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Abstract

This paper proposes a novel method for sensitivity analysis, able to handle depen-
dency relations between model parameters. The foundation for this new method
is the Morris algorithm, popular for its applicability and ease of implementation.
However, in its classic formulation, this algorithm assumes independence between
model parameters. We tackle this limitation by allowing the user to describe the
dependence between parameters using a copula. The sampling strategy is further
expanded using Latin hypercube sampling with dependence, leading to the identi-
fication of a set of model runs for deriving measures of sensitivity. This approach
preserves the widely reported efficiency of the classical Morris method, while hon-
oring the prescribed dependence structure between model parameters.

Our results show that, for the Delft3D-WAQ sediment transport model applied
on the North Sea domain, the ranking of the model parameters is in accordance
with the knowledge obtained from the prior expert judgment exercise. Under the
same conditions, the ranking provided by the classic Morris method sees unexpected
results, difficult to be explained by the underlying physical processes. We conclude
that the extended Morris method is preferable over the classic Morris method when
dependence relations between the model parameters are known. Due to its flexibil-
ity, the proposed method is applicable to a wide range of models and dependence
scenarios.
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1 Introduction

Suspended particulate matter (SPM) is composed of fine-grained inorganic
particles and materials of organic origin that are suspended in the water col-
umn. This material plays an important role in the ecology of coastal areas, as
it influences the underwater light conditions (directly connected to the phyto-
plankton growth), the amount of nutrients in the water, the material transfers
to the seabed and other environmental processes. As such, the SPM concen-
tration plays a crucial role in the dynamics of aquatic ecosystems. At the same
time, the increasing number of human activities along the shorelines (fishing,
sand and gravel extraction, tourism, industry) often disturb the natural equi-
librium of the natural sediment transport processes. To assess and monitor
the possible impacts on the sediment transport patterns, models are used to
estimate and forecast the sediment movement, under the combined action of
both natural factors and human interference.

The current study concerns the southern North Sea area, a relatively heav-
ily impacted marine system, which receives the run-off from major rivers and
coastal industries. The sediment transport in this area has been subject to
many studies [1,2], among which the continuous development of the Delft3D-
WAQ sediment transport and water quality model [3,4]. Delft3D-WAQ makes
use of the hydrodynamic conditions (velocities, discharges, water levels, verti-
cal eddy viscosity and vertical eddy diffusivity) and wave characteristics (im-
portant in the sediment resuspension and settling) to successfully integrate
the hydrodynamic, chemical and biological processes involved in the sediment
transport system.

However, calibrating this model is made difficult by the large number of model
parameters, some of which are strongly correlated, due to physical constraints.
Also, the high running time for one simulation - approximately 3 hours per
simulation on a coarse grid and 11 hours for a finer grid - imposes additional
restrictions on the calibration efforts. This gave rise to the question of whether
priorities can be defined among the model parameters or whether the number
of parameters to be used for calibration could be reduced.

Fortunately, in previous studies [5,6,7,8,9], sensitivity analysis has been suc-
cessfully used to identify the set of parameters with the highest impact on
the model output variability. After this assessment, the model calibration can
focus solely on this significant set, while the other parameters can be fixed
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to their maximum likelihood values (for example, determined after an expert
judgment exercise).

Among the various methods traditionally used for sensitivity analysis [10,11],
the method developed by Morris [12], in particular, has seen widespread use
[13,14,15] due to its simplicity and computational efficiency. Unfortunately,
in its initial formulation, the Morris method assumes independence between
model parameters. This can be a limiting factor, since, in many cases, the
physically-induced dependencies can not be overlooked. For example, Cam-
polongo et al [16] had to eliminate certain parameters from their analysis,
specifically because of this limitation.

In this paper, we formulate an extension to Morris’ method, which opens the
possibility to control the sampling pattern of the parameters, based on prior
information about dependency between (groups of) model parameters. The
extension introduces a novel mechanism using the copula concept to constrain
each stage in Morris’ sampling strategy. The application on the computa-
tionally expensive Delft3D-WAQ sediment transport model confirms that the
method is able to provide physically sound results regarding the parameter
ranking, even in cases where the feasible number of simulations is limited.
This confirms the relevance of the method in identifying the parameters hav-
ing strongest effects on the variability of the model predictions.

