

Skillbed

Documentation and Manual

Skillbed

Documentation and Manual

© Deltares, 2011

Bas Hoonhout

Title
Skillbed

Pages
1

Keywords
Place keywords here

Summary
Place summary here

References
Place references here

Version Date Author Initials Review Initials Approval Initials
 nov. 2011 Bas Hoonhout

State
draft
This is a draft report, intended for discussion purposes only. No part of this report may be
relied upon by either principals or third parties.

23 November 2011, draft

Skillbed

i

Contents

1 Introduction 1

2 Components 3
2.1 Client 3
2.2 Server 4
2.3 Updater 4

3 Installation 5
3.1 Requirements 5
3.2 Download 5
3.3 Installation 6

3.3.1 Create a checkout 6
3.3.2 Create an export 6
3.3.3 Create an external 8
3.3.4 Commit your installation 10

3.4 Files and directories 12
3.4.1 tools 12
3.4.2 input and data 13
3.4.3 analysis and latex 13
3.4.4 doc 13

4 Configuration 14
4.1 Global configuration 14

4.1.1 Test lists configuration 18
4.1.2 Miscellaneous 19

4.2 Test configuration 19
4.2.1 Analysis configuration 20
4.2.2 Report configuration 20

4.3 Configuration testing 20

5 Usage 21
5.1 Starting the skillbed 21

5.1.1 Command line options Error! Bookmark not defined.
5.2 Graphical User Interface (GUI) 23
5.3 Update servers 23
5.4 Log files 24

6 Troubleshoot 25
6.1 Client 25
6.2 Server 25

7 Code structure 26
7.1 Packages 26
7.2 Workflow 26
7.3 Templates 26
7.4 Hooks 26

ii

23 November 2011, draft

Skillbed

23 November 2011, draft

Skillbed

1 of 1

1 Introduction

The skillbed is a universal framework for monitoring the qualitative performance of numerical
models. Series of characteristic model configurations are executed using a specific version of
the numerical model. The model results are analyzed using generic analysis methods and the
results of the analysis are distributed in a user-friendly and pro-active way. In brief, this is the
test cycle facilitated by the skillbed.

The skillbed is a test environment. Nowadays, testing is common use in model development.
However, these tests are often functional. They compare the model code with the model
design. Functional tests are performed on different levels, from unit tests to acceptation tests.

It is important that the model code functions as designed. However, comparing model and
design does not provide any insight in the quality of the design itself. This is where the
skillbed comes at hand. As illustrated in Figure 1.1, real-world measurements lead to data. At
some point, a model design is formulated based on some kind of research, often using
measurements. The model design is translated into model code, containing modules,
functions, et cetera. All modules and functions provide certain functionality. These
functionalities are tested using unit tests. If necessary, the code is adapted to ensure that the
code parts function as designed. Finally, the code is submitted to an overall functionality test:
the acceptance test. If the code does not pass the acceptance test, the code is adapted again
and the test cycle starts over. If the code passes the acceptance test, the model is ready to
use.

Figure 1.1 Position of Skillbed in model development cycle

Skillbed

23 November 2011, draft

2 of 1

Or is it? The model code now sure performs as the model design prescribes. However, at no
particular point in the development of the model, a comparison is made with the original data.
This is what the skillbed does. Based on the skillbed results, either the model design can be
adapted and the development cycle starts over again, or new research and measurements
can be initiated, or both.

A major difference between regular test results and the skillbed test results is that the skillbed
does not provide definite answers on the skill of the numerical model. It only facilitates expert
judgments by generating statistical data on the model-data comparison. Where a model code
should perform exactly as the model design describes, a model code is hardly ever expected
to reproduce measurement data exactly. Measurements are always troubled by various errors
and the model design is often only a simplification of the real-world. An exact match will
therefore never happen and expert judgment is still necessary to approve the model results.
Again, the skillbed only facilitates this approval.

This document is both a manual and technical documentation of the skillbed. The technical
documentation is mainly found in the last chapter on code structures. All other chapters may
be used as manual.

