools, Reference Manual

Figure 5.3: Configuration window of the OpenMI connection from RTC-Tools to SOBEK
in the OpenMI configuration editor connection properties window (Schwanen-
berg et al., 2011)

36 Deltares

6 References

Gregersen, J., P. Gijsbers and S. Westen, 2007. “OpenMI: Open modelling Interface.” Journal
of Hydroinformatics 9 (3): 175–191. 34

Moore, R. V. and C. I. Tindall, 2005. “An overview of the open modelling interface and envi-
ronment (the OpenMI).” Environmental Science & Policy 8 (3): 279–286. 34

OpenMI Association, 2007. “OpenMI A new era in integrated water management.” URL
http://www.openmi.org. 34

Schwanenberg, D., B. Becker and T. Schruff, 2011. SOBEK-Grobmodell des staugeregelten
Oberrheins / Entwicklung. report no. 1201242-000, Deltares. 35, 36

Deltares 37

http://www.openmi.org

RTC-Tools, Reference Manual

38 Deltares

A Configuration / Schemas

A.1 General runtime definitions

The RTC-Tools schematization is specified in a set of XML files (Table A.1).

Table A.1: RTC-Tools configuration files

File Content Comments

rtcDataConfig.xml time series definitions, interface definitions for
file io, in-memory data exchange etc.

required

rtcObjectiveConfig.xml definition of the optimization problem includ-
ing the control variables, constraints and cost
function terms

optional

rtcParameterConfig.xml set of externalized parameters for modification
in external applications such as Delft-FEWS or
Matlab

optional

rtcRuntimeConfig.xml definition of runtime relevant info: file names
if diviating from standard naming convention,
run mode (simulation, optimization etc.), log-
ging information etc.

required

rtcScenarioTreeConfig.xml definition of a scenario for the Tree-Based
MPC option

optional

rtcToolsConfig.xml RTC-Tools schematization including the mod-
eling components, rules and controllers as well
as triggers of the model

required

All configuration files are expected in the same working directory. We highly recommend to
validate all XML files against the corresponding XSD schema definitions during the setup. We
suggest using validating XML editors such as XMLSpy (http://www.altova.com/xml-editor/)
or oXygen (http://www.oxygenxml.com/).

Figure A.1 provides an overview about the runtime configuration schema. The following fig-
ures provide further details on the configuration of input files (Figure A.2), the simulation
period of the model (Figure A.3), the execution model of the model (Figure A.4), and setting
of the IPOPT optimizer (Figure A.5 and Figure A.6).

A.2 Modeling components

TODO

A.3 Feedback control (rules and triggers)

TODO

A.4 Setup of optimization problems

The optimization problem is configured in the file rtcObjectiveConfig.xml and Figure A.7
provides an overview. Find further details in the following figures on the definition of optimiza-

Deltares 39

http://www.altova.com/xml-editor/
http://www.oxygenxml.com/

RTC-Tools, Reference Manual

tion variables (Figure A.8), the definition of hard constraints (Figure A.9) and cost function
terms (Figure A.10 and Figure A.11).

A.5 Setup of scenrio trees

TODO

A.6 Time series input and output

The exchange of time series from Delft-FEWS to RTC-Tools and back is managed in an xml
file according to the scheme rtcDataConfig.xsd (see Figure A.12).

The file starts with a section with general settings: the directory with input data for RTC-Tools,
the directory of output data and the location of the log file with runtime information from RTC-
Tools. Keep in mind that the root directory is provided in the function call to RTC-Tools. Thus,
directories and file should be provided relative to the root directory.

The general section is followed by the definition of input time series which will be read into the
model during initialization. Furthermore, export series are time series which are generated by
RTC-Tools during execution. Import and export time series comply with the PI-XML format of
Delft-FEWS. Both version of the format are supported: i) pure XML, ii) a combination of XML
and binary files (more efficient, but also less readable).

A.7 State handling

An xml state file including the system states (fixed name rtcStateConfig.xml) and an
additional file with meta information about the states (fixed name statesPI.xml) have to be
provided in the import directory.

The xml state file is used for updating the model states at the first time step of the simulation. It
includes pairs of ID (according to the definition of the RTC-Tools time series IDs in the section
above) and value. Note that this includes all imported and exported times series defined in
the section above. At the end end of the simulation, the states at the last time step are written
into the file “rtcStateConfig.xml” in the export directory.

