$*************HEADING**************************************** $ PROJ 'swanmud shoaling' '000' & 'Kranenburg (2008), sec. 8.3.2 = ' & 'Kranenburg et al., Journal of Hydraulic Engineering, 2010, Fig 2' & 'WL | Delft Hydraulics Z3672.40' $ MODE STA ONED $ SET LEVEL = 0. SET DEPMIN = 0. SET rho = 1025 $ $ CGRID xpc ypc alpc xlenc ylenc mxc myc SECTOR dir1 dir2 mdc flow fhigh msc CGRID 0. 0. 0. 1000. 0. 100 0 SECTOR -7.5 7.5 15 0.0629 0.3333 65 $ $ INPGRID BOTTOM xpinp ypinp alpinp mxinp myinp dxinp dyinp INPGRID BOTTOM -1. 0. 0. 1 0 1002. 0. READINP BOTTOM 1. 'bot0100_0100cm.bot' 4 0 FREE INPGRID MUDL -1. 0. 0. 2 0 501. 0. READINP MUDL 1. 'mud0002_0100_0002cm.bot' 4 0 FREE $ BOUN SHAPE BIN PEAK DSPR POWER $ $ BOUN SIDE W CCW CON PAR hs per dir dd BOUN SIDE W CCW CON PAR 0.1 12 0. 1000 $ $ DO USE MUD also for no-mud simulations, AS IT WILL WRITE K TO S1D FILE MUD alpha=1. rhom=1750. nu=0.1 disperr=1 disperi=1 source=0 cg=1 $ NUM ACCUR 0.020 0.020 0.020 100.000 5 $ GEN3 FRICTION JONSWAP 0 OFF WINDG OFF QUAD OFF WCAP OFF BREAK OFF REF OFF FSH $ CURVE 'GAUGE' 0. 0. 100 1000. 0. TABLE 'GAUGE' HEAD 'swanmud_shoaling.crv' XP YP DEP HSIGN RTP TM01 TM02 & DISSIP DISMud FSPR DIR WLEN WLENMR KI MUDL SPEC 'GAUGE' SPEC1D 'swanmud_shoaling.s1d' $ COMPUTE STOP