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Revision Preface

Given an ellipse, one may take one of the two opposite directions as the semi-major axis direction.
Foreman (1977) took the one that lies in the angle range of [0,180), which he called as the northern
axis, as the semi major axis direction. Foreman’s northern major axis convention is adopted by this
revision.

The conversion between the elliptical parameters and the amplitude and phase lag parameters is
a purely geometrical problem. One needs not to be concerned with the so-called astronomical nodal
effects in such conversion. However, when the parameters are used to predict the tides in the ocean
one has to consider the nodal effects. How to charge/discharge the parameters with the nodal effects
are therefore discussed in a new subsection (section 1.2).

Also, the geometrical explanation for the phase angle has been revised for clarity, and the title of

this document has been slightly modified!

Preface

Conversion between the tidal current amplitude and phase lag parameters (for short, referred to as
ap-parameters hereafter) and tidal current ellipse parameters (referred to as ep-parameters hereafter)
is not as trivial as the conversion between Cartesian and polar coordinates. We spend time to figure
it how to do so at one time and then forget it in a few months later (or shorter, my e-folding memory
scale is short, how long is yours?). I have just completed a tidal data assimilation project, in which I
did tons of such conversions with a sketchy MATLAB program. Recently some my colleagues inquired
on how to do the conversion. Given that such inquiries are heard from time to time, I decided to pull
all the relevant material together for convenience. The rest of this document consists of two parts: a
theory on the conversion and several MATLAB programs (requiring Matlab version 5 or higher).
Having gone through the rotary decomposition for tidal ellipse parameters, it would be a waste
if I did not go a step further and show the decoupling of the linear tidal momentum equations, for
the setting for the two cases is the same, and any one who is interested in tidal ellipse parameters is
likely also interested in the tidal momentum equations. Having presented the decoupled momentum
equations, I might go another step to present a solution for the equations. Thus, the main body of the

document consists 1) theories for the ellipse conversions and decoupling momentum equations, and 2)
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programs for conversion between ap- and ep- parameters (ap2ep.m and ep2ap.m) and for calculation of
vertical tidal current profiles (cBEpm.m) and the associated auxiliary programs. An example program
(example.m) is also included to demonstrate how to use ap2ep.m and ep2ap.m.

This document and associated programs are a revision of my first release made a few weeks ago
(you may regard that release as a beta-version if you already have down-loaded it). After that release,
I received good response from Dr. Rich Signell of U.S. Geological Survey, who not only debugged the
program but also gave me many good suggestions, especially on the designs of the notation for the
minus rotary components. I enjoyed discussions with him and would like to express my sincere thanks
to him. I also thank my colleague in BIO, Dr. Charles Hannah, for his proofreading this document.

One more bit before I get into the real business: in putting up the mathematics, I chose a way
that will make readers feel effortless in reading most of the derivations while still manage to keep the
document from being fat. This contrasts to some traditional treatments for expressing mathematics,
where readers are expected to read with pencils and paper. If there is any one out there being offended

by seeing too much details, please forgive me!
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1 Theory

1.1 Tidal ellipse and rotary components

Given tidal currents of u- (east or x-) and v- (north or y-) components, as

U = aycos(wt — ¢y) (1)

vo= a,cos(wt — @) (2)

where a,, and ¢, are the amplitudes and phase lags for the u-components and likewise for a, and ¢,,

and w is the tidal angular frequency, we can form a complex tidal current w as
w = u+iv (3)

where ¢ = \/—1. If we trace w on a complex plane as time goes by a period (T=27/w), we will see an
ellipse. Our interest here is not only in seeing the ellipse, but also in calculating the following ellipse

parameters (see Fig. 1):

e Semi-major axis (referred to as SEMA hereafter where appropriate) or maximum current
velocity. A northern semi-major axis (whose angle with respect to the x-direction lies in [0,
180), anti-clockwisely positive) will be always chosen as the semi-major axis (following Foreman

1977).

e Eccentricity (ECC), the ratio of semi-minor to semi major axis, negative values indicating

that the ellipse is traversed in a clockwise rotation;
e Inclination (INC), or angle between east (x-) and semi-major axis;

e Phase (PHA), angle that the two oppositely rotating circular components have to traverse
from their initial positions for them to meet. When the two circular radial vectors meet the
maximum current occurs, thus PHA is also closely related with the maximum current time

(= PHA /frequency).
Let us continue from (3):

w o= u-+w

= aycos(wt — ¢y) + 1a, cos(wt — ¢,)