23 November 2011, draft

Skillbed

3 of 1

2 Components

The skillbed is a client/server system. This means that the system consists of two
components: a client and a server. A skillbed run is started using the client. A single client can
use multiple servers and multiple clients can use the same server. The result is that the
skillbed can be started on any simple desktop PC without requiring many resources. The hard
work is done on the servers. At the same time, the hard work can be divided over multiple
servers, thus limiting the runtime. The components of the skillbed, there are actually three,
are described in more detail in the following sections and Figure 2.1.

Figure 2.1 Skillbed structure

2.1 Client
The component used by the end-user is the skillbed client. Using the skillbed client, a skillbed
run can be initiated. The client prepares the run by updating all servers and let them build one
or more executables from the latest code. Each executable necessary is built by each of the
servers. Subsequently a test queue is created that starts the model runs in an optimized order
on any of the servers available. Each server uses the executables built on that specific
server.

Skillbed

23 November 2011, draft

4 of 1

Once all tests are finished, the results from each server are copied to a central storage
location from which the client copies all results to its local drive. The results are analyzed and
visualized and a report is generated. The report is distributed by e-mail to the end-user and
published on a webserver. The local drive of the client is cleaned as are the drives on each
server.

Any data produced by the client, like analysis scripts and results, reports, log files, et cetera is
stored on the central storage location.

2.2 Server
A server runs continuously waiting for a client request. When a server is started, it registers
itself on a central storage location so the clients can find it. The server determines its
resources and operating system and provides this information to clients upon requests. It also
provides information on the number of processes running upon request.

When a client prepares a skillbed run, it notifies the servers that are about to be used to be
prepared as well. Subsequently, it distributes test runs over those servers. The server runs
the test and registers the process. The client continuously polls if the distributed processes
are finished. Once they are, the process is unregistered and resources come available for the
same or other clients.

Any data produced by the server, like executables, test results, log files, et cetera is stored on
the central storage location.

2.3 Updater
The updater is like a shell around the server. In fact, instead of starting a server, in a
production environment the updater should be started. The updater subsequently starts the
server. The updater therefore takes the same arguments as the server.

The advantage of the updater shell is that the source code of the skillbed itself can be
reloaded using a client. On request, the server tells the shell to reload the server. The updater
then simply unloads all server modules and reloads them again. The updater facilitates the
development of the skillbed itself. Each server runs in its own updater shell.

23 November 2011, draft

Skillbed

5 of 1

3 Installation

3.1 Requirements
You can run the skillbed on a single PC, which will then be both the client and the server. In
order to distribute the workload over multiple PC’s, you will need multiple PC’s and a
Subversion (SVN) server for the distribution of the configuration files and version
management.

The PC’s need to have some additional software installed in order to run the skillbed. This
software is listed in Table 3.1.

Table 3.1 Required software

Name Website Component Platform
Python http://www.python.org/ All All
PySVN http://pysvn.tigris.org/ All All
Pylons http://pylonshq.com/ Client All
Mako http://www.makotemplates.org/ Client All
Miktex http://miktex.org/ Client Windows
pdflatex Client Linux
Matlab http://www.mathworks.nl/ Client All
MPICH2 http://www.mcs.anl.gov/ Server All
MS Visual Studio 2008 http://www.microsoft.com/ Server Windows
Intel Fortran Compiler http://software.intel.com/ Server Windows
GNU Fortran Compiler http://gcc.gnu.org/fortran/ Server Linux

The skillbed requires the environment variables listed in Table 3.2 to be set. These
environment variables can also be set through the skillbed.inst file in the tools directory.

Table 3.2 Required environment variables

Name Value Component Platform
PYTHON_PATH Path to python executable All All
PDFLATEX_PATH Path to pdflatex executable Client All
BIBTEX_PATH Path to bibtex executable Client All
MATLAB_PATH Path to Matlab executable Client All
MPIEXEC_PATH Path to mpiexec executable Server All
VS90COMNTOOLS Microsoft Visual Studio 2008 installation

directory
Server Windows

IFORT_COMPILER11 Intel Fortran Compiler installation
directory

Server Windows

INTEL_LICENSE_FILE Path to Intel Fortran Compiler license file Server Windows
GFORTRAN_PATH Path to gfortran executable Server Linux

3.2 Download
The skillbed source code is available through the OpenEarthTools (OET) Subversion (SVN)
repository. This is a free and open-source collection of tools for a variety of water related
disciplines. See for more information http://www.openearth.eu/.