The file including the meta data about the states is in Delft-FEWS XML-PI state format. The
content of this file is not further processed. However, the file is copied into the export directory
with an updated time stamp of the warm state.

A.8 Command line options of RTC-Tools

Specify the location of xsd schemas with the argument -schemalocation. An example for
an RTC-Tools batch file:

RTCTools.exe -schemaLocation=d:\NHI_RTC-Tools\RTCTools\xsd\

If the argument -schemaLocation is not specified RTC-Tools searches for the xml schema
definition files (xsd files) in the directory where the executable is located.

40 Deltares

Configuration / Schemas

A.9 RTC-Tools in Delft-FEWS

We recommend the following set-up of the file system for implementing RTC-Tools in Delft-
FEWS:

<Delft-FEWS root folder>
<Modules>

<RTCTools>
<bin> (including the executables)
<export> (output of RTC-Tools)
<import> (input for RTC-Tools)
diag.xml (PI-XML file with diagnostics)
rtcDataConfig.xml (configuration of time series)
rtcModuleConfig.xml (configuration of modelling components)
rtcObjectiveConfig.xml (configuration of optimization problem)

A configuration example is given in Section C.4.

A.10 RTC-Tools in OpenMI

Below an example of an *.omi-file is given. Assembly refers to the location of the dynamic
link library with the RTC-Tools computational core. This DLL must provide the OpenMI inter-
face definition. LinkableComponent refers to “Deltares.RtcToolsWrapper.RtcToolsLinkableComponent”,
this is hard-coded in the OpenMI interface definition. Table ?? explains the meaning of the
argument keys.

<?xml version="1.0"?>

<LinkableComponent Type="Deltares.RtcToolsWrapper.RtcToolsLinkableComponent"

Assembly="..\..\ RTCToolsOpenMI\bin\Deltares.RtcToolsWrapper.dll"

xmlns="http: //www.openmi.org/LinkableComponent.xsd">

<Arguments >

<Argument Key="modelDirectory" ReadOnly="true" Value=".\ RtcTools" />

<Argument Key="logLevel" ReadOnly="true" Value="1" />

<Argument Key="flush" ReadOnly="true" Value="true" />

<Argument Key="MissingValue" ReadOnly="true" Value="0" />

<Argument Key="OpenMiTimeStepSkip" ReadOnly="true" Value="144" />

<Argument Key="SchemaLocation" ReadOnly="true"

Value="..\..\..\ RTCTools\xsd\" />

</Arguments >

</LinkableComponent >

A.11 RTC-Tools in Matlab

Deltares 41

RTC-Tools, Reference Manual

Figure A.1: Overview about the RTC-Tools runtime configuration

42 Deltares

Configuration / Schemas

Figure A.2: Configuration of input files

Deltares 43

RTC-Tools, Reference Manual

Figure A.3: Definition of the simulation / optimization period

44 Deltares

Configuration / Schemas

Figure A.4: Configuration of execution modes in RTC-Tools

Deltares 45

RTC-Tools, Reference Manual

Figure A.5: IPOPT optimizer options, part 1

46 Deltares

Configuration / Schemas

Figure A.6: IPOPT optimizer options, part 1

Deltares 47

RTC-Tools, Reference Manual

Figure A.7: Overview about the configuration of optimization problems

48 Deltares

Configuration / Schemas

Figure A.8: Overview about the configuration of optimization problems

Deltares 49

RTC-Tools, Reference Manual

Figure A.9: Overview about the configuration of optimization problems

50 Deltares

Configuration / Schemas

Figure A.10: Overview about the configuration of optimization problems

Deltares 51

RTC-Tools, Reference Manual

Figure A.11: Overview about the configuration of optimization problems

52 Deltares

Configuration / Schemas

Figure A.12: xml schema definition for rtctoolsDataConfig.xml

Deltares 53

RTC-Tools, Reference Manual

54 Deltares

B Details on dedicated rules

B.1 Aebi

Java code for Aebi rule according to the documents:

1 02-1 Hochwasseralarm Murgenthal V2.09.xlsm
2 03-Auszug Regulierdienst - Manual.pdf
3 04-DOCP-#116766-v1-Erluterungen zu Murgenthalerberechnung Sigmaplan.pdf
4 05-DOCP-#149934-v1-Regulierung Murgenthalberechnung Anleitung.pdf