The content of the paper is structured as follows. First, we present the Delft3D-
WAQ sediment transport model and the dependence relationships between the
governing model parameters. Next, we give a brief review of the classic Morris
sensitivity analysis method. We then propose a geometrical reinterpretation of
Morris’ sampling strategy, described in three successive stages. With this new
insight at hand, we formulate generalized mechanisms to constrain each stage,
by conditioning on prior information about parameter dependence. Finally,
the results of the new sensitivity analysis method applied on the Delft3D-
WAQ model are presented and compared with the results the classical Morris
method.

2 The Delft3D-WAQ sediment transport model for the southern
North Sea

With an extensive history of maritime commerce, the North Sea is one of the
most intensively traversed sea areas. It is bordered by highly industrialized
and densely populated countries conducting mineral extraction, diking, land
reclamation and other activities. The main sources of sediments are the Dover
straits, the Atlantic Ocean, the bed erosion sediment generated by river in-
flows, coastal erosion and other sources [17]. The SPM concentration varies in
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(a) Discretization grid (b) The buffer model

Fig. 1. Delft3D-WAQ spatial discretization grid for the North Sea (left) and
schematic representation of the buffer model [19] (right)

both time and space, as a response of the seabed to the hydro-meteorological
forces that result from the interaction between waves, winds, currents and
external factors.

For example, the breaking waves in the near-shore areas, together with various
horizontal and vertical current patterns are constantly transporting beach
sediments. Sometimes, this transport results in only a local rearrangement of
sand, other times, there are extensive displacements of sediments along the
shore, possibly moving hundreds of thousands of cubic meters of sand along
the coast each year. During calm weather conditions, the SPM settles and
mixes with the upper bed layers. On the other hand, strong near-bed currents
generated by tides or high surface waves determine the resuspension of the
SPM from the seabed onto the water column.

The Delft3D-WAQ model is capable to describe the erosion, transport and
deposition of SPM in the southern North Sea with a good degree of accuracy
[3]. In the model, SPM is represented as three different fractions [18]: medium
(IM1, diameter 40 µm ), coarse (IM2, diameter 15 µm ) and fine sediments
(IM3, diameter 1 µm ). The model computes the advection-diffusion, set-
tling and resuspension of the three silt fractions of SPM , given the transport
velocities, mixing coefficients and bed shear stress adopted from the hydro-
dynamic and wave models. The spatial domain is covered by an orthogonal
grid of 134 × 165 cells, with a resolution that varies between 2 × 2 km2 in
the coastal zone and 20× 20 km2 further offshore, as illustrated in (Figure 1).
Also, in order to capture the vertical structure of the flow, together with the
stratification and mixing of SPM caused by the tidal influence in the domain,
the water depth is modeled by 12 sigma layers, with variable thickness (in-
creased resolution near the seabed). The water surface is represented by the
first sigma layer and it is calculated as 4% of the water depth.
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Recently, Delft3D-WAQ has been extended with an improved parametrization
of the resuspension and buffering of the silt fractions from the seabed [19]. This
parametrization enables a realistic description of the periodic and relatively
limited resuspension during the tidal cycle and the massive resuspension from
deeper bed layers observed during high wave events [3]. We describe below the
main features of this approach, more details can be found in [19].

The buffer model contains two bed layers, each interacting with the water
column in a specific way. The first layer, denoted S1, is a thin fluffy layer that
is easily resuspended by tidal currents. On the other hand, the sandy buffer
layer, S2, can store fines for a longer time and releases SPM only during highly
dynamic conditions, such as spring tides or storms. Both layers interact with
the water column, but with different rates, depending on the different physical
processes involved in either settling or resuspension mechanisms.

The deposition towards the layers S1 and S2 is influenced by the settling
velocity (V sedIMi) and a saturation factor α (FrIMiSedS2) that distributes
the flux to the seabed. The main equations describing this process are:

D1,IMi
= (1− αIMi

)Vsed,IMi
CIMi

(1)

D2,IMi
= αIMi

Vsed,IMi
CIMi

(2)

where CIMi
is the concentration of the anorganic fraction, IMi, where i indexes

the three fractions of SPM .

On the other hand, under certain conditions, resuspension events from the
two layers occur. For the fluffy layer, the resuspension of the fractions is pro-
portional to the critical resuspension stress layer (TaucRS1IMi) and to a
resuspension rate from layer S1 (V resIMi). Then, a type of pick-up formula-
tion is applied for the resuspension for the buffer layer. In this situation, the
fines are detained from this layer only beyond critical mobilization conditions.
Finally, erosion is mostly influenced by the critical shear stress (TauShields)
and the overall pick up factor for resuspension pickup from the sandy layer
(FactResPup). These parameters and their relationships are further detailed
in the following paragraph.