You can request a free username for the OpenEarthTools repository via the Deltares Open-
Source Software (OSS) webpage at http://oss.deltares.nl/.

Skillbed

23 November 2011, draft

6 of 1

The skillbed source code can be found at
https://svn.oss.deltares.nl/repos/openearthtools/trunk/python/applications/skillbed/.
Technically, only the tools/python/skillbed/ directory contains actual source code. The other
directories contain a dummy configuration for a specific skillbed installation.

3.3 Installation
The skillbed Subversion location contains both a dummy configuration for your skillbed
installation, which you can use as starting point for your own configuration, and the skillbed
source code, which is generic. In order to create a new skillbed installation, you will need to
make an export of the skillbed Subversion location. You need to make an export instead of a
checkout, because you will modify the skillbed configuration to your needs, after which it will
not be generic anymore. You should then commit your skillbed configuration to another
Subversion server and/or location of your choice.

In contrast to the skillbed configuration, the skillbed source code is generic. In order to obtain
updates of the source code automatically, the source code should be linked to the original
skillbed Subversion location. This can be done using an external.

The file tools/skillbed.inst is machine dependent and should not be committed to the
repository as well. Just leave it as an ignored file in the tools directory.

All steps for the installation are described in the following subsections. The Subversion client
TortoiseSVN is used in this example (http://www.tortoisesvn.net/).

3.3.1 Create a checkout
Start with creating a checkout of the location where your skillbed installation should be stored
(Figure 3.1). You only need to checkout a single directory, if you want. It is also possible to
skip this step and use the Import function to store your skillbed configuration in the right
location afterwards. In that case, you still need to create a checkout afterwards if you want to
have a working copy on your current machine.

Figure 3.1 Create a checkout

3.3.2 Create an export
Now create an export of the skillbed dummy configuration (and source code) in your newly
created working copy by opening the Repo-browser (Figure 3.2). Type in the location of the
skillbed Subversion location and and select Export… (Figure 3.3). Select the location of your
newly created working copy and click OK (Figure 3.4). The skillbed software will be
downloaded (Figure 3.5).

23 November 2011, draft

Skillbed

7 of 1

Figure 3.2 Open the Repo-browser

Figure 3.3 Create an export

Skillbed

23 November 2011, draft

8 of 1

Figure 3.4 Select export location Figure 3.5 Export succeeded

3.3.3 Create an external
Now you obtained a full copy of the dummy configuration and source code of the skillbed. For
the configuration part, this is a good thing. For the source code part, it isn’t. Therefore,
remove the directory containing the skillbed source code (Figure 3.6) and add all directories
left, execpt for the tools/skillbed.inst file, to your new Subversion location (Figure 3.7). Next,
create a new property for the source code (python) directory (Figure 3.8). Select New…
(Figure 3.9) and subsequently select svn:externals (Figure 3.10). Use the entire address to
the original source code directory plus the directory name skillbed, separated by a space, as
value for the property (Figure 3.12). Click OK and the property will be added (Figure 3.11).
Again, click OK and the link to the original Subversion location for the source code will be
restored.

Figure 3.6 Delete exported directory containing source code

23 November 2011, draft

Skillbed

9 of 1

Figure 3.7 Add other directories to Subversion repository location for the skillbed

Figure 3.8 Create property for the source code (python) directory

Skillbed

23 November 2011, draft

10 of 1

Figure 3.9 Create new property item Figure 3.10 Select external type

Figure 3.11 External defined Figure 3.12 Define external

3.3.4 Commit your installation
Your initial skillbed configuration is finished. Commit your changes to your skillbed
Subversion location (Figure 3.13, Figure 3.14). In order to restore the skillbed source code in
your working copy, update your working copy (Figure 3.15).

23 November 2011, draft

Skillbed

11 of 1

Figure 3.13 Commit initial skillbed configuration

Figure 3.14 Add comments to commit

Skillbed

23 November 2011, draft

12 of 1

Figure 3.15 Update working copy to restore source code from original Subversion location

3.4 Files and directories
The dummy configuration contains the initial directory structure of the skillbed, which is
explained in this section. The directories can be subdivided in four categories:

1. Skillbed source code and global configuration (tools)

2. Test configuration (input and data)

3. Analysis configuration (analysis and latex)

4. Documentation (docs)

3.4.1 tools
The tools directory contains the skillbed itself. This is the source code and the global
configuration of the skillbed. The global configuration defines how the skillbed should be run,
for example on which servers.