// compute AareMurg_oKW and limit it to maximum change of 100 m3/s

double AareMurg_oKW = AareMurg;

if (AareMurg_oKW -AareMurg_oKWMin1 > 100.0) {

AareMurg_oKW = AareMurg_oKWMin1 + 100.0;

} else if (AareMurg_oKW -AareMurg_oKWMin1 < -100.0) {

AareMurg_oKW = AareMurg_oKWMin1 - 100.0;

}

// compute EGZ west and east

double LangetenFMin4;

if (pLangetenFall ==1) {

LangetenFMin4 = 1.2 * LangetenMin4;

} else {

LangetenFMin4 = 1.5 * LangetenMin4;

}

double EZGwest = AareMurg_oKW -

(AareBrueggMin2 + EmmenmattMin4 + 6.0* LangetenFMin4);

EZGwest = Math.max(EZGwest , 0.0);

EZGwest = Math.min(EZGwest , 300.0);

double LangetenF;

if (pLangetenFall ==1) {

LangetenF = 1.2 * Langeten;

} else {

LangetenF = 1.5 * Langeten;

}

double EZGost = Math.min (6.0 * LangetenF , 100.0 + EZGwest);

// RTG

double RTG;

if (PegelBielersee <=429.6) {

RTG = pFactorRTG * 700;

} else if (PegelBielersee <=429.7) {

RTG = pFactorRTG * 720;

} else if (PegelBielersee <=429.8) {

RTG = pFactorRTG * 730;

} else if (PegelBielersee <=429.9) {

RTG = pFactorRTG * 750;

} else if (PegelBielersee <=430.0) {

RTG = pFactorRTG * 760;

Deltares 55

RTC-Tools, Reference Manual

} else if (PegelBielersee <=430.1) {

RTG = pFactorRTG * 780;

} else if (PegelBielersee <=430.15) {

RTG = pFactorRTG * 800;

} else if (PegelBielersee <=430.2) {

RTG = pFactorRTG * 810;

} else {

RTG = pFactorRTG * 820;

}

// provisional maximum discharge at Port

double ProgAbflussMurg = AareBruegg +

Emmenmatt + Math.max(EZGwest , 0.0) + EZGost;

double ProvMaxAbflussPort = RTG + AareBruegg - ProgAbflussMurg;

// compute discharge change

double MaxAbflussPort;

double ProgAbflusstendenzWehrPort = AareBruegg - ProvMaxAbflussPort;

if (AareBruegg >= AbflussReglPort) {

if (ProgAbflusstendenzWehrPort < 0.0) {

MaxAbflussPort = AareBruegg - 50.0;

} else if (ProgAbflusstendenzWehrPort < 50.0) {

MaxAbflussPort = AareBruegg - ProgAbflusstendenzWehrPort;

} else {

MaxAbflussPort = AareBruegg - 50.0;

}

} else {

if (ProgAbflusstendenzWehrPort < -50.0) {

MaxAbflussPort = AareBruegg + 50.0;

} else if (ProgAbflusstendenzWehrPort < 100.0) {

MaxAbflussPort = AareBruegg - ProgAbflusstendenzWehrPort;

} else {

MaxAbflussPort = AareBruegg - 100.0;

}

}

// apply minimum discharge

if (PegelBielersee < 430.00) {

MaxAbflussPort = Math.max}(MaxAbflussPort , 200.0);

} else if (PegelBielersee <= 430.35) {

MaxAbflussPort = Math.max}(MaxAbflussPort , 250.0);

} else {

MaxAbflussPort = Math.max}(MaxAbflussPort , 300.0);

}

double AbflussAenderungPort = AareBruegg - MaxAbflussPort;

56 Deltares

Details on dedicated rules

B.2 Thunersee

The dedicated rule for Thunersee keeps the lake water level on set point in case of active
alarm levels orange and red. Furthermore, it takes care of a discharge reduction in case of a
threshold crossing at gauge CityplaceBern.

