
Understanding Gridfit

John R. D’Errico
Email: woodchips@rochester.rr.com

December 15, 2006

1 Introduction

GRIDFIT is a surface modeling tool, fitting a surface of the form z(x, y)
to scattered (or regular) data. As it is not an interpolant, it allows the
existence of replicates in your data with no problems. What do I mean
by an ”interpolant”? An interpolant is a code that is designed to always
exactly predict all supplied data. GRIDDATA and INTERP1 are examples
of interpolants. GRIDFIT is more accurately described as an approximant.
It produces a surface which represents the behavior of the supplied data as
closely as possible, allowing for noise in the data and for replicate data.

A nice feature of GRIDFIT is its ability to smoothly extrapolate beyond
the convex hull of your data, something that GRIDDATA cannot do.1 Fi-
nally, GRIDFIT does its extrapolation in a well behaved manner, unlike how
polynomial models (for example) might behave in extrapolation.

GRIDFIT also allows you to build a gridded surface directly from your
data, rather than interpolating a linear approximation to a surface from a
delaunay triangulation.

This document describes the ideas behind GRIDFIT.

2 The mechanical and philosophical underpinnings
of GRIDFIT

How does GRIDFIT work? Imagine a thin, flexible plate, attached to your
data points by elastic bands. Each of these elastic bands draws the plate
towards its corresponding data point, stretching only in the z direction. If
your data points were to fall on a simple planar surface,

z(x, y) = a0 + a1x + a2y (1)
1except by the slow, memory intensive ’v4’ method
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then the result will be a least squares plane. This works because the potential
energy stored in a elastic band2 will be proportional to the square of its
extension.

Now imagine that the data points do not fall on a plane, but arise from
some curved surface z(x, y). While the plate itself is flexible, I’ve allowed
it some finite and non-zero bending rigidity that the user can control. The
bands connecting the plate to our data points will pull the plate into a
curved shape, while the bending rigidity of the plate resists deformation.
The relative stiffness of the plate, as compared to the strength of the elastic
bands will cause some tradeoff between fitting the data as well as possible
and a smooth overall surface. It is this plate stiffness that allows GRIDFIT
to smoothly extrapolate beyond the data itself. Of course, extrapolation
beyond the data will be well behaved, since the plate will tend to become
locally planar wherever there is no data to deform it.

The tradeoff between stiffness of the plate and the effective spring con-
stant of the bands connecting the plate to the data allows the user to choose
anything between the extremes of a purely planar fit, to a crinkly thing that
can follow the bumps and hollows of noisy data.

3 The methodology of GRIDFIT

First, lets look at how GRIDFIT predicts a value at any location. Since the
GRIDFIT surface is defined by values at a set of nodes forming a rectangular
lattice, any data point must lie in one of these rectangular cells of the lattice.
(One requirement of GRIDFIT is that the boundaries of its lattice must form
a bounding box for all of the data supplied in the (x, y) plane.)

Given a point inside a single rectangular cell of the lattice, there are
three methods supplied in GRIDFIT to impute a value at that point. They
are:

• Nearest neighbor interpolation

• Triangle (linear) interpolation

• Bilinear (tensor product linear) interpolation

These methods were chosen to be simple to generate, as well as because
they are very ”local” methods. They require no more than a few local values
from the grid to predict the value at each point. This local nature makes
the sparse linear least squares problem as efficient as possible, by keeping it
maximally sparse.

If we think of the surface that will result from GRIDFIT as essentially
a low order spline, it is easy to visualize the idea that interpolation at any

2perfect, linearly elastic
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point inside the grid is just a linear combination of the values at the grid
nodes in the locality of the given point. Thus, we can write the interpolation
problem in general as a linear algebra problem

Ax = y (2)

where the vector x is of length nx · ny (nx is the number of nodes in the
x direction, and ny is the number of grid nodes in the y direction.) Thus
A has n rows, corresponding to each data point supplied by the user, and
nx · ny columns.

It will not be atypical to expect that there will be more columns than
rows in this ”regression” problem. For example, a user with 100 data
points might choose to build a gridded surface which has 100× 100 nodes.
The resulting regression problem will be massively underdetermined. As
such, standard regression techniques, involving a solution like x = A\y or
x = pinv(A)*y, will be inappropriate.

The approach that GRIDFIT takes, with its plate-like metaphor, is to
solve a regularized problem. At every node of the surface, GRIDFIT3 at-
tempts to force the (first) partial derivatives of the surface in neighboring
cells to be equal. In effect, this results in a second set of linear equations of
the form

Bx = 0 (3)

where the derivatives are approximated using finite differences of the surface
at neighboring nodes.