The tools directory contains a few configuration files that are explained in 4.1 Global
configuration. It also contains three directories:

1. matlab

2. python

3. templates

The matlab directory will be empty initially, but can contain additional matlab functions used in
the model result analysis. The python directory contains the skillbed source code, including
possible hooks (see 7.4 Hooks). The templates directory contains two types of templates:
Matlab and HTML templates (see 7.3 Templates).

23 November 2011, draft

Skillbed

13 of 1

3.4.2 input and data
The input directory contains the test configurations. The directory can contain an arbitrary
directory substructure. In this substructure, the skillbed looks for .config files. Any directory
containing such file is expected to contain one or more tests defined in this configuration file
(see 4.2 Test configuration) and is called a test directory. The name of the test is defined as
the path from the input directory to the test directory, where slashes (\ or /) are replaced by
underscores (_). For example: the file input/collection1/test2/.config corresponds to test
collection1_test2.

A single test configuration can contain multiple model configurations, which are called runs.
Each run should be configured in the .config file and be stored in its own subdirectory. Files
that should be available to all runs can be placed in the test directory itself.

The data directory is originally designed as the storage location for measurement data. This
data can also be placed in the input directory along with the model configuration, but
separation of measurements and models might be useful. The data directory is available from
the analysis scripts and should only contain directories that correspond to full test names, so
where the slashes are replaced by underscores.

3.4.3 analysis and latex
The analysis directory is similar to the data directory. It contains the Matlab scripts for the
model result analysis (see 4.2.1 Analysis configuration). The scripts can also be placed in the
input directory, if preferred. In contrast to the data directory, the analysis directory can be
subdivided in multiple folder levels like the input directory, although this is not obligatory. Any
partial match with the test name or test plus run name will work.

The latex directory contains the blueprints of the final reports that are produced and
distributed by the skillbed. Multiple reports can be defined in multiple subdirectories. The
_tests directory, however, is not a report configuration, but can contain text snippets that can
be used throughout the reports. This directory can be used to store independent texts
describing tests.

3.4.4 doc
The documentation directory contains this manual and possible other documentation files.

Skillbed

23 November 2011, draft

14 of 1

4 Configuration

The configuration of the skillbed is done at two levels: globally and for individual tests. The
global configuration determines how and where the skillbed is run, but also provides some
default settings for the individual tests. These default settings and more can be configured
using the test configurations.

Configuration options are different from command line options, since command line options
are restricted to a single skillbed run. Command line options may overwrite configuration
options, though. This chapter explains all configuration options. The command line options
are explained in the next section.

4.1 Global configuration
The main global configuration is divided over two files: skillbed.inst and skillbed.cfg. The
skilbed.inst file is basically a list of environment variables. The variables can either be set as
machine environment variables or be set in this file, which is loaded in the machine
environment during the initialization of the skillbed. The variables are machine dependent.
This file should therefore never be committed to the Subversion repository. The environment
variables that can be set using this file are listed in Table 4.1.

Table 4.1 Environment variables

Name Value
PYTHON_PATH Path to python executable
PDFLATEX_PATH Path to pdflatex executable
BIBTEX_PATH Path to bibtex executable
MATLAB_PATH Path to Matlab executable
MPIEXEC_PATH Path to mpiexec executable
SVN_USERNAME Username to be used to access the SVN repository (read-only)
SVN_PASSWORD Password accompanying the SVN username
SCP_USERNAME Username to be used to access the SCP server
SCP_PASSWORD Password accompanying the SCP username

The files skillbed.cfg contains the machine independent part of the global configuration. It
overwrites the values in the tools/python/skillbed/config/skillbed.def file. The file has an INI
structure that consists of several sections indicated with a header between brackets ([and]).
Each section has a collection of name/value pairs that are explained in Table 4.2.

Some sections do not consist of a pre-defined number of options. For example, the number of
reports that can be generated is infinite. Each option in the reports section defines a new
report with the name equal to the name of the name/value pair used. The same holds for
network paths, repositories, binaries and recipients.