Java code for Thunersee rule according to the documents:

1 1 1 betriebsreglement.pdf

// required released volume to reach set point

double s = reservoirStorageCharacteristics.convert(level)

- reservoirStorageCharacteristics.convert(

Math.min(levelSetpoint , stateOld[iInLevel]))

+ dt*inflow;

// release at new time step depending on time stepping scheme

double releaseTotal = 0.0;

if (poolRoutingScheme == ModuleModel.EXPLICIT }) {

releaseTotal = s/dt;

} else if (poolRoutingScheme == ModuleModel.NEWTONRAPHSONBACKTRACKING }) {

releaseTotal =

(s-(1.0 - theta)*dt*stateOld[iOutReleaseTotal])/(theta*dt);

}

// limiter

releaseTotal = Math.max(releaseTotal , (1.0-

releaseLimiterPercentage /100.0)* stateOld[iOutReleaseTotal]);

releaseTotal = Math.min(releaseTotal ,

(1.0+ releaseLimiterPercentage /100.0)* stateOld[iOutReleaseTotal]);

// reduction due to discharge CityplaceBern

double dischargeBern = releaseTotal + releaseCatchment;

double dischargeBernMax = limiterBern.convert(level);

if (dischargeBern >dischargeBernMax) {

releaseTotal = Math.max(dischargeBernMax ,

0.7* stateOld[iOutReleaseTotal]);

}

// distribute to outlets

double releaseWeir = Math.max(Math.min(releaseTotal , wCapacity), 0.0);

double releaseTunnel = 0.0;

if (level>tunnelLevelThreshold) {

releaseTunnel = Math.max(Math.min(releaseTotal -releaseWeir ,

tCapacity), 0.0);

}

releaseTotal = releaseWeir + releaseTunnel;

Deltares 57

RTC-Tools, Reference Manual

58 Deltares

C Configuration examples

C.1 A kinematic wave model

From the case “kinematicWave2” :

<?xml version="1.0" encoding="UTF -8"?>

<rtcToolsConfig xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http: //www.wldelft.nl/fews

..\..\..\ xsd\rtcToolsConfig.xsd"

xmlns="http: //www.wldelft.nl/fews">

<general >

<description >test kinematic wave model</description >

<poolRoutingScheme >ForwardEuler </poolRoutingScheme >

<theta >0.0</theta>

</general >

<components >

<component >

<hydraulicModel id="test">

<node id="N1">

<storageCharacteristics >

<storageTable >

<elevationRecord elevation="0.0" value="0.0"/>

<elevationRecord elevation="1.0" value="1000000.0"/>

</storageTable >

</storageCharacteristics >

<levelBoundaryCondition >

<input>

<level>1HBC</level>

</input>

</levelBoundaryCondition >

<output >

<level>1H</level>

<storage >1S</storage >

</output >

</node>

<node id="N2">

<storageCharacteristics >

<storageTable >

<elevationRecord elevation="0.0" value="0.0"/>

<elevationRecord elevation="1.0" value="1000000.0"/>

</storageTable >

</storageCharacteristics >

<output >

<level>2H</level>

<storage >2S</storage >

</output >

</node>

<node id="N3">

<storageCharacteristics >

<storageTable >

<elevationRecord elevation="0.0" value="0.0"/>

<elevationRecord elevation="1.0" value="1000000.0"/>

</storageTable >

</storageCharacteristics >

<inflowBoundaryCondition >

<input>

Deltares 59

RTC-Tools, Reference Manual

<inflow >3QBC</inflow >

</input>

</inflowBoundaryCondition >

<output >

<level>3H</level>

<storage >3S</storage >

</output >

</node>

<branch >

<crossSection >

<crossSectionTable >

<elevationRecord elevation="0.0" value="50.0"/>

<elevationRecord elevation="1.0" value="50.0"/>

<elevationRecord elevation="2.0" value="50.0"/>

</crossSectionTable >

</crossSection >

<roughness >

<roughnessTable >

<elevationRecord elevation="0.0" value="10.0"/>

<elevationRecord elevation="1.0" value="10.0"/>

</roughnessTable >

</roughness >

<nodeUp >N3</nodeUp >

<nodeDown >N2</nodeDown >

<length >10000.0 </length >

<output >

<discharge >2Q</discharge >

</output >

</branch >

<hydraulicStructure >

<orifice >

<width>50.0</width>

<crestLevel >0.0</crestLevel >

<contractionCoefficient >0.63</contractionCoefficient >

<flowDirection >BOTH</flowDirection >

<nodeUp >N2</nodeUp >

<nodeDown >N1</nodeDown >

<input>

<openingHeight >1DGBC</openingHeight >

</input>

<output >

<discharge >1Q</discharge >

<openingHeight >1DG</openingHeight >

</output >

</orifice >

</hydraulicStructure >

</hydraulicModel >

</component >

</components >

</rtcToolsConfig >

60 Deltares

Configuration examples

C.2 A neural network model

From the case “neuralNetwork2”:

