SWAN

.

In many engineering studies, knowledge of the operational or of the extreme wave conditions in coastal waters (which may include estuaries, tidal inlets, barrier islands with tidal flats, channels etc.) is required. To obtain realistic estimates of random, short-crested wind-generated waves in such conditions for a given bottom topography, wind field, water level and current field, the numerical wave model SWAN can be used. This SWAN model is a third-generation stand-alone (phase-averaged) wave model for the simulation of waves in waters of deep, intermediate and finite depth. It is also suitable for use as a wave hindcast model. Read more.

WAVEWATCH III

.

WAVEWATCH III (Tolman 1997, 1999a) is a third generation wave model developed at NOAA/NCEP in the spirit of the WAM model (WAMDIG 1988, Komen et al. 1994). It is a further development of the model WAVEWATCH I, as developed at Delft University of Technology (Tolman 1989, 1991) and WAVEWATCH II, developed at NASA, Goddard Space Flight Center (e.g., Tolman 1992). WAVEWATCH III, however, differs from its predecessors in many important points such as the governing equations, the model structure, the numerical methods and the physical parameterizations. Read more.