
Case 3b: Working with extreme scenarios 
 
Case 2 described the set-up of a simple probabilistic computation using Hunt’s 
formula. Now it is time to add some real-world trouble to this case. As has been 
explained, Monte Carlo is a robust method, but will become very time consuming 
in case of extremely low probabilities of occurrence. 
 
We use the probabilistic computation from Case 2 as starting point. In Case 2 we 
computed the probability of overtopping of a dike (Figure 1). We will alter the 
characteristics of the dike and boundary conditions to obtain a situation where 
overtopping is very unlikely to occur. 
 
First, we will alter the stochastic variables. Next, we will compute the probability 
of overtopping using both the FORM and Crude Monte Carlo method. Finally, we 
will visualize the results. 

 
Figure 1 Situation sketch 
 
Step-by-step description 
 

1. No additional stochastic variables are introduced in this case, but we will 
choose the water level to be known and give it a value of NAP+0m. Copy 
the M-file from Case 2 and alter the code to do so. 

 
Choosing a relatively low value for the water level will decrease the 
probability of failure. Decreasing the number of stochastic variables will 
make visualization easier as well. 

 
2. You may alter other (stochastic) variables to create an almost 

indestructible dike. For example: 
 

Variable name Value 
hcrest >> NAP+5m 
tan( ) << 1/3 

 
3. Copy the M-file with the limit state function description from Case 2. 

 
4. Execute your script and visualize your results using the plotFORMresult 

and plotMCResult functions. 



 
Additional questions 
If you succeeded in running the probabilistic computations above, you can ask 
yourself the following questions in order to explore the results. The results are 
stored in the Output field of the result variable. 
 

1. Has the FORM computation converged? How many iterations were 
needed? And how many limit state function realizations? 

 
2. How many limit state function realizations were needed in the Monte Carlo 

simulation? How many of these realizations are in the failure domain? Is 
that enough? 

 
3. What is the difference in failure probability computed by FORM and Monte 

Carlo? Is this a large difference? What causes the difference? 
 

4. Are you satisfied with the FORM results? And the Monte Carlo results? If 
yes, you have been aloof. Start over and be extreme! 

 
Troubleshoot 
If you managed to create a real extreme scenario, you noticed that the Crude 
Monte Carlo method may fail to draw enough points in the failure domain to 
compute a (reliable) probability of failure. FORM may even crash, since it can 
reach the limits of the variable precision leading to infinite values (for example, 
try to reduce the standard deviations of the wave parameters). 
 
We will leave FORM for what it is at this moment and concentrate on the Monte 
Carlo method. There are two possibilities available in the OpenEarth probabilistic 
toolbox to solve the problem concerning extremely small probabilities: 
 

 Importance Sampling 
 Directional Sampling 

 
Directional Sampling is an alternative for Crude Monte Carlo and works quite the 
same. The same input variables (stochastic variable and z-function) can be used. 
However, the current implementation in the OpenEarth toolbox is still 
experimental. Therefore we will use Importance Sampling for now, which is an 
extension of the Crude Monte Carlo method as we used before. 
 
Importance Sampling shifts the area where most samples are drawn and corrects 
for the error made in the computed probabilities. We will replace the earlier 
defined probability density functions with a uniform distribution between set limits. 
This will be explained step-by-step in the following: 
 

1. Extend your M-file so it creates an Importance Sampling structure for the 
wave height. It has the following layout: 



 
 
is =  
 
      Name: 'H' 
    Method: @prob_is_uniform 
    Params: {0 6} 

 
Where H is the name of the stochastic variable you want to use 
Importance Sampling on and 0 and 6 are the lower and upper limits 
between which samples will be drawn. 
 

2. Add an additional call to the MC routine and extend it with the Importance 
Sampling input. So, feed the variable is to the parameter IS in  the  MC  
routine. For example: 

 
M = MC( ... 
    'x2zFunction',  @x2z,      ... 
    'NrSamples',    3e4,       ... 
    'IS',           is,        ... 
    'stochast',     stochast); 

 
3. Execute your code and visualize your results using the plotMCResult 

function. 
 
4. Now add Importance Sampling to the wave period as well and repeat the 

computation and visualize the results. Use 0 and 8 as limits for the uniform 
distribution. 

 
Additional questions (continued) 
If you succeeded in running the probabilistic computations with extreme 
probabilities of failure, you can ask yourself the following questions in order to 
explore the results. 
 

1. How many limit state function realizations were needed in the Monte Carlo 
simulation? How many of these realizations are in the failure domain? Is 
that enough? 

 
2. What is the difference in probability computed with and without Importance 

Sampling? Is this a large difference? What causes the difference? 
 
3. Can you visualize the convergence of the Monte Carlo computation in 

terms of probability? 
 

Hint: the probability of failure in a Monte Carlo simulation is determined by 
the number of failure points, but the number of failure points is artificially 
increased using Importance Sampling. Normally, all failure points have an 
equal value of one. In case of Importance Sampling the failure points are 



valued individually. These individual values are stored in the field P_corr 
of the output. 