Ellipse 1, (red) green (anti-) clockwise component

Figure 1: An ellipse can be constructed by two opposite rotating circular radial vectors (red: anti-
clockwise, green: clockwise circle). The direction of the longer circular radial vector dictates the
rotating direction of the elliptical radial vector (blue). As they are drawn, the two circular radial
vectors are at their initial positions; half of the angle spanned by them is the so-called phase angle,
(i.e., PHA=/ ROP=/ GOP). The initial current vector is indicated by the blue vector. The angle
between the blue vector and the purple semi-major axis, (i.e., Z COP), should not be mistaken as
the phase angle, although the time needed by the blue vector to reach the major axis is the same
as the red (or green) vector does. This is because although the circular radial vectors rotate in the
same angular speed, the elliptical radial vector does not, which can be clearly seen from the unevenly

spaced small blue beads along its track.



ei(Wt_(bu) _I_ e_i(Wt_(bu) . ei(Wt_(bv) _I_ e_i(Wt_(bv)
= ay + 1y

2 2
_ Ay €~ Pu —; ia, e Gt 1, €% ‘; iaye'? ot (4)
= wpem + wme_m (5)
Ly, i) L, emii=m), (6)

In (4)-(3) we have introduced new notations:

wy=Wye'r = 1ET (7)
N =) 0
T aue_i(b“ 9)
To= e (10)

where (9) - (10) define @ and © as u- and v- complex amplitudes respectively, the minus signs in front
of their phase angles mean that positive algebraic values of ¢, and ¢, represent phase lags — a tidal

™ indicates a complex conjugate operator.

convention, and notation

Thus, we have decomposed an ellipse into two circular components: the term with e“* in (5)
(or (6)) describes an anti-clockwise circle with a radius of W,, and the term with e=** describes a
clockwise circle with a radius of W, (figure 1). Depending on whether W, is greater than, equal to
or less than W, the ellipse will traverse either anti-clockwise, rectilinear, or clockwise.

The following discussions assume that all the angles involved in the calculations are valued in the
range of [—m, 7) (or equivalently [—180,180)). Upon completion of the calculations, one may map the
resultant angles, INC and PHA, to [0, 27), as is the case in ap2ep.m listed in section 2.

When the two circular radial vectors are aligned in the same direction, the tidal current will reach

its maximum. From, (6), we can see that will happen when
wt+0, = —wt+ 0, +2kr (11)

where integer k = 0,£1,£2,4£3,---. Denote ¢, as a ¢ satisfying the above criterion, then the phase

angle as introduced above is wt,, ., which is given by

PHA = wityy = ———F + k. (12)



It is sufficient to assign k& with value of either 0 or 1. The two sensible k values correspond to the fact
that the two oppositely rotating circular radial vectors will meet twice in one tidal period. Accordingly
there are two directions along which the rotating circular radial vectors will be aligned successively and
either of which can be equally well picked up as the direction for the semi major axis. Foreman (1977,
p. 13, Manual For Tidal Currents Analysis Prediction, www.ios.bc.ca/ios/osap/people/foreman.htm)
adopted a so-called northern axis convention, in which he always picks up the northern axis (whose
angle lies in [0, 180)) as the semi-major axis. Note this convention may pick up the first or the second
meeting time of the two rotating circular radial vectors as the maximum current time depending on
the initial positions. For the sake of popularity of Foreman’s tidal analysis package, his northern axis
convention is adopted here.

Substitute (12) into (6), we can have a current vector whose length is maximum,

Wnaz — Wpel(tha.r‘l‘ep) _I_ Wme_Z(tha.r_em)

; M_,m)

) (2

] ]
7 m Pk

= Wpe'( 2

] ]
7 m+ Ptk

. Omt0p
. ( 5 i —5—— 7r—|—2k7r)
= Wpe

I

Om+0p
T—I—kw

= (W, +Wy)e (13)
Thus, the maximum current, or semi-major axis (SEMA), is

SEMA = |wpee| = W+ Wy (14)
and its direction, or the inclination, is

INC = arg(wpmas) = ———— +kr. (15)

According to Foremans’ northern axis convention, k can fixed by using

mod(@ + 27, 27)

T

where [-] is an operator for taking integer part of the operand.

A geometrical interpretation of the phase formula, (12), and the inclination formula, (15), can be
given as follows: the two oppositely rotating radial vectors are initially separated apart by 6, — 6,,
as is shown by the green and red vectors in Fig. 1; half of this angle difference is the angle that each

of the radial vectors has to rotate before they can meet at their middle point (6,, + 6,)/2 when the



maximum current occurs. If 8,, >= 60,, k = 0 corresponds to the first maximum current time and

k =1 the second maximum current time; if 6,, < 6,, k =1 and k = 0 correspond to the first and the

second maximum current times respectively.