<?xml version="1.0" encoding="UTF -8"?>

<rtcToolsConfig xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http: //www.wldelft.nl/fews

..\..\..\ xsd\rtcToolsConfig.xsd"

xmlns="http: //www.wldelft.nl/fews">

<general >

<description >test kinematic wave model</description >

<poolRoutingScheme >ForwardEuler </poolRoutingScheme >

<theta >0.0</theta>

</general >

<components >

<component >

<neuralNetwork id="test">

<layer id="L0" name="input layer">

<neuron id="L0N0">

<bias>0.0</bias>

<transferFunction >SigmoidLogistic </transferFunction >

<input>

<external weight="1.0">u00</external >

<internal weight="1.0">L2N0</internal >

</input>

<output >

<x>x00</x>

<y>y00</y>

</output >

</neuron >

<neuron id="L0N1">

<bias>0.0</bias>

<transferFunction >SigmoidLogistic </transferFunction >

<input>

<external weight="1.0">u01</external >

<internal weight="1.0">L2N1</internal >

</input>

<output >

<x>x01</x>

<y>y01</y>

</output >

</neuron >

</layer >

<layer id="L1" name="hidden layer">

<neuron id="L1N0">

<bias>0.0</bias>

<transferFunction >SigmoidLogistic </transferFunction >

<input>

<internal weight="1.0">L0N0</internal >

<internal weight="1.0">L0N1</internal >

</input>

<output >

<x>x10</x>

<y>y10</y>

</output >

</neuron >

<neuron id="L1N1">

<bias>0.0</bias>

Deltares 61

RTC-Tools, Reference Manual

<transferFunction >SigmoidLogistic </transferFunction >

<input>

<internal weight="1.0">L0N0</internal >

<internal weight="1.0">L0N1</internal >

</input>

<output >

<x>x11</x>

<y>y11</y>

</output >

</neuron >

</layer>

<layer id="L2" name="output layer">

<neuron id="L2N0">

<bias>0.0</bias>

<transferFunction >Linear </transferFunction >

<input>

<internal weight="2.0">L1N0</internal >

<internal weight="2.0">L1N1</internal >

</input>

<output >

<x>x20</x>

<y>y20</y>

</output >

</neuron >

<neuron id="L2N1">

<bias>0.0</bias>

<transferFunction >Linear </transferFunction >

<input>

<internal weight="2.0">L1N0</internal >

<internal weight="2.0">L1N1</internal >

</input>

<output >

<x>x21</x>

<y>y21</y>

</output >

</neuron >

</layer>

</neuralNetwork >

</component >

</components >

</rtcToolsConfig >

C.3 A pool routing model

From the case “neuralNetwork2”:

<?xml version="1.0" encoding="UTF -8"?>

<rtcToolsConfig xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xmlns="http: //www.wldelft.nl/fews"

xsi:schemaLocation="http: //www.wldelft.nl/fews

..\..\..\ xsd\rtcToolsConfig.xsd">

<general >

<description >singapore2 </description >

<poolRoutingScheme >Theta</poolRoutingScheme >

<theta>1.0</theta>

</general >

62 Deltares

Configuration examples

<components >

<component >

<reservoir id="Reservoir1">

<storageCharacteristics >

<storageTable >

<elevationRecord elevation=" -1.0" value="0"/>

<elevationRecord elevation="0.0" value="60000.0"/>

</storageTable >

</storageCharacteristics >

<controlledOutlet id="Reservoir1.Hydropower" name="Hydropower">

<capacityCharacteristics >

<capacityTable >

<elevationRecord elevation=" -1.0" value="20.0"/>

<elevationRecord elevation="1.0" value="20.0"/>

</capacityTable >

</capacityCharacteristics >

<input >

<release >QH.opt</release >

</input >

<output >

<release >QH.sim</release >

</output >

</controlledOutlet >

<uncontrolledOutlet id="Reservoir1.Spillway" name="Spillway">

<capacityCharacteristics >

<capacityEquation >

<equation >

<a>340.9789827345178

 -0.1

<c>1.5</c>

</equation >

</capacityEquation >

</capacityCharacteristics >

<output >

<release >QS.sim</release >

</output >

</uncontrolledOutlet >

<input >

<inflow >I.obs</inflow >

</input >

<output >

<inflow >I.sim</inflow >

<release >Q.sim</release >

<storage >S.sim</storage >

<level >H.sim</level >

</output >

</reservoir >

</component >

</components >

</rtcToolsConfig >

Deltares 63

RTC-Tools, Reference Manual

C.4 A Delft-FEWS configuration

From the case “switzerland2”:

