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a b s t r a c t

In this paper, an adaptive directional importance sampling (ADIS) method is presented. The algorithm is
based on a directional simulation scheme in which the most important directions are sampled exact and
the others by means of a response surface approach. These most important directions are determined by
a β-sphere enclosing the most important part(s) of the limit state. The β-sphere and response surface are
constantly updated during sampling with information that becomes available from the exact evaluations
making the scheme adaptive.

Various widely used test problems, representing a broad range of complex limit states that can occur
in practice, of which several that pose potential problems to stochastic methods in general, demonstrate
the high efficiency, accuracy and robustness of the method. As such, the ADIS method is of particular
interest in applicationswith a lowprobability of failure andmediumnumber (up to about 40) of stochastic
variables, for instance in aircraft and nuclear industry.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Methods to compute the failure probability is a basic research
area in structural reliability analyses. The failure probability can be
formulated as

pf = P

G


x


≤ 0


=

∫
G(x)≤0

f (x)dx (1)

where x represents the vector of stochastic variables of the
reliability problem and f (x) the joint probability density function
(JPDF) in X-space. G(x) is the failure or limit-state function,
defining a safe state when G > 0 and a failure state when G <
0. The hyper-surface separating the safe from the failure domain
G = 0 is called the limit state. The integral represents the volumeof
the joint probability density function located in the failure domain.
Solution of the integral equation is not straightforward, due to the
unknown JPDF and location of the limit state, which is only known
implicitly in practical cases (contrary to the example problems of
Section 3), and the higher dimensionality for practical problems.
Moreover, a single evaluation of the limit-state function G already
can be computationally expensive, for instance solution of a finite
element problem. For practical application, the efficiency of the
solution method, that is the number of deterministic analyses
(G-function evaluations) required to arrive at a sufficiently
accurate solution, is very important. In addition, ideally themethod
should be capable to solve the integral equation accurately for a
broad range of problems, i.e. robustness.
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In the past decadesmanymethods have been presented to solve
the integral equation, such as sampling methods based on Monte
Carlo simulation (MCS) and directional simulation (DS) [1,2] and
methods based on an analytical solution of the integral equation:
first-order reliability method (FORM) and second-order reliability
method (SORM) [3].

FORM and SORMapproximate the limit statewith, respectively,
a first-order or an incomplete second-order function. Furthermore,
the underlying solution method requires the solution of an
optimization problem to find the smallest distance to the limit
state. FORM, and to a lesser extent SORM, are often very efficient
making these methods widely applied. In general, the accuracy
of the solution is unknown, because either narrow confidence
bounds cannot be obtained or they require an extra computational
effort (e.g. importance sampling). Furthermore, neither method
is robust in the case of a complex limit state, such as a highly
nonlinear failure function, multiple design points (failure points or
most probable points MPP) or a combination of failure functions
(serial and parallel systems). An example of a series system having
multiple design points is given in Fig. 2.

On the other hand, MCS and DS are very inefficient compared
with FORM and SORM, especially for small probability values.
Nevertheless, convergence to the exact solution is guaranteed
for an increasing number of simulations, and confidence bounds
on the solution are available in the case of a finite number of
simulations. Furthermore, these methods are very robust in the
sense that they can handle complex limit states.

Variousmethods have been presented to improve the efficiency
of the two basic sampling methods (MCS and DS), for example
[4–8], referred to as importance sampling techniques. The basic
idea is to concentrate sampling near the most important part(s)
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of the limit state(s), that is points on G(x) = 0 located closest to
the origin in standard normal space (U-space). A widely applied
approach is to shift the sampling centre from the origin to the
design point. Frequently, a FORM analysis, having the mentioned
disadvantages, is applied first to obtain knowledge about the
design point. An alternative strategy is to gather knowledge about
the failure domain, and thus location of the limit state(s), during
sampling and use this knowledge to guide the sample domain
towards the most important regions, e.g. [9]. This strategy is called
an adaptive method.

Another strategy that drastically improves the efficiency is to
first construct a response surface (RS) as a substitution of the
real limit-state function [10–12]. With the RS the solution of
the integral equation requires only very simple cheap function
evaluations. The effort is shifted to the construction of the RS.
The accuracy is completely determined by the accuracy of the RS,
because even a crude MCS with many simulations can be applied.
Ideally, the RS should provide a good approximation of all most
important parts of the limit state. In [10,11], an adaptive scheme is
applied that directs the RS towards a design point, which can give
rise to inaccurate results in the case of multiple design points.

In [13] an adaptive radial-based importance sampling (ARBIS)
method was presented by the author based on Monte Carlo
simulations, in which an efficient adaptive DS scheme was
presented to determine the optimalβ-sphere that is excluded from
the sampling domain, drastically reducing the required number
of simulations compared to the Monte Carlo method. The method
was demonstrated to be accurate and robust and can therefore be
applied as a black box. The method lacked overall efficiency to be
generally applicable, because many sample points are still located
outside the failure domain.

