! Include shortname defintions, so that the F77 code does not have to be modified to
! reference the CARMA structure.
#include "carma_globaer.h"
!! This routine sets up mapping arrays for coagulation. It only computes varaibles that
!! are independent of the model state. The calculation of factors needed for coagulation
!! that depend on state are calculated in setupckern.
!!
!! @author Eric Jensen
!! @ version Oct-1995
subroutine setupcoag(carma, rc)
! types
use carma_precision_mod
use carma_enums_mod
use carma_constants_mod
use carma_types_mod
use carma_mod
implicit none
type(carma_type), intent(inout) :: carma !! the CARMA object
integer, intent(inout) :: rc !! return code, negative indicates failure
! Local declarations
integer :: ielem, isolto, icompto, igto, ig, iepart
integer :: icompfrom, ic, iecore
integer :: isolfrom
integer :: igrp, jg, i, j , ipair
real(kind=f) :: rmsum
integer :: ibin
real(kind=f) :: rmkbin
integer :: kb, ncg
real(kind=f) :: rmk
logical :: fill_bot ! used for filling
integer :: irow, icol
logical :: isCoag
integer :: igtest
real(kind=f) :: pkernl, pkernu
! NOTE: Moved this section from from setupckern.f, since it is not dependent on the
! model's state.
!
! Fill , maintaining diagonal symmetry
! -------------------------------------------
! Fill bottom of matrix if non-zero term(s) in upper half;
! also check for non-zero, non-matching, non-diagonal terms.
fill_bot = .true.
do irow = 2, NGROUP
do icol = 1, irow-1
if( icoag(irow,icol) .ne. 0 )then
fill_bot = .false.
if( icoag(icol,irow) .ne. 0 .and. &
icoag(icol,irow) .ne. icoag(irow,icol) )then
if (do_print) write(LUNOPRT, *) 'setupcoag::ERROR bad icoag array'
rc = -1
return
endif
endif
enddo
enddo
do ig = 2, NGROUP
do jg = 1, ig-1
if( fill_bot )then
irow = ig
icol = jg
else
irow = jg
icol = ig
endif
icoag(irow,icol) = icoag(icol,irow)
enddo
enddo
! Initialize with zeros
do ielem = 1,NELEM
do ig = 1,NGROUP
icoagelem(ielem,ig) = 0
icoagelem_cm(ielem,ig) = 0
enddo
enddo
! For each element and each group , determine which element in
! contributes to production in : .
! If no elements in are transfered into element during coagulation,
! then set to 0.
do ielem = 1,NELEM
isolto = isolelem(ielem) ! target solute type
icompto = icomp(ielem) ! target element compound
igto = igelem(ielem) ! target group
do ig = 1, NGROUP ! source group
! source particle number concentration element
iepart = ienconc(ig)
! source element compound
icompfrom = icomp(iepart)
! Check to see if the target group is produced by coagulation of any
! group with the source group.
isCoag = .FALSE.
do igtest = 1, NGROUP
if (icoag(ig, igtest) .eq. igto .or. icoag(igtest, ig) .eq. igto) then
isCoag = .TRUE.
endif
end do
! Only find the source production element if the group igto can
! be produced by coagulation from group ig.
if (isCoag) then
! If only has no cores, then the only way to make particles
! would be if the one element is the same type as the
! source.
if( ncore(ig) .eq. 0 ) then
if( icompfrom .eq. icompto )then
icoagelem(ielem,ig) = iepart
endif
else
! Search the elements in the group to see if one has the same
! type as the source.
! First check the particle number concentration element of the group.
!
! NOTE: No matter what else happens, you need to adjust the total
! particle mass.
if( icompfrom .eq. icompto )then
icoagelem(ielem,ig) = iepart
else
! Now check the other cores for a match.
do ic = 1,ncore(ig)
iecore = icorelem(ic,ig) ! absolute element number of core
icompfrom = icomp(iecore) ! source element compound
if( icompfrom .eq. icompto ) then
! For core second moment elements, we need additional pairs of source
! elements c to account for core moment production due to products
! of source particle core mass.
if( itype(ielem) .eq. I_CORE2MOM )then
icoagelem_cm(ielem,ig) = iecore
icoagelem(ielem,ig) = imomelem(ig)
else
icoagelem(ielem,ig) = iecore
endif
endif
enddo
endif
endif
! If is a core mass type and is a pure CN group and the
! solutes don't match, then set to zero to make sure no
! coag production occurs.