You can create a global configuration with a name different from skillbed.cfg. In order to use
such file, you will need to specify its name as command line argument, as will be explained in
the next chapter. This is useful if you need different configurations or want to test a new
configuration.

Table 4.2 Global configuration options

Section Name Value
general name Name of the skillbed configuration (arbitrary string).

23 November 2011, draft

Skillbed

15 of 1

Section Name Value

Default: Skillbed

 binary Name of the binary to be tested.

Binaries are either be obtained in a collection of files, when
this name is used to select the right file, or different
versions of binaries come with different names, when this
binary name is used to rename these different versions.

Default: model.exe

 params The default command line parameters to be used when
starting a test. This value can be overwritten using the test
configurations.

 call The default command line structure to be used when
starting a test run. This value can be overwritten using the
test configurations.

The following markers can be used:
{runid} Unique skillbed run identifier
{binary} Filename of binary
{type} Type of run (custom or default)
{test} Name of test
{run} Name of run
{nodes} Number of nodes
{runtime} Maximum runtime in minutes
{exe_path} Path to binary (incl. filename)
{bin_path} Path to binary (excl. filename)
{input_path} Path to input files of test
{test_path} Path to working directory of test
{run_path} Path to working directory of run
{params} Command line parameter list
{params.X} Single command line parameter

(where X is the parameter index)

Default: {exe_path} {params}

 build The command line structure for compilation of the binary
using Visual Studio.

The following markers can be used:
{exe_path} Path to devenv.exe
{slnfile} Path to solution file
{cf} Configuration name
{pf} Platform name

Default: "{exe_path}" {slnfile} /Rebuild "{cf}|{pf}"

storage path Path to central storage location.
 scp Path to the SCP storage location.

Syntax:

Skillbed

23 November 2011, draft

16 of 1

Section Name Value
scp = <webaddress>:<path_from_root>

network <any drive letter> Network address, username and password separated by a
space. The network address is mapped to the drive letter
during initialization of the skillbed.

For example:
p = \\filer\project user password

servers svn URL to the Subversion repository where the skillbed
configuration is hosted.

Default:
https://svn.oss.deltares.nl/repos/openearthtools/…/skillbed/

 hosts Comma-separated list of hostnames of skillbed servers.

Syntax:
hosts = <hostname>:<port>

repositories <any name> Subversion repository address that can be used to
download the latest model source code. The repository is
referred to from the binaries section by its configuration
name.

binaries <any name> Binary configuration settings. Two types exist:
1) Compilation using Visual Studio. This type consists of

5 values separated by spaces:
i. Name of subversion repository (reference to

repositories section)
ii. Name of solution file including relative path from

repository root
iii. Configuration name
iv. Platform name
v. Name of resulting executable including relative

path from repository root
2) Download. This type consist of 2 values separated by

spaces:
i. URL to executable or ZIP file containing the

executable and possibly other files. URL’s should
start with the protocol (e.g. http://). For local files,
use the file:// protocol followed by the drive letter
and a colon (e.g. file://d:/some_path/)

ii. Platform name
reports <any name> Report configuration settings. A report is configured using

two values separated by spaces:
i. Path to the main TEX file relative to the latex

directory (e.g. main/report.tex)
ii. Working directory for generating the reports

relative to the analysis subdirectory in the run
directory (e.g. runs/<runid>). All references to
figures and tables are relative to this working
directory. The working directory consists of the
following components (in this order, but may be

23 November 2011, draft

Skillbed

17 of 1

Section Name Value
shortened): <binary>/<type>/<test>/<run>/. Where
<binary> refers to an item in the binary section,
<type> is either default or custom and <test> and
<run> refer to the full test and run name
respectively.

Default:
main_custom = main/report.tex
/trunk/custom/

main_default = main/report.tex
/trunk/default/

cartoon = cartoon/report.tex /

templates matlab Relative path to main Matlab template. The Matlab script
generated using this template is run to analyze the model
results. For each test run, a rendered version of the
matlab_test template is nested in this main template. This
main template mainly handles the inclusion of toolboxes
and global parameters.