2.1 Parameters and dependencies

In total, the model makes use of 71 model parameters which describe the
sediment exchange fluxes between the seabed and the water column. Based on
expert judgment and previous experience with the model, 14 parameters have
been selected as possible candidates for calibration and for further sensitivity
analysis [19]. They are listed in Table 1, where the baseline values represent the
model parametrization before the present study, given as maximum likelihood
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estimates by the experts. When asked to quantify their uncertainty with regard
to these values, the experts also provided feasible ranges, which will be taken
into account during the sensitivity analysis.

Parameter Minimum Baseline Maximum

TauShields 0.4 0.8 1.2

VSedIM1 5.04 10.8 43.2

VSedIM2 43.2 86.4 172.8

VSedIM3 0.1 0.1 5.04

TaucRS1IM1 0.05 0.1 0.2

TaucRS1IM2 0.05 0.1 0.2

TaucRS1IM3 0.05 0.1 0.2

FactResPup 8e-9 3e-8 8e-8

FrIM1SedS2 0.05 0.15 0.4

FrIM2SedS2 0.05 0.15 0.4

FrIM3SedS2 0.05 0.15 0.4

VResIM1 0.05 0.2 0.5

VResIM2 0.2 1 1.2

VResIM3 0.2 1 1.2

Table 1
Model parameters, admissible ranges and baseline values

The values of the 14 parameters need to respect the physical laws and empir-
ical relations governing the fluxes of sediment within and between the water
column and the seabed. More specifically, the long term equilibrium between
the buffer capacity (sediment in the S2 layer) and the water column needs
to be preserved. Otherwise, the model would result in unrealistic outputs,
for example localized accumulation of sediments in the seabed. This necessity
has resulted in a dependence structure between the model parameters, further
described by the following relationships:

• parameters TauShields and FactResPup need to increase or decrease si-
multaneously, so that that the year-average resuspension from layer S2 re-
mains equal;
• for each fraction i = 1, 2, 3, an increase in parameter V SedIMi, needs to

be accompanied by a decrease in parameter FRMiSedS2 (or vice-versa),
so that the settling into layer S2 is roughly preserved and the annual equi-
librium is respected;
• for each fraction i = 1, 2, 3, the parameters TaucRS1IMi and V ResIMi

need to increase or decrease simultaneously, such that the year-average re-
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suspension from layer S1 is roughly conserved.

This framework led to the specification of 7 pairs (as given in Table 2), each
pair formed by two parameters which:

(1) are completely rank-correlated
(2) vary in the same or opposite directions (according to the rank-correlation)
(3) vary simultaneously

Following the expert advice, we assume independence between the pairs them-
selves.

Parameters Rank correlation

TauShields-FactResPup 1

VResIM1-TaucRS1IM1 1

VResIM2-TaucRS1IM2 1

VResIM3-TaucRS1IM3 1

VSedIM1-FrIM1SedS2 -1

VSedIM2-FrIM2SedS2 -1

VSedIM3-FrIM3SedS2 -1

Table 2
Completely correlated pairs of parameters

2.2 Model output and MERIS Remote Sensing SPM

The purpose of the sensitivity analysis is to identify the most important pa-
rameters to be later used to calibrate the model against measured data. For
this purpose, this paragraph will introduce a suitable sensitivity objective
function.

The model computes the total SPM concentration in each water surface grid
cell on an hourly basis (calculated as the summation of the concentration of
the three sediment fractions). In addition to this, we are provided with SPM
measurements retrieved from the optical remote sensing system ESA MERIS.
This system supplies data from the visible, upper part of the water column,
during the overpass of the Envisat satellite over the North Sea, occurring nom-
inally once per day between 9:00 and 12:00 AM UTC. As SPM is a natural
constituent of water, it affects the color of the sea. Therefore, the SPM con-
centrations in the water surface layer (several meters) can be derived from
satellite snapshots, using the VU-IVM HYDROPT algorithm [20]. However,
some SPM pixels need to be rejected for technical or quality reasons (cloudi-
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(a) MERIS data (b) Model simulation

Fig. 2. Comparison between the MERIS data and the corresponding model simula-
tion instance.

ness, land, unreliable retrieval, etc.) and have, thus, been removed from the
measurements data set [20]. Figures 2a and 2b illustrate an example of the
MERIS data versus the model simulation results for the surface layer at the
same time instance.