if( itype(ielem) .eq. I_COREMASS .and. &
itype(ienconc(ig)).eq. I_INVOLATILE &
.and. ncore(ig) .eq. 0 ) then
isolfrom = isolelem(ienconc(ig))
if( isolfrom .ne. isolto ) then
icoagelem(ielem,ig) = 0
endif
endif
! If there is a source and this is a multi-component group,
! then we need to make sure that the particle concentration
! of the group also gets updated, since this keeps track of
! the total mass.
if (icoagelem(ielem,ig) .ne. 0) then
if (ncore(igto) .ne. 0 .and. ielem .ne. ienconc(igto)) then
icoagelem(ienconc(igto), ig) = iepart
endif
endif
endif
enddo ! end of (ig = 1, NGROUP)
enddo ! end of (ielem = 1,NELEM)
! Coagulation won't work properly if any of the elements are produced by
! items that come later in the element list than themselves. Report an
! error if that is the case.
do ielem = 1, NELEM
do ig = 1, NGROUP
if (icoagelem(ielem, ig) .gt. ielem) then
if (do_print) write(LUNOPRT, '(a,i3,a,i3,a)') &
'setupcoag::ERROR For coagulation, element (', &
icoagelem(ielem,ig), ') must come before (', ielem, &
') in the element list.'
rc = -1
return
endif
enddo
enddo
! Calculate lower bin which coagulated particle goes into
! and make sure it is less than +1
!
! Colliding particles come from group , bin and group , bin
! Resulting particle lands in group , between and + 1
do igrp = 1, NGROUP
do ig = 1, NGROUP
do jg = 1, NGROUP
do i = 1, NBIN
do j = 1, NBIN
rmsum = rmass(i,ig) + rmass(j,jg)
do ibin = 1, NBIN-1
if( rmsum .ge. rmass(ibin,igrp) .and. rmsum .lt. rmass(ibin+1,igrp) ) then
kbin(igrp,ig,jg,i,j) = ibin
endif
enddo
ibin = NBIN
if( rmsum .ge. rmass(ibin,igrp) ) kbin(igrp,ig,jg,i,j) = NBIN
enddo
enddo
enddo
enddo
enddo
! Calculate partial loss fraction
!
! This fraction is needed because when a particle in bin collides
! with a particle in bin resulting in a particle whose mass falls
! between and +1, only partial loss occurs from bin .
!
! Since different particle groups have different radius grids, this
! fraction is a function of the colliding groups and the resulting group.
do igrp = 1, NGROUP
do ig = 1, NGROUP
do jg = 1, NGROUP
if( igrp .eq. icoag(ig,jg) ) then
do i = 1, NBIN
do j = 1,NBIN
volx(igrp,ig,jg,i,j) = 1.
if(kbin(igrp,ig,jg,i,j).eq.i) then
ibin = kbin(igrp,ig,jg,i,j)
rmkbin = rmass(ibin,igrp)
volx(igrp,ig,jg,i,j) = 1. - &
(rmrat(igrp)*rmkbin-rmass(i,ig)-rmass(j,jg)) &
/(rmrat(igrp)*rmkbin-rmkbin)* &
rmass(i,ig)/(rmass(i,ig) + rmass(j,jg))
endif
enddo
enddo
endif
enddo
enddo
enddo
! Calculate mapping functions that specify sets of quadruples
! (group pairs and bin pairs) that contribute to production
! in each bin. Mass transfer from to occurs due to
! collisions between particles in and particles in .
! 2 sets of quadruples must be generated:
! low: k = ibin and (k != i or ig != igrp) and icoag(ig,jg) = igrp
! up: k+1 = ibin and icoag(ig,jg) = igrp
!