The following markers can be used:
{funcname} File/function name of Matlab

script to be generated (temporary
file name)

{matlabpath} Path to additional Matlab
functions (e.g. tools/matlab)

{networkpath} Path to central storage location
{analysis_calls} Nested code for individual test

run analyses

Default: tools/templates/matlab/analysis.m.tmpl

 matlab_test Relative path to Matlab template for an individual test run.
For each test run this template is rendered and nested in
the main Matlab template defined by the matlab option.

The following markers can be used:
{runpath} Path to test run directory with

model output
{revision} Revision number of executable

being tested, if available.
Otherwise it is zero.

{binary} Name of binary (reference to the
binaries section)

{type} Type of run (custom or default)
{test} Full test name
{run} Full run name
{outputpath} Path to analysis directory of

current test run where output
should be written

Skillbed

23 November 2011, draft

18 of 1

Section Name Value
{datapath} Path to data files for current test

or test run directory (subdirectory
of data directory)

{analysispaths} List of subdirectories of the
analysis directory that (partially)
matches the full test and/or run
name (e.g. subdirectories test_1,
test_1_abs, test_1_abs.run_1 all
matches the test run
test_1_abs.run_1)

{analysisfunc} Function name to be used for
analysis of current test run

Default: tools/templates/matlab/analysis_item.m.tmpl

 publish_bin Relative path to HTML template to list published binaries.
The only marker that can be used is the ${list} marker
(mind the $), which will be replaced by an unordered
HTML list and links to the latest binaries.

Default: tools/templates/publish/index_bin.html.tmpl

 publish_report Similar to the publish_bin option, but is used for generated
reports instead of compiled binaries.

Default: tools/templates/publish/index_report.html.tmpl

mail smtp SMTP server address including port.
 from E-mailaddress used for from field.
 subject Subject of message to end-users containing the latest

skillbed reports.
 message Path to file containing the message body relative to the

tools directory. Default: mail.txt
 notification Path to file containing the message body for the

notification e-mail relative to the tools directory.

The following markers can be used in this file:
{runid} Unique skillbed run identifier
{storagepath} Path to run results at the central

storage location

Default: notification.txt

recipients <any e-mail
address>

List of e-mailaddress that should receive skillbed reports
after a skillbed run is finished. The values are either all to
send all available skillbed reports or a comma separated
list with report names referring to the reports section.

4.1.1 Test lists configuration
As will be explained in the next section, it is possible to select which tests and runs to include
in the current skillbed run using command line options. Possibly, you will need to run a large
selection of tests over and over again. For these situations it is possible to store a specific
selection of tests and runs in a file and use this file as command line argument. These files
are stored in the tools directory.

23 November 2011, draft

Skillbed

19 of 1

Each line in a test list file contains a test to be included in the skillbed run. If only the full test
name is given, all runs within that test are included. If you need to select specific runs, you
can provide both the test and run name separated by a dot. To select two runs from a single
test, you will need two lines.

For example:

test_1
test_2.run_1
test_2.run_3
test_4

...

4.1.2 Miscellaneous
There are some minor global configuration options, like the footer of the help text message.
The help text message is showed upon request from the command line. The message has a
footer containing contact details. This footer is stored as plain text in the tools/footer.txt file.

4.2 Test configuration
All test specific model input is stored in the input directory. This directory can contain an
arbitrary structure of subdirectories. Such subdirectory, at an arbitrary level, is considered a
test directory (i.e. a directory contain model input for a specific test) in case a file named
.config (mind the dot) exists in that directory. This test directory may again contain an
arbitrary subdirectory separating input for different runs from each other.

All directory names leading from the input directory to the .config file, concatenated by an
underscore (_) define the full test name. The names of the runs are defined in the .config file
regardless of the substructure in which the run data is found.

For example, two files define the configuration and model input of a test run:
input/project_1/test_1/.config and input/project_1/test_1/run_1/input.dat. The full test name in
this case is project_1_test_1. If the .config file defines a single run called default, the run
name will be default, regardless of the fact that the model input is found in the subdirectory
run_1.

The .config file has an INI structure that consists of several sections indicated with a header
between brackets ([and]), like the global configuration file. Each section has a collection of
name/value pairs that are explained in Table 4.3.