<?xml version="1.0" encoding="UTF -8"?>

<generalAdapterRun xmlns="http://www.wldelft.nl/fews"

xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http: //www.wldelft.nl/fews

http: //fews.wldelft.nl/schemas/version1 .0/ generalAdapterRun.xsd">

<general >

<rootDir >$RTCMODULE_DIR $/ AareDreiSeen </rootDir >

<workDir >%ROOT_DIR%</workDir >

<exportDir >%ROOT_DIR %/ import </exportDir >

<importDir >%ROOT_DIR %/ export </importDir >

<dumpFileDir >$DUMP_DIR$</dumpFileDir >

<dumpDir >%ROOT_DIR%</dumpDir >

<diagnosticFile >%ROOT_DIR %/diag.xml</diagnosticFile >

</general >

64 Deltares

D RTC-Tools Application Programming Interface (RTC-Tools API)

D.1 Extension of the model library

D.1.1 Introduction

C++ classes of the model library are subdivided into components, rules and triggers available
in the folders:

\RTCTools\src\schematization\components

\RTCTools\src\schematization\rules

\RTCTools\src\schematization\triggers

\RTCTools\src\schematization\

where the last folder includes more general classes, e. g. the unitDelay operator being used
both as a trigger, rule or component.

You need to derive your own class from the available parent classes component, rule or
trigger. If you want to use it both as a trigger and component, derive it also from both parent
classes. The same procedure is valid for any other combination.

Besides writing the code of the new class, the class needs a factory method in the class
schematization for constructing class instances. Furthermore, we suggest using the avail-
able xml/ data binding procedure for configuring new model library elements in the available
rtcToolsConfig.

D.1.2 Class design

D.1.2.1 Basics on variables, member functions, inheritance

It is good practice to split the code into a header file (*.h) with the class declaration and
another file with the implementation (*.cpp). Check the arma.h / arma.cpp class in

\src\schematization\components\

as an example. The source code is documented according to the requirements of Doxygen.

We advise to declare all variables as private and encapsulate them in the class. Their initial-
ization is done based on the constructor. References to input and output time series in the
RTC-Tools time series model are supplied as indices via the constructor. We use the index -1
by convention for indicating that an optional time series is not supplied.

D.1.2.2 Implementing the simulation and adjoint mode

The simulation mode (void solve(...)) needs to be implemented for all elements, i.e.
for components, rules and triggers. The adjoint mode (void solveDer(...)) is executed
ONLY for the components. Thus, if you implement a rule or trigger only, you can keep the
body of the member function empty.

Deltares 65

RTC-Tools, Reference Manual

Consider if your time series input, states and outputs refers to the old or new time step.
stateOld[index] picks up a value from the old time step, stateNew[index] from the new
one. Here are some rules for deciding about the implementation:

I Inputs should pick up data from the new time step stateNew[index]. In some cases,
you may want to add some flexibility to get data either from the old or the new time step
according to your configuration settings. In that case use stateOld[index] and the
factory method will add the number nSeries to the index, if the new time step is configured
(dirty C hack on pointers!).

I States are always picked up from the old time step stateOld[index] and written to the
new time step stateNew[index].

I Outputs are always written to the new time step stateNew[index].

D.1.3 xsd design / xml data binding / factory method

We suggest making your new element configurable by including it in the XSD file

\RTCTools\xsd\rtcToolsConfig.xsd

It includes a description of the content of the corresponding xml file with the model configura-
tion. If the xsd is extended, execute the embedded data binder (http://www.codesynthesis.
com/products/xsd/) by executing /RTCTools/xsd/update XSD.bat for generating up-
dated classes for reading the xml file (/RTCTools/src/dataBinding/...).