We define the model error, ε, as the spatial and temporal mean of the absolute
differences between the model prediction and the MERIS data. If a measure-
ment is not available in a given grid cell and time instance, that specific model
output is discarded from the computation. Mathematically, this reads:

ε =
1

N

N∑
i=1

|Modeli −MERISi| (3)

where N is the number of measurements (in both time and space). This func-
tion will be used as the sensitivity objective function. The use of this function
allows for the investigation of the impact the variation in the model parame-
ters has on the SPM concentration the model predicts.

Numerous other possible objective functions can be defined, depending both
on the characteristics of the the modeled system and on the goals of the anal-
ysis. There is also the option of defining an objective function depending on
multiple criteria, that would represent different aspects of the system behavior.
However, the definition of the objective function should be carefully consid-
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ered, as often an unclear definition can lead to results that are difficult to
interpret.

3 The classic Morris method

In this section, the concept of the classic Morris method is briefly presented,
followed by a detailed discussion on the interpretation of the Morris sensitivity
measures.
Given a model, M , with n model parameters, x = [x1, . . . , xn], the goal of the
Morris method is to rank the model parameters according to their average
effect on a particular model output. The method explores all model parame-
ters simultaneously, with a so called one-at-a-time (OAT) design, which has
the great advantage of reduced computational cost. More precisely, the model
parameters are varied in turn and the effect each variation has on the output
is then measured. This is done using the so called elementary effects, which
quantify the variation of the model output due to the variation in the model
parameters.
This technique enable the identification of the model parameters xj affecting
the output in a way that is: (a) negligible, (b) linear and additive, (c) nonlinear
or involved in interactions with other parameters [21]. We note that in the case
that the model has m > 1 outputs, y1, y2, . . . , ym, then, according to [22], the
effects can either be measured separately for each yk (the split method) or in
terms of a scalar-valued function of the yk (for example, an average or a norm).

After performing the sensitivity analysis, efforts can then be focused on cal-
ibration and fine-tuning of the parameters in category (c), while keeping the
other parameters fixed to predefined values. Therefore, in its classic formula-
tion, the Morris method is, essentially, a screening technique.

3.1 Elementary effect analysis

The Morris method [12] determines the statistics of the, so-called, elementary
effects dj, defined as

dj =
M(x1, . . . , xj−1, xj + ∆, xj+1, . . . , xn)−M(x1, . . . , xn)

∆
(4)

which serves as an approximation of the partial derivative of M with respect
to xj. In order to evaluate dj independently of the parameter ranges, each xj
is first scaled to [0, 1]. This maps the parameter space to a unit hypercube,
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Fig. 3. Unit hypercube representation of the parameter space for n = 3 parameters
and p = 4 discretization levels

[0, 1]n, which is subsequently discretized in p levels (an example is illustrated
in Fig. 3). The Morris step,

∆ =
s

p− 1
s ∈ {1, . . . , p− 1} (5)

represents the magnitude of the variation and is chosen as a multiple of the
grid cell size, δ = 1

p−1 .

In order to measure the average effect of the parameter variation on the model
output, elementary effects are calculated r times for each parameter at ran-
domly chosen positions on the grid. This allows for the computation of two
sensitivity measures, the elementary mean and standard deviation:

µj =
1

r

r∑
i=1

dj
(i) σj =

√√√√ 1

r − 1

r∑
i=1

(
dj

(i) − µj

)2
(6)

which provide insight into the relative importance of xj.
Other sensitivity measures could be defined, for example, [14] use the value

of
√
µj

2 + σj2 to build a ranking of model parameters, while [21] recommend
using the absolute elementary mean,

µ∗j =
1

r

r∑
i=1

∣∣∣dj(i)∣∣∣ j = 1, . . . , n (7)

instead of µj, in order to better capture elementary effects of opposing sign
(canceling each other in the calculation of µ).