A run is defined as a separate section. The name of the section is run_<name>, where
<name> is the run name. A separate section categories exists as well, but is not used by the
skillbed, except for the categorization of tests in the skillbed reports. The categorization is
defined in the latex/overview.tex file.

Table 4.3 Test configuration options

Section Name Value
general enable Enable (1) or disable (0) the test. Disabled tests are

treated as non-existent.
 runs Comma separated list of run names. Each run name

should correspond to a section with the name
run_<name>.

 responsible Name and e-mailaddress (between < and >) of the
person responsible for this test configuration.

 analysis Matlab function name for analysis of test results. This

Skillbed

23 November 2011, draft

20 of 1

Section Name Value
is the analysis of the combined result of all runs
within this test and can co-exist with analyses for
each individual run. The Matlab file should be stored
in either the test or analysis directory.

run_<name> enable Enable (1) or disable (0) the run. Disabled runs are
treated as non-existent.

 path Path to the model input used for this run relative to
the test directory.

 params Command line parameters used for this run when
executing the model executable.

 binaries Comma separated list of binaries that should use this
test (references to the binaries section in the global
configuration). Set to all to enable the run for all
binaries. Default: all

 types Comma separated list of run types that should use
this test (custom and/or default). Set to all to enable
the run for all run types. Default: all

 platforms Comma separated list of platforms that should use
this test (win32 or unix). Set to all to enable the run
for all platforms. Default: all

 nodes Number of nodes to use for this run. A number larger
than 1 will call the model using MPICH2. Default: 1

 analysis Matlab function name for analysis of run results. The
Matlab file should be stored in either the test, run or
analysis directory.

 call The command line structure to be used when starting
a test run. The markers specified for the same option
in the global configuration can be used.

 runtime Maximum runtime in minutes. After this run period,
the process will be killes. Default: 60

categories <see
latex/overview.tex>

4.2.1 Analysis configuration
PLEASE BE PATIENT…

4.2.2 Report configuration
PLEASE BE PATIENT…

4.3 Configuration testing
PLEASE BE PATIENT…

23 November 2011, draft

Skillbed

21 of 1

5 Usage

5.1 Starting the skillbed
The skillbed is started from the command line. Both a server and client need to be started, in
that order and possibly on different machines. It is also possible to run a server in local mode.
In this case the server is started by a command line option of the client. Upon initialization of
the client, a server is started on the same machine. Any communication of that skillbed run is
restricted to that machine, so no communication with the central storage location or e-mailing
will be performed.

Using command line options you can alter the settings used for a specific skillbed run. In
principle, there are two types of command line options:

1) Flags, which are command line options that enable/disable a certain functionality

2) Name/value pairs, which give a certain option a specific value

Both types of options start with two dashes (--) followed by the option name. That’s all for the
flags. The name/value pairs are then followed by an equal sign (=) and the value. Some
options come in an abbreviated syntax which consists of only a single dash (-) and a single
character. The name/value pairs are then followed by a space (no equal sign!) and the value.
Some name/value pairs accept a comma separated list of values. In these cases you may
also specify the values none or all to select either no or all options. A full list of command line
options can always we requested using the command line option --help or in abbreviated
syntax -h.

All commands in this chapter are executed from the skillbed source directory, i.e.
tools/python/skillbed and assume files with the .py extension to be associated with a Python
installation with the necessary requirements (see 3.1 Requirements).

5.1.1 Server
The server is started by simply invoking the following command from the command line:

> server.py

By default, the server uses the configuration found in the tools/skillbed.cfg file and listens to
port 8000. These default settings can be altered using the command line options in Table 5.1.

Table 5.1 Command line options for skillbed server/updater

Name Default Description
--port
-p

8000 Port number to listen to.

--delay
-d

0 Delay in seconds before starting server.

--config
-c

tools/skillbed.cfg Path to configuration file.

--help
-h

- Print help message.

The server registers itself at the central storage location for clients to find them. When using
multiple servers on multiple machines, updating all servers with new code and tests may be a
tedious job to do. Therefore an updater shell is created. The updater shell runs a server within

Skillbed

23 November 2011, draft

22 of 1

itself and functions like any other server. Upon request, however, the updater shell can
update and reload the server. The updater shell is invoked as follows:

> updater.py

The updater shell accepts the same command line options as the server. The server itself is
started by the updater shell and does not need to be started manually, in this case.

