$Id: asin_forward.omh 3686 2015-05-11 16:14:25Z bradbell $ // BEGIN SHORT COPYRIGHT /* -------------------------------------------------------------------------- CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-15 Bradley M. Bell CppAD is distributed under multiple licenses. This distribution is under the terms of the Eclipse Public License Version 1.0. A copy of this license is included in the COPYING file of this distribution. Please visit http://www.coin-or.org/CppAD/ for information on other licenses. -------------------------------------------------------------------------- */ // END SHORT COPYRIGHT $begin asin_forward$$ $spell asinh asin Taylor $$ $section Inverse Sine and Hyperbolic Sine Forward Mode Theory$$ $mindex asin, asinh$$ $head Derivatives$$ $latex \[ \begin{array}{rcl} \R{asin}^{(1)} (x) & = & 1 / \sqrt{ 1 - x * x } \\ \R{asinh}^{(1)} (x) & = & 1 / \sqrt{ 1 + x * x } \end{array} \] $$ If $latex F(x)$$ is $latex \R{asin} (x) $$ or $latex \R{asinh} (x)$$ the corresponding derivative satisfies the equation $latex \[ \sqrt{ 1 \mp x * x } * F^{(1)} (x) - 0 * F (u) = 1 \] $$ and in the $cref/standard math function differential equation /ForwardTheory /Standard Math Functions /Differential Equation /$$, $latex A(x) = 0$$, $latex B(x) = \sqrt{1 \mp x * x }$$, and $latex D(x) = 1$$. We use $latex a$$, $latex b$$, $latex d$$ and $latex z$$ to denote the Taylor coefficients for $latex A [ X (t) ] $$, $latex B [ X (t) ]$$, $latex D [ X (t) ] $$, and $latex F [ X(t) ] $$ respectively. $head Taylor Coefficients Recursion$$ We define $latex Q(x) = 1 \mp x * x$$ and let $latex q$$ be the corresponding Taylor coefficients for $latex Q[ X(t) ]$$. It follows that $latex \[ q^{(j)} = \left\{ \begin{array}{ll} 1 \mp x^{(0)} * x^{(0)} & {\rm if} \; j = 0 \\ \mp \sum_{k=0}^j x^{(k)} x^{(j-k)} & {\rm otherwise} \end{array} \right. \] $$ It follows that $latex B[ X(t) ] = \sqrt{ Q[ X(t) ] }$$ and from the equations for the $cref/square root/sqrt_forward/$$ that for $latex j = 0 , 1, \ldots$$, $latex \[ \begin{array}{rcl} b^{(0)} & = & \sqrt{ q^{(0)} } \\ b^{(j+1)} & = & \frac{1}{j+1} \frac{1}{ b^{(0)} } \left( \frac{j+1}{2} q^{(j+1) } - \sum_{k=1}^j k b^{(k)} b^{(j+1-k)} \right) \end{array} \] $$ It now follows from the general $xref/ ForwardTheory/ Standard Math Functions/ Taylor Coefficients Recursion Formula/ Taylor coefficients recursion formula/ 1 /$$ that for $latex j = 0 , 1, \ldots$$, $latex \[ \begin{array}{rcl} z^{(0)} & = & F ( x^{(0)} ) \\ e^{(j)} & = & d^{(j)} + \sum_{k=0}^{j} a^{(j-k)} * z^{(k)} \\ & = & \left\{ \begin{array}{ll} 1 & {\rm if} \; j = 0 \\ 0 & {\rm otherwise} \end{array} \right. \\ z^{(j+1)} & = & \frac{1}{j+1} \frac{1}{ b^{(0)} } \left( \sum_{k=0}^j e^{(k)} (j+1-k) x^{(j+1-k)} - \sum_{k=1}^j b^{(k)} (j+1-k) z^{(j+1-k)} \right) \\ z^{(j+1)} & = & \frac{1}{j+1} \frac{1}{ b^{(0)} } \left( (j+1) x^{(j+1)} - \sum_{k=1}^j k z^{(k)} b^{(j+1-k)} \right) \end{array} \] $$ $end