The factory method for constructing instances of your new class can be found in the class
”schematization”. You need to include the header file of your new class and implement the
related factory function in the code base. Make use of the data binding class for extracting the
required data for the constructor of the

D.2 Extension of the objective function library

D.2.1 Introduction

D.2.2 xsd design / data binding

D.2.3 Class design

D.3 Adding optimizers

D.3.1 Introduction

D.3.2 xsd design / data binding

D.3.3 Class design

66 Deltares

http://www.codesynthesis.com/products/xsd/
http://www.codesynthesis.com/products/xsd/

	1 Introduction
	1.1 Background
	1.2 Fields of application
	1.3 Architecture and supported interfaces
	1.4 Content of this document

	2 Modeling components
	2.1 Overview
	2.2 Reservoir
	2.2.1 Mathematical model
	2.2.2 Numerical schematization

	2.3 Hydrological routing
	2.3.1 Introduction
	2.3.2 Routing
	2.3.3 Unit delay
	2.3.4 Unit hydrograph
	2.3.5 HBV model
	2.3.6 Lorent Grevers

	2.4 Hydraulic routing
	2.4.1 Introduction
	2.4.2 Kinematic wave model
	2.4.2.1 Numerical background
	2.4.2.2 Schematization

	2.4.3 Diffusive wave model
	2.4.4 Kinematic versus diffusive wave routing
	2.4.5 Model set-up
	2.4.5.1 Schematization of the water network
	2.4.5.2 Level-storage relation
	2.4.5.3 Cross-section

	2.5 Other models
	2.5.1 Accumulation
	2.5.2 Arma
	2.5.3 Expression
	2.5.4 Gradient
	2.5.5 Neural Network

	2.6 Numerical schemes
	2.6.1 Ordinary differential equations
	2.6.2 Forward Euler scheme
	2.6.3 Implicit scheme
	2.6.4 Discussion
	2.6.4.1 Central versus upwind spatial schematization
	2.6.4.2 Explicit versus implicit time stepping

	3 Feedback control
	3.1 Overview
	3.2 Operating rules
	3.2.1 constant
	3.2.2 dateLookupTable
	3.2.3 deadBandValue
	3.2.4 dedicated-Aebi
	3.2.5 dedicated-Thunersee
	3.2.6 expression
	3.2.7 guideBand
	3.2.8 interval
	3.2.9 limiter
	3.2.10 lookupTable
	3.2.11 lookup2DTable
	3.2.12 merger
	3.2.13 minSimple
	3.2.14 pid
	3.2.15 timeAbsolute
	3.2.16 timeRelative

	3.3 Triggers
	3.3.1 deadBandTrigger
	3.3.2 deadBandTime
	3.3.3 expression
	3.3.4 merger
	3.3.5 polygonLookup
	3.3.6 set
	3.3.7 spreadsheet
	3.3.8 standard

	3.4 Implementation of triggers and rules

	4 Model Predictive Control
	4.1 Introduction
	4.2 Set-up of the optimization problem
	4.2.1 Control variables
	4.2.2 Constraints
	4.2.3 Cost function terms

	4.3 Adjoint models

	5 Interfaces
	5.1 Matlab
	5.2 FEWS-PI
	5.3 OpenMI

	6 References
	A Configuration / Schemas
	A.1 General runtime definitions
	A.2 Modeling components
	A.3 Feedback control (rules and triggers)
	A.4 Setup of optimization problems
	A.5 Setup of scenrio trees
	A.6 Time series input and output
	A.7 State handling
	A.8 Command line options of RTC-Tools
	A.9 RTC-Tools in Delft-FEWS
	A.10 RTC-Tools in OpenMI
	A.11 RTC-Tools in Matlab

	B Details on dedicated rules
	B.1 Aebi
	B.2 Thunersee

	C Configuration examples
	C.1 A kinematic wave model
	C.2 A neural network model
	C.3 A pool routing model
	C.4 A Delft-FEWS configuration

	D RTC-Tools Application Programming Interface (RTC-Tools API)
	D.1 Extension of the model library
	D.1.1 Introduction
	D.1.2 Class design
	D.1.2.1 Basics on variables, member functions, inheritance
	D.1.2.2 Implementing the simulation and adjoint mode

	D.1.3 xsd design / xml data binding / factory method

	D.2 Extension of the objective function library
	D.2.1 Introduction
	D.2.2 xsd design / data binding
	D.2.3 Class design

	D.3 Adding optimizers
	D.3.1 Introduction
	D.3.2 xsd design / data binding
	D.3.3 Class design