The meaningfulness of µj, µ
∗
j and σj motivate our choice to use these measures

of sensitivity to assess the overall influence of a parameter. If µj is high, it
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(a) randomly sampled elementary effects
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(b) effects grouped in elementary paths

Fig. 4. Efficient sampling in the Morris method (n = 2, p = 4, r = 3, s = 1):
random sampling results in 12 model evaluations (left); this number can be reduced
to 9 by forming elementary paths (right).

implies not only that the parameter has a large effect on the output, but also
that the sign of this effect does not vary significantly over model simulations.
Meanwhile, in the case that µj is relatively low and µ∗j is high, it suggests that
the examined parameter has effects of different signs depending on the point
in space at which the effect is computed.

Assume that, for a parameter xj we get a high value of σj. This can be ex-
plained by the fact that the elementary effects relative to this parameter are
significantly different from each other, which means that the value of an ele-
mentary effect is strongly affected by the choice of the point in the input space
where it is computed, i.e., by the choice of the other parameters values. We
may therefore assume that this parameter has a high interaction with other
parameters. On the other hand, a low value of σj indicates very similar values
of the elementary effects, therefore implying that xj is not affected by the val-
ues of the other model parameters, i.e. the model is almost linear with respect
to xj.

The analysis described above implies performing a total of 2n ·r model evalua-
tions. Morris [12] proposed a modification that enables an increase in efficiency
of about a factor 2. The modification reuses model runs to compute different
elementary effects, reducing the cost to (n+ 1) · r by grouping the effects into
elementary paths. Such a path starts at a random position on the grid and
sequentially travels one step of length ∆ over each dimension. As can be seen
in Fig. 4b, this generates effects that share extremities, significantly reducing
the number of required model evaluations.

We note that the choices for p, r and ∆ have a significant impact on the
outcome of the sensitivity analysis. If a high value of p is considered, which
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means that a high number of levels will be partitioned, one may think that the
accuracy of the sampling has been increased. However, if this is not related to a
high value of r, many of the levels will remain unexplored. Also, the value of ∆
depends on the choice of p. According to [12], a convenient choice for is ∆ =

p
2∗(p−1) (assuming p is even), while previous studies [21] have demonstrated
that p = 4 and r = 10 produce valuable results in many cases.

4 Copula-based Morris method

The Morris method is conceptually designed for independent model parame-
ters. However, most often, model parameters are related to each other; disre-
garding this association results in an invalid description of the physical system.
Sensitivity analysis based on independent random sampling, as is the one per-
formed by the classic Morris method, is not applicable in these cases, since
it breaks the underlying model assumptions, possibly leading to unrealistic
model behavior (which is not of interest to the analyst). This has motivated
the need to develop a general method for sensitivity analysis. For this reason,
in this section we introduce a novel copula-based approach, able to account
for a wide range of dependencies between the model parameters.

As discussed before, the elementary paths are the edges of the building blocks
of the Morris method. Without loss of generality, consider the case when the
Morris step is equal to one cell, i.e. ∆ = 1

p−1 . Then, as illustrated in Fig. 5,
each path runs on the contour of a grid cell, starting in one of its corners and
ending in the opposite one (since all coordinates are successively altered with
±∆).

The copula-based method relies on the key observation that the sampling of
a path can be done, equivalently, in the following three steps:

(1) Choosing the target grid block
(2) Choosing the starting point as one of the corners of the grid block
(3) Choosing the traversal order of the contour segments, in order to reach

the opposite corner

For example, the path in Figure 5 was obtained by first choosing the blue-
shaded grid cell, then its lower-right corner as the starting point, A. In order
to calculate the elementary effects, a path must be chosen such that all the
parameters, three in this case, are varied, one at a time, with ∆. Note that
there are 6 different ways of traversing this grid cell from A to B. In this case,
we chose to first change parameter x3, followed by x1 and finally, x2. Thus,
determining an order of traversal is equivalent to choosing a permutation of
the set {1, 2, 3}.
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Fig. 5. Geometric reinterpretation of an elementary path (n = 3, p = 3, s = 1)

Note that traversing a path in reverse (from B to A) does not produce new
results, since it decomposes into the same elementary effects. Therefore, there
are two different ways to sample the same path: choosing its start corner and
corresponding permutation π, or choosing its end corner and the reverse of
permutation π. Since this is true for all elementary paths, their probability
of being selected remains uniformly distributed (in accordance to the classic
formulation in [12]).

If the Morris step is higher than one grid cell (5), the only difference is that
the path is drawn on the contour of a s× s grid block (Figure 6). Note that,
even though neighboring blocks intersect each other, they spawn different
elementary paths and, hence, are conceptually disjunctive.