When the two circular radial vectors are aligned in opposite directions, i.e.,

wt+0, = —wt+0,+ (2k+ )7

then the tidal current reaches minimum in its speed. At this time, t = ¢,

8, —0 1
tin = . 2 k N
w 5 + (k+ 2)71'

and

i(em;ep+(k+%)7r)
Wimin = Wpe

A Om+0p A Om+0p

i\ =3 iz =) iz

= Wpe e +W,e e ‘2
Om+0p |

¢ 3 +5)

= (W, 4+ Wye™™) e'(

Om+0p |
¢ 2 +5)

T

therefore, the minimum speed of the tidal current, or semi-minor axis (SEMI) is

SEMI = |wpin| = W, — Wy,

and its angle is

Thus, the eccentricity, ECC, is

SEMI W, — W,

BECC = = .
cC SEMA ~ W, + W,

When W, > W,,, ECC is negative and the ellipse rotates clock-wisely.

(18)

(19)

(20)

(21)

(22)

The above is the conversion from ap-parameter to ep-parameter, and is used by the program

ap2ep.m listed in section 2. Now consider the inverse: given the four ep-parameters of SEMA, ECC,

INC, and PHA, how can we recover ap-parameters of a,, ¢, @, and ¢,?



As a middle step, we need to recover W, 0, w,, W,,,, 8, and w,,. From (14), (20) and (22), we

can have

14+ ECC

W, = “SSEMA
W, = 71_2ECCSEMA

and from (12) (when k£ = 0) and (15), we can have

6, = INC—PHA

8,, = INC + PHA.
Hence we can know

_ —if,
w, = Wpe

Wy, = Wmewm.
We then can know further from (7) - (10) that

aue_“b“ = wy+w

aye” = = (w, —wk)

So,

ay, = |wp,+ wy

¢y = —arg(wp+ wy)
and,

ay, = |(wp —wp)|

by = —arg (M)

1

The program ep2ap.m listed in section 2 assumes this inverse conversion.

(23)

(24)



1.2 On the astronomical nodal correction

The above conversions are independent of astronomical nodal effects; the conversion between the
ap- and ep- parameters has been treated as a pure geometric problem. This implies that the nodal
corrections have been dealt with before you use this conversion package. For example, if you have a
set of ep-parameters obtained by applying tidal analysis to original current vector time series, then
the nodal effects will have been corrected in that tidal analysis package, and so the ep-parameters
are then free of nodal effects. So long as your inputs to ap2ep or ep2ap are nodal effects free, the
outputs will also be nodal effects free. And this is what we want! As the so-called tidal harmonic
constants imply, we wish to record tidal parameters that are time invariant, whereas the astronomical
nodal effects are functions of time.

In using the harmonic constants to predict the tidal currents, however, one has to consider the

nodal effects. In this case, (1) and (2) need to be modified as (e.g., Foreman, 1977)

v = faycos(wt+U+V —¢,) (35)

v = faycos(wt+U+V —¢,) (36)

where f, U and V are functions of time to represent the so-called nodal effects and their notations are
conventional (so be not confused by the meaning of U and u, and V and v). One may then want to
ask what kind of modifications would be required by the conversion formulae if we had started with

the (35) and (36). To answer this, let us redo the derivation

w = w4+

= faycos(wt+U+V —¢,) +ifa,cos(wt+U+V — ¢)

I Ay €' + ia,et®

_ ei(U-I—V)f 5 et 1 e_i(U"'V)f 5 et
_ prei(wt+6‘p+U+V) _I_mee—i(wt—é’m-I—U-I—V)
— W]gel(wt+€1/3) _I_ W;ne_i(Wt_ein) (37)
where
W, o= fW, (38)
o, = 6,+U+V (40)



6., = 60, —(U+V) (41)

and W,, W,,, 8, and 6,, are defined the same as in (7) and (8). Compare (37) with (6), we see
that they are of the same format. Thus the further derivations following (6) can be borrowed here to

produce the final results:

SEMA’ = W+ Wi = f(W,+ W,) = fSEMA (42)
SEMI' = W, — Wi = f(W, - W,,) = fSEMI (43)

SEMA’  SEMA
ECC = = —E 44
cC SEMT — SEvT ¢ (44)

0, +6
INC/ = %JFWZMJFWZINC (45)
/ O;n - 0;) 0m - 0p

PHA' = o b= 2o gk — (U4 V) = PHA = (U +V) (46)

The quantities with primes contain the nodal effects, whereas those without are free of the nodal
effects. The former will describe the actual tidal ellipse at a given time in oceans, whereas the latter
cannot. But the latter is time invariantly valuable! What will actually happen inside of a tidal analysis
program is that the primed quantities will be calculated first from a given time series and then the
unprimed quantities are further calculated in the same line as the above formulae to produce the
results free of the nodal effects. For prediction, the procedure needs to be reversed. The nodal effects
need to be reassigned back to the unprimed quantities so that the actual ellipse in the ocean at the
predicted time can be correctly described. The above formulae provides an easy tool for charging and
discharging of the nodal effects. Note that the eccentricity, ECC, and the inclination, INC, are always
independent of nodal effects.