5.1.2 Client
Now you have either a skillbed server running, possibly within an updater shell, or you plan to
run the skillbed in local mode and want to start the server upon client initialization. For now,
lets assume the first case. Then the client is started by invoking the following command:

> client.py

This will initialize the client, but will not run any tests. Since no tests are ran, no analysis is
performed, no reports are generated and no e-mails are sent. Therefore we need to specify a
test, which can be done using command line parameters. For example:

> client.py –t all

In a sense, this command is the complement of the previous command, since it will run all
tests and then run all analyses and generate all available reports and send these to all known
users. So, be careful in your typing.

Different command line parameters exist for the client that either influence the workflow of the
current skillbed run or are meant for maintenance of the skillbed system. All command line
options for the client are listed in Table 5.2.

Table 5.2 Command line options for skillbed client

Name Default Description
--binaries
-b

all Comma separated list of binary names to be used
(references to the binaries section of the global
configuration).

--types
-y

all Comma separated list of type of runs to be used
(custom and/or default).

--tests
-t

none Comma separated list of tests to be used.

--testlists
-l

none Comma separated list of files containing tests to be
used (see 4.1.1 Test lists configuration)

--reports
-r

all Comma separated list of reports to be generated
(references to the reports section of the global
configuration).

--recipients
-e

all Comma separated list of registered e-mailaddresses.
Each recipient will recieve an e-mail with the reports
that are generated and are specified by the recipient
as report of interest (references to the recipients
section of the global configuration).

--config
-c

tools/skillbed.cfg Path to configuration file.

--servers
-v

 Comma separated list of servers to be used,
including their port number (separated by a colon).

--source
-o

 Instead of compiling the source code obtained from
the Subversion repository, you can specify a path to a
local source code that needs to be compiled.

23 November 2011, draft

Skillbed

23 of 1

Name Default Description
--analyze
-a

 Instead of compiling/downloading the model and run
all tests, use existing model results from a specific
run with provided run id.

--skip-analysis - Skip running Matlab for the test analysis.
--skip-report - Skip generation of reports.
--skip-network - Skip copying results from and to network.
--skip-clean - Skip cleaning local results.
--skip-publish - Skip publishing of binaries and reports.
--test-report - Instead of starting a skillbed run, try to render one or

more reports without content to see if the Latex code
is correct.

--max-nodes
-m

1000 Maximize the preparation of nodes. Can be used to
quickly run a single run.

--notify
-n

 Send notification to this e-mailaddress when skillbed
run is finished.

--interpret - Add interpretation of test results to reports (see 4.2.2
Report configuration).

--purge - Purge any run results and log files from client and
servers.
WARNING: This will actually delete a whole lot of
data!

--gui
-g

- Start client with web GUI (see 5.2 Graphical User
Interface (GUI)).

--service
-s

- Start client as web service. This is similar to the –gui
option, but without starting a browser.

--local - Upon initialization of the client, start a server that
listens to port 9000 (instead of 8000) and only use
this server. This server will not be registered for the
use with other clients.

--shutdown - Shutdown all servers afterwards.
WARNING: This will shutdown all skillbed servers!

--update - Start client web GUI in debug mode.
WARNING: This will cause huge security issues
where your computer can be controlled remotely by
anyone with a webbrowser.

--debug - Update skillbed servers before starting the skillbed
run. This will include only the servers running in an
updater shell (see 5.1.1 Server)
WARNING: This will restart all skillbed servers!

--help
-h

- Print help message.

5.2 Graphical User Interface (GUI)
PLEASE BE PATIENT…

5.3 Update servers
PLEASE BE PATIENT…

Skillbed

23 November 2011, draft

24 of 1

5.4 Log files
PLEASE BE PATIENT…

23 November 2011, draft

Skillbed

25 of 1

6 Troubleshoot

6.1 Client
PLEASE BE PATIENT…

6.2 Server
PLEASE BE PATIENT…

Skillbed

23 November 2011, draft

26 of 1

7 Code structure

7.1 Packages
PLEASE BE PATIENT…

7.2 Workflow
PLEASE BE PATIENT…

7.3 Templates
PLEASE BE PATIENT…

7.4 Hooks
PLEASE BE PATIENT…