This geometric interpretation allows us to compute the total number of pos-
sible paths on the unit hypercube as:

Ncells = (p− s)n, Ncorners = 2n, Norders = n!,

Npaths = (p− s)n · 2n−1 · n!
(8)

where n is the number of parameters, p is the number of discretization levels
and s is the Morris step size. More importantly, we are now able to introduce
sampling dependence constraints onto the three steps enumerated above.

4.1 Choosing the target grid block

The position of the grid block containing an elementary path gives the range
of values within which the parameters are varied sequentially to compute
elementary effects. Previous studies state that having the paths sufficiently
spread within the unit hypercube is vital for the results of the analysis. For
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Fig. 6. Elementary path for n = 3, p = 4, s = 2

this purpose, [21] introduce a penalty term based on Euclidean distances, while
[23] use latin hypercube sampling [24], instead of Monte-Carlo (see Figure 7a).

The goal of our method is to constrain the sampling of the blocks in accor-
dance to the available information about parameter dependencies (point 1).
To this aim, the first step is to specify a copula [25] which captures these de-
pendencies. Then, in order to ensure a good coverage of the parameter space,
the samples from the copula are distributed to form a latin hypercube. For
example, in 2 dimensions, there will be exactly one sample in each row and
each column (see Figure 7b). The algorithm used to achieve this is Latin Hy-
percube Sampling with Dependence (LHSD), as was recently proposed in [26].
Formally, considering a hypercube of ln grid cells, LHSD operates by taking l
samples from the copula, u(1), . . . , u(l) ∈ Rn, computing the rank statistics,

Rj[i] =
r∑

k=1

1{u(k)[j]≤u(i)[j]} i = 1, . . . , l j = 1, . . . , n (9)

and, finally, the vector containing the coordinates of the lower-left corner of
the sampled cells are determined as:

cell(i)[j] =
Rj[i]− 1

r
i = 1, . . . , l j = 1, . . . , n (10)

Note that, by the nature of LHSD, the number of samples needs to be a
multiple the size of the hypercube. However, sensitivity studies may require
an arbitrary number of samples. To maintain the flexibility of the Morris
method, the LHSD algorithm can be repeated several times, until there is a
sufficient number of samples (the excess can be discarded).
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(b) Latin hypercube reordered samples

Fig. 7. Using LHSD to ensure an even spread of the copula samples within the
parameter space (n = 2, p = 11, s = 1)

4.2 Choosing the starting point

For each sampled grid block, cell(i), the starting corner of the path is randomly
sampled. For this, we first assign an n component binary vector, b, to each of
the block’s corners, as illustrated in Figure 8.

Fig. 8. Binary representation of the starting corner (bs = (1, 0, 0))

With the strategy described so far, the grid block is chosen to respect the
parameter correlations using the copula. For our application, as detailed in the
model description (point 2), it is also required that the positively correlated
parameters increase/decrease together, while the negatively correlated ones,
vary in opposite directions. This variation is governed by the choice of starting
point, bs, within the block. In order to accommodate this, in our extension
to the Morris method, the sampling of bs is constrained using a matrix of
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probabilities:

P [i, j] =

Prob(xi increases|xj increases) , if i 6= j

Prob(xi increases) , if i = j
(11)

A choice of P [i, j] = P [i, i] signifies independence, while a higher or lower value
dictates the nature of the influence. When P [i, j] = 1, the pair will always in-
crease/decrease at the same time, while for P [i, j] = 0, they will always vary
in opposite directions. P is then translated into appropriately correlated real-
izations of the vector bs with the help of dichotomous multivariate Gaussian
distributions, as described in [27].

Another benefit of the binary representation is that, once bs is sampled, we
can identify the the end point of the path, be, by simply negating the binary
representation of the starting point.

4.3 Choosing the traversal order

Finally, the order of traversal is given by a randomly sampled permutation
π(i). Having all of these ingredients, we can compute the path’s vertices by
sequentially negating the components in the starting point’s binary represen-
tation. For example, the path in Figure 8 was obtained using the permutation
{3, 1, 2}, corresponding to the change along the {z, x, y} axes:


x y z

bs → 1 0 0
1 0 1
0 0 1

be → 0 1 1



The last step is to integrate point 3 of the model’s parameter interaction into
this framework. To do this, our extension to the Morris method allows the
definition of groups (in our case, pairs) of parameters. These groups also have
an impact on the structure of the permutations. Specifically, if its members
need to vary simultaneously, then the group will be represented as a single
entity in π. For our model, this means that we need to sample permutations
of length 7, each number representing the pair which needs to be varied to
construct the path.
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4.4 Method summary

To conclude, the copula-based Morris method follows the following outline:

Prerequisites

• A model that takes n parameters, M(x1, . . . , xn), with their corresponding
ranges.
• A copula C that best describes the dependence between the parameters.