The main alternative regularization method in GRIDFIT is the ’lapla-
cian’ method. It attempts to force the sum of second partial derivatives to
zero. This is actually closely related to the gradient method, but with a
subtly significant difference. Either method will work nicely. (The ’springs’
regularizer for GRIDFIT is a flawed one, at least in my humble opinion.
I’d generally recommend not using it without care. I’ve left it in the code
because it has interesting properties in extrapolation.)

The result of any of these regularizers is a system of the form Bx = 0.
Coupled with the interpolation system, Ax = y, we solve them in combina-
tion using a simple trick. First, I scale A and B so that each matrix has a
unit 1-norm. This helps to eliminate scaling problems with the derivatives.
Then I solve for the vector x such that

‖(Ax− y)‖2 + λ‖Bx‖2 (4)

is minimized. Note that the parameter λ, nominally 1 as a default in
GRIDFIT, allows the user to control the relative plate ”stiffness”. As λ
approaches zero, the plate becomes as flexible as possible. Stiffer plates are
modeled by larger values, λ > 1.

3using its default regularization method of ’gradient’
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4 Tricks with tiles

What can you do when a GRIDFIT problem is simply too large even for
the sparse matrix abilities of MATLAB? This is where the tiling abilities of
GRIDFIT become valuable. What do I mean by tiling? An example might
be appropriate.

>> nodes = linspace(0,1,100);
>> tic,...
zg=gridfit(rand(100,1),rand(100,1),rand(100,1),nodes,nodes);...
toc
Elapsed time is 5.814102 seconds.
>>
>> nodes = linspace(0,1,200);
>> tic,...
zg=gridfit(rand(100,1),rand(100,1),rand(100,1),nodes,nodes);...
toc
Elapsed time is 27.118945 seconds.

To solve for a 100 × 100 grid, GRIDFIT must solve for 10000 unknown
parameters using sparse linear algebra. A 200 × 200 grid is nominally 4
times as large, and it took my computer a bit more than 4× as long to
solve. However, a 2000× 2000 grid will probably take much more than 400
times as long to solve as a 100 × 100 grid. It will likely take very much
longer, if it runs at all without exceeding the memory limits, due to the
much slower access times for virtual memory. For example, my computer
took 1020 seconds to solve a 500× 500 problem.

>> nodes = linspace(0,1,500);
>> tic,...
zg=gridfit(rand(100,1),rand(100,1),rand(100,1),nodes,nodes);...
toc
Elapsed time is 1020.657834 seconds.

A trick that can work, IF you have enough data to adequately populate
each tile, is to break down the domain of a large grid into smaller chunks,
each of which can be quickly populated by GRIDFIT. Then GRIDFIT com-
poses each chunk into the whole surface. To smooth out any artifacts at
the edges of each tile, GRIDFIT allows the tiles some fractional overlap, in-
terpolating between them in the overlapped region. Thus the tiled solution
below was accomplished with essentially no dips into virtual memory, so it
took far less time to generate.

>> nodes = linspace(0,1,500);
>> tic,...
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zg=gridfit(rand(100,1),rand(100,1),rand(100,1),nodes,nodes,...
'tilesize',200,'overlap',0.2);...
toc
Elapsed time is 211.946853 seconds.

Note: these random surfaces were generated purely to show speed of
estimation. They are of course purely garbage. Also, only 100 data points
may well be inadequate to estimate a tiled surface. GRIDFIT is not strongly
dependent on the number of data points for its speed, so that number did
not have an impact on the speed of estimation.

A picture:

% Users of gridfit who have really huge problems now have
% an option. I'll generate a large amount of data,
% and hope to model a fairly large grid − 800 x 800. This
% would normally require gridfit to solve a system of
% equations with 640,000 unknowns. It would probably be too
% large of a problem for my computer, were I to use gridfit
% on the full problem. Gridfit allows you to break the problem
% into smaller tiles if you choose. In this case each tile
% is 120x120, with a 25% (30 element) overlap between tiles.

% Relax, this demo may take a couple of minutes to run!!!!

n = 100000;
x = rand(n,1);
y = rand(n,1);
z = x+y+sin((x.ˆ2+y.ˆ2)*10);

xnodes = 0:.00125:1;
ynodes = xnodes;

[zg,xg,yg] = gridfit(x,y,z,xnodes,ynodes,'tilesize',...
120,'overlap',0.25);

surf(xg,yg,zg)
shading interp
colormap(jet(256))
camlight right
lighting phong
title 'Tiled gridfit'
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Figure 1: An Example
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