Comparing (35) and (36) with (1) and (2), one can get a similar set of formulae for discharging

and charging the nodal effects to the ap-parameters.

(aiu ai}) = f(auv av) (47)

(B, 00) = (Pus G) = (U4V). (48)

By now you may have been wandering how you can calculate these nodal effect functions, f, U
and V themselves? These are complicated astronomical functions but you are encouraged to look at
t_vuf.m function in Pawlowicz tidal analysis package (available in www.sea-mat.whoi.edu). If you are

a Fortran man, you will find a similar subroutine in Foreman’s package. Figure 2 shows what these



three time series, f(t), U(t), and V(t), look like for M2 tide at 45N latitude, which I calculated using

Pawlowicz’s t_vuf.m.

1.3 Decoupling of the linear tidal momentum equations

Consider
ou B on 0 [ Ou
o lv = ‘ga—ﬁa(”@) (49)
ov B on 0 [ Ov
E—I—fu = _gé?_y+ £<I/£) (50)

where all the variables are real and other notations are hopefully standard to you. By adding (49)
and ix (50), and using w defined by (3), we can merge the above two equations into the following

complex one,

Jw . d Jw
E—wa = —gvn+ &(VE) (51)
where
0 .0

Assume u and v of the forms given in (1) and (2), and similarly for 7, i.e.,

n = a,cos(wt— ¢,) (53)

which can be split into two circular parts as we did for v and v,

n = aycos(wt — @)
_ ane_“bn et 4 anewn
2 2

— npeiwt T nme—iwt7 (54)

e—iwt

where the tidal convention to define a complex variable is used again, i.e.,

—iby

18

ane n
= 56
n 5 (56)
= (57)
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Figure 2: Three nodal effect functions, f(t), U(t) , and V(t), for M2 tide at 45° N latitude. Long term,

somewhat between 18 to 19 years, periodicity is clearly seen in f and U curves.



Using the above equation and (5) we can rewrite (51) as

Jw,

. ~ d iw . ~ d d m —iw
l(f+w)wp+gv77p—£<1/¥)]e t+[l(f—w)wm+gv77m—£<v ;UZ )]6 L= 0 (58)

Since e™! and e~ are linearly independent of each other, for the above equation to hold, their

coefficients must be zero, i.e.,

. d ( Jdw
i+, = —g v+ (v 52, (59)
) d [ ow,
(= = —g 7t o (v552). (60)
In the literature, you may find the following form of equation for w,,,
: . « 0 [ ow;,
il - = g5 (V). (61)

(where the conjugate signs on w,, may then be dropped) (60) and (61) are equivalent, being complex
conjugate of each other.
1.4 Solutions to w, and w,, when v is depth invariant

Let v be constant and subject the decoupled (59) and (60) to the following boundary conditions

O (wp, wy,)

P = (0,0) atz=0 (62)
I/W = k(wp,wy) atz=—h(z,y) (63)

where k is a bottom frictional parameter. The adoption of this parameter allows us to accommodate
two types of bottom conditions: 1) slip conditions: (w,,wy,).__, # (0,0), this is achieved by setting
K as a finite but non-zero number, in this case, if there is, and shall be, a certain size of bottom stress,
there will be non-zero bottom velocities, which means flows are allowed to have motion relative to
the “bottom” (in this case, the bottom is understood as the top of the bottom boundary log-layer);
2) non-slip bottom conditions, i.e., (wp,wy,). __, = (0,0), in this case flow is not allowed to have
motion relative to the bottom (the real sea bottom), this condition can be achieved by setting k to be
infinitely large.

The solutions to w, and w,, can be found as

wp, = BE, v (64)

wy, = BE, YV (65)
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where the two-letter variables BE, and BE,, stand for two Bottom Ekman spirals in rotating compo-
nents, they spiral near the bottom (just like wind driven surface Ekman spirals near the sea surface)

and approach to geostrophic flow in the interior. Their details are expressed in the following:

g cosh az

BE -~ 9 -

p(2,,7) vo? [ cosh ah 4+ 2 sinh ah] (66)
h
BEm(z,y,2) = ——2|1- o8 ﬁz (67)
v cosh 8h 4 22 sinh 3
where

141 I
= 14+ = 68
C T T o

141 1]

— 1-2
p = AT (69
5. = 271/ (Ekman depth) (70)

The solution to (61) is

w, = BEL v n (71)

where BE? is the conjugate of BE,, given by (67). (Note the function cosh has a property of
(cosh az)* = cosh(a*z)).