In the absence of any prior information the independence copula can be
assumed, whereas, if there are known correlations between the parame-
ters, ρi,j, then a Gaussian copula is appropriate. For more complex depen-
dency structures (e.g. tail dependence), one is free to use a copula from the
Archimedean family (Clayton, Gumbell, etc.) or infer an empirical copula
from a pre-existing set of model runs.
• The number of levels, p, and step size, s, for the Morris method.
• The number of desired paths, r, by taking into account that (n + 1) × r

model runs are necessary.
• The probability matrix P , which will be used to determine the starting

corner for each path. As a rule of thumb and if there is no prior evidence to
suggest otherwise, P can be chosen in accordance to the already specified
correlations, ρi,j, for example:

P [i, j] =
1 + ρi,j

2
i > j (12)

P [i, j] =
P [j, i] ∗ P [i, i]

P [j, j]
i < j (13)

P [i, i] = 0.5 (14)

Algorithm

(1) Define the grid as a p-level n-dimensional unit hypercube.
(2) Sample r vectors, ui, from the copula C.
(3) Compute the rank statistics (9).
(4) Compute the LHSD samples (10), which represent the grid blocks.
(5) For each grid block, determine the start and corresponding end point, as

explained in paragraph 4.2.
(6) Determine the order of traversal of the path’s segments by sampling a

permutation, πi, and determine the path, as explained in paragraph 4.3.
(7) Evaluate the model at each point along the paths and compute the ele-

mentary effects (4).
(8) Compute and interpret the sensitivity measures µi, µi

∗ and σi using (6)
and (7).
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5 Sensitivity analysis results

The methodology described in section 4 has been applied to the Delft3D-WAQ
model (section 2). Recall that, in order to respect the interactions between the
parameters, we separate them into 7 pairs of perfectly correlated parameters.
The dependence relations between the parameters are defined using a Gaussian
copula with the rank-correlations given in Table 2. This formulation allows us
to compute the cumulative elementary effect of each pair, rather than that of
each individual parameter.

At the same time, since the Delft3D-WAQ model is computationally expensive
(3 hours run time on a coarse grid and 11 hours for a fine grid), the number of
simulations that can be performed for sensitivity analysis is limited. Therefore,
the parameter space (unit hypercube) was divided into p = 4 equidistant
levels, on which r = 10 elementary paths were sampled with a Morris step of
s = 2 cells. Therefore, a total number of 80 simulations were performed for
the sensitivity study.

For the sake of comparison, we also performed separate sets of simulations
where the parameters were sampled using Morris’ classic algorithm (thus,
assuming complete independence). The comparative results are depicted in
Fig. 9 and in Fig. 10 and detailed in Tables 3a and 3b.

The results of the copula-based Morris method match the expectations induced
by the physics of the system and defined during the expert judgment exercise.
The most important parameter pairs are, in this order:

(1) TauShields− FactResPup
(2) V SedIM1− FrIM1SedS2
(3) V SedIM2− FrIM2SedS2

As seen in Table 3a, the values of µ and µ∗ for these parameter pairs differ
significantly, which suggests a high interaction with the other pairs. The pair
(TauShields, FactResPup) is mainly responsible for the sand resuspension
processes from the second bed layer releasing silt during high stress events (e.g.
high waves, spring tides) while the pairs (V sedIMi, FrIMiSedS2), i = 1, 2,
are involved in the deposition processes of the medium and coarse particles
from the water column into the two bed layers. We observe that the pairs
(V ResIMi, TaucRS1IMi), i = 1, 2, 3, which are involved in the resuspension
process from the fluffy bed layer by weaker stress conditions (e.g. semi-diurnal
tidal fluctuations), are of less impact on the model output variability. From
this set, the resuspension for the medium sides particles (IM3) has the highest
impact.