! npair#(igrp,ibin) is the number of pairs in each set (# = l,u)
! i#, j#, ig#, and jg# are the bin pairs and group pairs in each
! set (# = low, up)
do igrp = 1, NGROUP
do ibin = 1, NBIN
npairl(igrp,ibin) = 0
npairu(igrp,ibin) = 0
do ig = 1, NGROUP
do jg = 1, NGROUP
do i = 1, NBIN
do j = 1, NBIN
kb = kbin(igrp,ig,jg,i,j)
ncg = icoag(ig,jg)
if( kb+1.eq.ibin .and. ncg.eq.igrp ) then
npairu(igrp,ibin) = npairu(igrp,ibin) + 1
iup(igrp,ibin,npairu(igrp,ibin)) = i
jup(igrp,ibin,npairu(igrp,ibin)) = j
igup(igrp,ibin,npairu(igrp,ibin)) = ig
jgup(igrp,ibin,npairu(igrp,ibin)) = jg
endif
if( kb.eq.ibin .and. ncg.eq.igrp .and. (i.ne.ibin .or. ig.ne.igrp) ) then
npairl(igrp,ibin) = npairl(igrp,ibin) + 1
ilow(igrp,ibin,npairl(igrp,ibin)) = i
jlow(igrp,ibin,npairl(igrp,ibin)) = j
iglow(igrp,ibin,npairl(igrp,ibin)) = ig
jglow(igrp,ibin,npairl(igrp,ibin)) = jg
endif
enddo
enddo
enddo
enddo
enddo
enddo
! NOTE: Split ckernel out of pkernel, so that it can be made independent of model state.
! It also reduces the size of the tables and should improve the intialization time.
! Calculate variables needed in routine coagp.f
do igrp = 1, NGROUP
do jg = 1, NGROUP
do ig = 1, NGROUP
if( igrp .eq. icoag(ig,jg) ) then
do j = 1, NBIN
do i = 1, NBIN
ibin = kbin(igrp,ig,jg,i,j)
rmk = rmass(ibin,igrp)
rmsum = rmass(i,ig) + rmass(j,jg)
pkernl = (rmrat(igrp)*rmk - rmsum) / (rmrat(igrp)*rmk - rmk)
pkernu = (rmsum - rmk) / (rmrat(igrp)*rmk - rmk)
if( ibin .eq. NBIN )then
pkernl = rmsum / rmass(ibin,igrp)
pkernu = 0._f
endif
pkernel(i,j,ig,jg,igrp,1) = pkernu * rmass(i,ig)/rmsum
pkernel(i,j,ig,jg,igrp,2) = pkernl * rmass(i,ig)/rmsum
pkernel(i,j,ig,jg,igrp,3) = pkernu * rmk*rmrat(igrp)/rmsum
pkernel(i,j,ig,jg,igrp,4) = pkernl * rmk/rmsum
pkernel(i,j,ig,jg,igrp,5) = pkernu * ( rmk*rmrat(igrp)/rmsum )**2
pkernel(i,j,ig,jg,igrp,6) = pkernl * ( rmk/rmsum )**2
enddo
enddo
endif
enddo
enddo
enddo
! Do some extra debugging reports (normally commented)
if (do_print_init) then
write(LUNOPRT,*) ' '
write(LUNOPRT,*) 'Coagulation group mapping:'
do ig = 1, NGROUP
do jg = 1, NGROUP
write(LUNOPRT,*) 'ig jg icoag = ', ig, jg, icoag(ig,jg)
enddo
enddo
write(LUNOPRT,*) ' '
write(LUNOPRT,*) 'Coagulation element mapping:'
do ielem = 1, NELEM
do ig = 1, NGROUP
write(LUNOPRT,*) 'ielem ig icoagelem icomp(ielem) = ', &
ielem, ig, icoagelem(ielem,ig), icomp(ielem)
enddo
enddo
write(LUNOPRT,*) ' '
write(LUNOPRT,*) 'Coagulation bin mapping arrays'
do igrp = 1, NGROUP
do ibin = 1,3
write(LUNOPRT,*) 'igrp, ibin = ',igrp, ibin
do ipair = 1,npairl(igrp,ibin)
write(LUNOPRT,*) 'low:np,ig,jg,i,j ', &
ipair,iglow(igrp,ibin,ipair), &
jglow(igrp,ibin,ipair), ilow(igrp,ibin,ipair), &
jlow(igrp,ibin,ipair)
enddo
do ipair = 1,npairu(igrp,ibin)
write(LUNOPRT,*) 'up:np,ig,jg,i,j ', &
ipair,igup(igrp,ibin,ipair), &
jgup(igrp,ibin,ipair), iup(igrp,ibin,ipair), &
jup(igrp,ibin,ipair)
enddo
enddo
enddo
endif
! Return to caller with coagulation mapping arrays defined
return
end