As f — o, f — 0 and BE,, becomes indefinite (0/0 type). This can be the situation for the
northern hemisphere, as I have been encountered with recently in my Canadian Arctic archipelago My
tidal data assimilation project. Similar concern exist for BE, for the southern hemisphere where f+o
(hence a) can be zero. This type singularity may be referred as inertial frequency singularity. The
singularity is not essential but we have to remove it before we can feed the formula into the computer,
for otherwise the computer will generate garbage since there are only limited significant numbers used

in a computer. This can be done by expanding (68) and (69) in power series:

BE,(z,y,2) = CZ[ = Z/h) T ]gp_ﬂm? (72)
BEm(z,y,2) = Dill_ 0k ]E;fl; (73)

where
c = il 2 (74)

y (1+ %% tanh ah) 14 e=2ah

12



h? 2e=Ph
D — - g ‘ —Qﬁh (75)
v (1—|— ﬁk—”tanhﬁh) I+e

Assume the ocean depth, h, is always finite and let us now consider a case where ah — 0, which will

arises when either or both i) f — —o or/and ii) ¥ — oo happens. In this limiting case,

‘ _ {%% + %} when v is finite
lim BE,(z,y,2) = (76)
a—0 —% when v is infinite
Likewise,
‘ _ %% + % when v is finite
lim BE,,(z,y,2) = (77)
B—0 —% when v is infinite

Thus we have resolved the apparent inertial frequency singularity.

If use the ratio test, we will see that the radii of convergence of the two series are infinite. Hence
for any significantly large values of ah and §h, the series of (72) and (73) will converge to the same
values of its finite forms of (66) and (67). However we might use the finite forms themselves for the
sake of convergence rate. A MATLAB program, called ¢cBEpm, is listed in the following section for
calculating BE, and BE,,. You will see in that program that when |ah| is less than 1, the series form
is used, otherwise, the finite form is used. (Even when ah goes up to 10, experiments show the series
converges fast enough.) Why is it named as cBEpm? This is because | have lived with the combination
of (59) and (60) and have made a program called BEpm and used it everywhere for calculating BE,
and BE? . So to me “c” in ¢cBEpm means conjugate, but to you it may be interpreted as a reminder
that BEp and BEm are complex valued. (You do not want to punish me by modifying many of my

other programs, do you?).

2 Programs

Three programs are included here: ap2ep.m, which converts ap-parameters to ep-parameters, ep2ap.m
which is the inverse of ap2ep.m, and ¢cBEpm.m for calculating the bottom Ekman spirals (BE, and

BE,,). See the comments in the programs for more details.

2.1 ap2ep.m

function [SEMA, ECC, INC, PHA, wl=ap2ep(Au, PHIu, Av, PHIv, plot_demo)

13



% Convert tidal amplitude and phase lag (ap-) parameters into tidal ellipse

% (ep-) parameters. Please refer to ep2app for its inverse function.

% Usage:

% [SEMA, ECC, INC, PHA, wl=ap2ep(Au, PHIu, Av, PHIv, plot_demo)

% where:

%

% Au, PHIu, Av, PHIv are the amplitudes and phase lags (in degrees) of
% u- and v- tidal current components. They can be vectors or

% matrices or multidimensional arrays.

%

% plot_demo is an optional argument, when it is supplied as an array
% of indices, say [i j k 1], the program will plot an ellipse

% corresponding to Au(i,j, k, 1), PHIu(i,j,k,1), Av(i,j,k,1), and

% PHIv(i,j,k,1);

%

% Any number of dimensions are allowed as long as your computer

% resource can handle.

%

% SEMA: Semi-major axes, or the maximum speed;

% ECC: Eccentricity, the ratio of semi-minor axis over

% the semi-major axis; its negative value indicates that the ellipse
% is traversed in clockwise direction.

% INC: Inclination, the angles (in degrees) between the semi-major
% axes and u-axis.

% PHA: Phase angles, the time (in angles and in degrees) when the

% tidal currents reach their maximum speeds, (i.e.

% PHA=omega*tmax) .

%

% These four ep-parameters will have the same dimensionality
% (i.e., vectors, or matrices) as the input ap-parameters.

%

% W Optional. If it is requested, it will be output as matrices
% whose rows allow for plotting ellipses and whose columns are
% for different ellipses corresponding columnwise to SEMA. For
% example, plot(real(w(1,:)), imag(w(1,:))) will let you see

% the first ellipse. You may need to use squeeze function when
% W is a more than two dimensional array. See example.m.

% Document: tidal_ellipse.ps

14



% Revisions: Mar. 2, 2002, by Zhigang Xu, --- adopting Foreman’s northern

% semi major axis convention.