On the other side, the results of the classic Morris method rank the first-order
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Fig. 10. Classic Morris method sensitivity results

resuspension rate for medium particles V ResIM1, the critical resuspension
stress from the layer S1 for the coarse particles TaucRS1IM2 and the crit-
ical shear stress TauShields as the top three most influential parameters.
TauShields appears in both rankings as an important parameter,.
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Pair µ µ∗ σ

TauShields-FactResPup 0.023 2.857 3.331

VSedIM1-FrIM1SedS2 -0.077 2.317 3.187

VSedIM2-FrIM2SedS2 0.496 1.228 1.589

VSedIM3-FrIM3SedS2 0.063 0.202 0.233

VResIM1-TaucRS1IM1 0.019 0.171 0.290

VResIM2-TaucRS1IM2 0.003 0.011 0.015

VResIM3-TaucRS1IM3 0.000 0.001 0.002

(a) Copula-based Morris method

Parameter µ µ∗ σ

VResIM1 -0.160 5.002 8.193

TaucRS1IM2 -1.666 3.794 7.939

TaucRS1IM3 2.815 3.304 5.311

TauShields -2.037 2.684 6.153

FrIM1SedS2 -0.546 1.731 3.083

VResIM3 -1.221 1.655 2.652

VResIM2 -0.412 1.423 2.291

FrIM3SedS2 -0.450 1.247 2.706

VSedIM1 -0.732 1.037 2.228

TaucRS1IM1 0.660 1.037 1.678

VSedIM2 0.918 1.013 2.235

FrIM2SedS2 0.483 0.986 1.894

VSedIM3 0.642 0.979 1.523

FactResPup -0.251 0.749 1.559

(b) Classic Morris method
Table 3
Sensitivity measures for the (a) correlated pairs, using the copula-based approach,
and (b) each parameter individually, using the classic Morris method, which does
not allow dependencies. The values are ordered in decreasing order of µ∗.

The comparison shows that, under the assumption of independence, the dom-
inant process is the resuspension from layer S1 followed by the resuspension
from the layer S2, while under the copula-based approach, the dominant pro-
cess is the resuspension from the second layer succeeded by deposition. In the
model setup, S1 represents a thin fluff layer consisting of rapidly eroding mud,
while most sediment is stored in the sandy layer S2. When the bed shear stress
TauShields exceeds a critical value (energetic conditions such as spring tides
or storms) the sandy layer becomes mobile and the sediment is released in
the water column. It is therefore expected that the total SPM concentration
in the water column increases significantly. On the other side, during calm
conditions, the presence of sediment in the water column is influenced by the
deposition rates. As such, the results of the copula-based sensitivity analysis
have a better correspondence with the expected system behavior.
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6 Conclusions

Computer-based models for real-life processes consist of systems of numer-
ous nonlinear equations, with deterministic, as well as stochastic variables.
Increases in the level of detail or accuracy within these models often imply an
explosion in the number of degrees of freedom, sometimes to the point where
a high number of simulations becomes unfeasible even on modern computing
hardware.

In this study, we explored the prospect of performing sensitivity analysis on the
Delft3D-WAQ sediment transport model, aiming to identify the parameters
that have the strongest effects on the variability of the model predictions. The
complexity and non-linearity of the model, along with the engagement of a
great number of parameters, led to the application of the Morris method, due
to its versatility and computational efficiency.

We proposed an extension to Morris’ classical method, allowing it to incorpo-
rate prior information about the dependence structure between model param-
eters into the sampling strategy. The extended method introduces copulas,
which can accommodate a wide range of dependence constraints and are gen-
erally applicable. The sensitivity analysis results we obtained correspond well
with the expected behavior and dynamics of sediment transport in shallow
waters. More specifically, the analysis revealed that the critical shear stress
and the factor responsible for resuspension from the sandy layer S2 have the
highest impact on the variance of the output. Consequently, and after expert
assessment, the results of this study were used as a screening tool for sub-
sequent model calibration, where the 5 significant pairs of parameters were
subjected to a simulated annealing algorithm, in order to determine the opti-
mal values which give the best fit between the model output and the remote
sensing data.

The results of the sensitivity analysis applied for a set of dependent parameters
demonstrate the potential use of the extended Morris method in determining
the key driving factors of a complex model. The method may be representative
for similar studies of complex models worldwide and has been implemented in
a generic approach. For this scope, the Matlab codes for the method can be
download from: Adress repository.
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