% For a given ellipse, its semi-major axis is undetermined by 180. If we borrow
% Foreman’s terminology to call a semi major axis whose direction lies in a range of
% [0, 180) as the northern semi-major axis and otherwise as a southern semi major

% axis, one has freedom to pick up either northern or southern one as the semi major

o=

axis without affecting anything else. Foreman (1977) resolves the ambiguity by

o=

always taking the northern one as the semi-major axis. This revision is made to

o=

adopt Foreman’s convention. Note the definition of the phase, PHA, is still

o=

defined as the angle between the initial current vector, but when converted into

% the maximum current time, it may not give the time when the maximum current first

o=

happens; it may give the second time that the current reaches the maximum

o=

(obviously, the 1st and 2nd maximum current times are half tidal period apart)

o=

depending on where the initial current vector happen to be and its rotating sense.

if nargin < 5
plot_demo=0; % by default, no plot for the ellipse

end

% Assume the input phase lags are in degrees and convert them in radians.
PHIu = PHIu/180%*pi;
PHIv = PHIv/180%pi;

% Make complex amplitudes for u and v

i = sqrt(-1);
u = Au.*exp(-i*PHIu);
v = Av.*exp(-i*PHIv);

% Calculate complex radius of anticlockwise and clockwise circles:
wp = (utixv)/2; % for anticlockwise circles
wm = conj(u-i*v)/2; % for clockwise circles

% and their amplitudes and angles

Wp = abs(wp);
Wm = abs(wm);
THETAp = angle(wp);

THETAm

angle (wm) ;

% calculate ep-parameters (ellipse parameters)

SEMA = Wp+im; % Semi Major Axis, or maximum speed
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SEMI = Wp-Wm; % Semin Minor Axis, or minimum speed

ECC = SEMI./SEMA; % Eccentricity

PHA = (THETAm-THETAp)/2; Y% Phase angle, the time (in angle) when
% the velocity reaches the maximum

INC = (THETAm+THETAp)/2; % Inclination, the angle between the

% semi major axis and x-axis (or u-axis).

% convert to degrees for output
PHA = PHA/pi*180;
INC = INC/pix*180;

THETAp = THETAp/pi*180;

THETAm

THETAm/pi*180;
%map the resultant angles to the range of [0, 360].
PHA=mod (PHA+360, 360) ;

INC=mod (INC+360, 360);

% Mar. 2, 2002 Revision by Zhigang Xu (REVISION_1)

o=

Change the southern major axes to northern major axes to conform the tidal

o=

analysis convention (cf. Foreman, 1977, p. 13, Manual For Tidal Currents

o=

Analysis Prediction, available in www.ios.bc.ca/ios/osap/people/foreman.htm)
k = fix(INC/180);
INC = INC-k*180;
PHA = PHA+k*180;

PHA = mod(PHA, 360);

% plot at the request

if nargout == 5
ndot=36;
dot=2*pi/ndot;
ot=[0:dot:2%pi-dot];
w=wp(:)*exp(i*ot)+um(:)*exp(-i*ot);
w=reshape(w, [size(Au) ndotl);

end
if any(plot_demo)

plot_el1(SEMA, ECC, INC, PHA, plot_demo)

end
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2.2 ep2ap.m

function [Au, PHIu, Av, PHIv, wl=ep2ap(SEMA, ECC, INC, PHA, plot_demo)

% Convert tidal ellipse parameters into amplitude and phase lag parameters.
% Its inverse is ap2ep.m. Please refer to ap2ep for the meaning of the

% inputs and outputs.

% Zhigang Xu
% Oct. 20, 2000

% Document: tidal_ellipse.ps
if nargin < 5

plot_demo=0; % by default, no plot for the ellipse

end

Wp = (1+ECC)/2 .*SEMA;

Wm

(1-ECC)/2 .*SEMA;
THETAp = INC-PHA;
THETAm = INC+PHA;

%convert degrees into radians
THETAp = THETAp/180%pi;
THETAm = THETAm/180%pi;

%Calculate wp and wm.

wp = Wp.*exp(i*THETAp) ;

wm = Wm.*exp(i*THETAm) ;
if nargout == 5
ndot=36;

dot = 2*pi/ndot;
ot = [0:dot:2%pi-dot];
w = wp(:)*exp(i*ot)+wm(:)*exp(-i*ot);

w=reshape(w, [size(wp) ndotl);

end

% Calculate cAu, cAv --- complex amplitude of u and v
chu = wp+conj(wm);

cAv = -i*(wp-conj(wm));

Au = abs(cAu);
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Av = abs(cAv);

PHIu = -angle(cAu)*180/pi;

PHIv

-angle(cAv)*180/pi;

% flip angles in the range of [-180 0) to the range of [180 360).
id = PHIu < O; PHIu(id) = PHIu(id) + 360;

id = PHIv < 0; PHIv(id) = PHIv(id) + 360;

if any(plot_demo)
plot_el1(SEMA,ECC,INC,PHA,plot_demo)

end

2.3 plot_ell.m

function w=plot_el1(SEMA, ECC, INC, PHA, IND)

%

% An auxiliary function used in ap2ep and ep2ap for plotting tidal ellipse.
% The inputs, MA, ECC, INC and PHA are the output of ap2ep and IND is a

% vector for indices for plotting a particular ellipse, e.g., if IND=[2 3 1];

% the ellipse corresponding to the indices of (2,3,1) will be plotted.

Size_SEMA=size(SEMA);
len_IND=length(IND);
if IND
cmd=[’sub2ind(size_SEMA’> ];
if len_IND==
titletxt=[’Ellipse ’];
else
titletxt=[’Ellipse (’];

end

for k=1:1en_IND;
cmd=[cmd ’,’num2str (IND(k))];
if k<len_IND
titletxt=[titletxt num2str(IND(k)) ’,’];
elseif len_IND==
titletxt=[titletxt num2str(IND(k))];
else
titletxt=[titletxt num2str(IND(k)) ’)’];
end

end
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cmd=[’n=> cmd ’);’];

eval(cmd) ;

figure(gct)
clf
do_the_plot (SEMA(n) , ECC(n), INC(n), PHA(n));
title(titletxt);

elseif len_IND
msgl=[’IND input contains zero element(s)!'’];
msg2=[’No ellipse will be plotted.’];
disp(msgl);
disp(msg2);

end

%begin of plot subfunction

function w=do_the_plot(SEMA, ECC, INC, PHA)

SEMI = SEMA.*ECC;

Wp = (1+ECC)/2 .*SEMA;

Wm

(1-ECC)/2 .*SEMA;
THETAp = INC-PHA;
THETAm = INC+PHA;

%convert degrees into radians
THETAp = THETAp/180%pi;
THETAm = THETAm/180%pi;

INC = INC/180%pi;

PHA = PHA/180%pi;

%Calculate wp and wm.

wp = Wp.*exp(i*THETAp) ;
wm = Wm.*exp(i*THETAm) ;
dot = pi/18;

ot = [0:dot:2%pi-dot];

a = wp*exp(i*ot);

b = wm*exp(-i*ot);

W = atb;

wmax = SEMA*exp(i*INC);

wmin = SEMI*exp(i*(INC+pi/2));
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plot(real(w), imag(w))

axis(’equal’);

hold on

plot ([0 real(wmax)], [0 imag(wmax)], ’m’);
plot ([0 real(wmin)], [0 imag(emin)], ’m’);
xlabel(’u’);

ylabel(’v?);

plot(real(a), imag(a), ’r’);

plot(real(b), imag(b), ’g’);

hnd_a=1ine([0 real(a(1))], [0 imag(a(1))], ’color’, ’r’, ’marker’,’o’);

hnd_b=1ine([0 real(b(1))]1, [0 imag(b(1))], ’color’, ’g’, ’marker’,’o’);

hnd_w=1ine([0 real(w(1))], [0 imag(w(1))], ’color’,

plot(real(a(1)), imag(a(1)), ’ro’?);
plot(real(b(1)), imag(b(1)), ’go’);
plot(real(w(1)), imag(w(1)), ’bo’?);

’b?, ’marker’,’o’);

hnd_ab=line(real([a(1) a(1)+b(1)]), imag([a(l) a(1)+b(1)]1), ...

’linestyle’, ’-=?, ’color’, ’g’);

hnd_ba=line(real([b(1) a(1)+b(1)]), imag([b(1) a(1)+b(1)]1), ...

’linestyle’, ’--’, ’color’, ’r’);

for n=1:length(ot);

set(hnd_a, ’xdata’, [0 real(a(n))], ’ydata’, [0 imag(a(n))]);

set(hnd_b, ’xdata’, [0 real(b(n))], ’ydata’, [0 imag(b(n))]);

set(hnd_w, ’xdata’, [0 real(w(n))], ’ydata’, [0 imag(w(n))]);

hold on
plot(real(a(n)), imag(a(n)), ’ro’);
plot(real(b(n)), imag(b(n)), ’go’);
plot(real(w(n)), imag(w(n)), ’bo’);

set(hnd_ab, ’xdata’,real([a(n) a(n)+b(n)]), ’ydata’, ...

imag(fa(n) a(n)+b(n)1))

set(hnd_ba, ’xdata’,real([b(n) a(n)+b(n)]), ’ydata’, ...

imag([b(n) a(n)+b(n)1))

end

hold off

%end of plot subfunction
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2.4 example.m

%demonstrate how to use ap2ep and ep2ap

Au=rand(4,3,2); % so 4x3x2 multi-dimensional matrices are used for the
Av=rand(4,3,2); % demonstration.
Phi_v=rand(4,3,2)*360; Y% phase lags inputs are expected to be in degrees.

Phi_u=rand(4,3,2)*360;

figure(1)
clf

[SEMA ECC INC PHA wl=ap2ep(Au, Phi_u, Av, Phi_v, [2 3 11);
figure(2)
clf

[rAu rPhi_u rAv rPhi_v rw]l=ep2ap(SEMA, ECC, INC, PHA, [2 3 1]1);

%check if ep2ap has recovered Au, Phi_u, Av, Phi_v

max (max (max (abs (rAu-4u)))) % = 9.9920e-16
max (max (max (abs (rAv-4v)))) % = 6.6613e-16
max (max (max (abs (rPhi_u-Phi_u)))) % = 4.4764e-13
max (max (max (abs (rPhi_v-Phi_v)))) % = 1.1369e-13
max (max (max (max (abs (v-rw))))) % = 1.3710e-15

% for the random realization I had, the differences are listed on the right

% hand of the above column. What are yours?

% The above example function calls have already plotted an ellipse for you.
% To plot an ellipse separately, you may do

%

figure(3)

clf

plot(real(squeeze(w(2,3,1,:))), imag(squeeze(w(2,3,1,:))));

%here squeeze is needed because w is a multiple dimensional array.

2.5 cBEpm.m

function [BEp, BEm]=cBEpm(g, f, sigma, nu, kappa, z, h)
%
%Evaluate the theoretical vertical profiles (or Bottom Ekman spiral profiles)

%of tidal currents in the two rotary directions driven by half-unit of sea
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%surface gradients in the two directions respectively. Eddy viscosity is
%assumed as vertically invariant. See tidal_ellipse.ps for more details.
%
%

%inputs:

%

% g, the gravity acceleration,

% f, the Coriolis parameter,

% nu, the eddy viscosity

% kappa, the bottom frictional coefficient

% z, the vertical coordinates, can be a vector but must be
% within [0 -h];

% h, the water depth, must be positive.

%

% Note: except for z, all other inputs must be scalars.
%

%outputs:

% BEp and BEm, the same dimensions of z, the outputs for the vertical

% velocity profiles driven respectively by a unit of sea

% surface slope in the positive rotation direction and negative
% rotation direction for when the eddy viscosity is vertically
% invariant. See the associated document for more details.

if length(g)>1 | length(f)>1 | length(sigma)>1

length(nu)>1 | length(kappa)>1 | length(h)>1
error(’inputs of g,f,sigma, nu, kappa, and h should be all scalars!’)

end

if any(z/h>0) | any(z/h<-1)
disp(’z must be negative and must be within [0 -h]’)

end

delta_e = sqrt(2*nu/f); Y%Ekman depth

alpha = (1+i)/delta_e*sqrt(1+sigma/f);

beta = (1+i)/delta_e*sqrt(il-sigma/f);
BEp = get_BE(g, alpha, h, z, nu, kappa);
BEm = get_BE(g, beta, h, z, nu, kappa);
%subfunction
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function BE=get_BE(g, alpha, h, z, nu, kappa)

z = z(:);
z_h = z/h;
ah = alphax*h;
az = alpha*z;
ah?2 = ah*2;
anu_k = alpha*nu/kappa;

nu_kh = nu/(kappaxh) ;

if abs(ah) < 1 %series solution

T = 10;

Q
[}

-g*h*h/ (nu*(1+anu_k*tanh_v5_2(ah)))*2;
A1 = (1-z_h.*z_h)/2+nu_kh;

Bl = exp(-ah)/(1+exp(-ah2));
B = B1;

series_sum=A1%B1;

for t = 2:T;
£2=2%t;
A = (1-z_h."t2)./t2+nu_kh;
B = B*ah*ah/(t2-1)/(t2-2);
series_sum = series_sum+A*B;
end

BE = C#*series_sum;

else %finite solution

¢ = -gxh*h/nu;
denom=(exp(az-ah)+exp(-(az+ah))) ./ (1+exp(-2*ah));
% =cosh(az)/cosh(ah);
%but this a better way to evaluate it.
numer=1+anu_k*tanh_v5_2(ah) ;
BE = c*((1-denom/numer)/(ah*ah));

end

%end of subfunction

%

%lote tanh_v5_2 is a copy of tanh from Matlab v5.2, which has worked well!
%It seems that Matlab v5.3 has some bug(s) in tanh function! It cannot deal
%with large argument. try z=7.7249e¢02%(1+i), tanh(z) and tanh_v5_2(z) to

%see the difference.
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