The efficiency of the ARBIS method can be improved by
application of a DS scheme instead of the MCS scheme. Beside
this, the adaptive scheme to determine the optimal β-sphere can
be used to distinguish between the most important parts of the
limit state and the remainder of the domain. Application of a
response surface for the latter domain, having aminor contribution
to the probability of failure for which an approximate solution
suffices, drastically increases the efficiency while maintaining
accuracy. The method, being the subject of this paper, is called
adaptive directional importance sampling ADIS and is very
efficient, accurate and robust, demonstrated in Section 3 on a
broad range of problems collected from the literature, amongst
them several that pose problems to stochastic methods in general.
These characteristics make the method suitable to be applied in
structural reliability, especially in the case of a low probability of
failure.

2. Adaptive directional importance sampling (ADIS)

A set of dependent non-normal stochastic variables x can
always be transformed in to a set of independent standard
normal variables u, called the U-space, by applying appropriate
transformations [14–16]. The remainder of the paper is therefore
restricted to the U-space. Before presenting the ADIS method first
the DS method, being the basis on which the ADIS method is
founded, and the related line-searchmethod are briefly presented.

2.1. Directional simulation

Besides Monte Carlo sampling also the directional simulation
method [1,2] is frequently used. Instead of sampling randompoints
x in the whole stochastic domain and determining whether these
points lie in the failure domain or not, now random directions θ
are generated and the probability content in these directions is
Fig. 1. Line-search procedure.

determined. For this purpose, the vector of random variables x is
expressed in polar coordinates:
x = Rθ (2)
in which R is the radius and θ is a unit direction vector.

An unbiased estimator of the probability of failure is given by

p̂f =
1
N

N−
i=1


1 − χ2

n


β2
i


. (3)

With this equation, an estimate for the mean of the probability
of failure can be obtained, by performing N simulations of the
vector θ and determining the distance to the limit-state βi in these
directions. χ2

n (β2) is the cumulative chi-square distribution with
n degrees of freedom. This distance is determined by means of a
line-search algorithm, briefly presented in Section 2.2.

An estimate of the variance on the estimator Pf is given by

σ̂ 2
Pf =

1
N (N − 1)

N−
i=1


pi − p̂f

2 (4)

yielding a confidence interval for pf of

p̂f − zα/2 σ̂Pf ≤ Pf ≤ p̂f + zα/2 σ̂Pf (5)
with zα/2 the standard normal variate for degree of confidence
1 − α.

2.2. Line-search scheme

For each simulateddirection, a line search is performed to locate
the possible point on the limit state, i.e. distance β . The procedure
is one-dimensional and schematically depicted in Fig. 1. The
G-value at the origin is determined once at the start of ADIS
(point 0 in Fig. 1) and is used as a scaling value as well. A linear
function is fitted through this point and a first estimate (point 1)
at a radius of U = 4, thereby determining a second estimate
of the limit-state point (point 2). Next, the G-function value is
determined in this point and a quadratic fit is made resulting in an
improved estimate. This procedure is repeated until the limit-state
point is found having a pre-defined absolute limit-state function
error tolerance. Usually the process converges in two-to-three
iterations, because an approximate location is already obtained
from the response surface.

2.3. Outline of the ADIS method

In order to reduce the number of simulations (improve
efficiency) required for a MCS or DS more efficient simulation
methods have been developed. They all are based on the fact that
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Fig. 2. Schematized ADIS method.

simulations are not performed throughout the whole stochastic
domain, but only around the most important part(s) of the limit
state. Generally, DS is more efficient than MCS and will therefore
form the basis of the ADIS method. Only for a large number of
random variables MCS requires less function evaluations than DS
to converge to a solution of similar accuracy.

A very important characteristic ofMCS is that the solution of the
integral equation converges to the exact solution as the number of
simulations is increased. In general, also DS shows this behaviour.
However, if part of the limit state is shielded by another part seen
from the origin in U-space, for example the upper tail of problem 6
in Fig. 4, then the safe area behind it will go unnoticed causing an
overestimation of the failure probability (conservative). This error
is small, because these parts of the limit state are away from the
most important parts and thus have only a limited contribution
to the failure probability. Hence, this error is negligible certainly
compared to other errors, such as a finite number of simulations
(discussed in Section 3) and especially compared to FORM inwhich
the complete limit state is approximated by a first-order function.

The strategy is to gather knowledge about the failure domain
and location of the limit state(s) during sampling and use
this knowledge to guide the sample domain towards the most
important part(s). At start no information about the limit state
and its most important part(s) is available. Therefore, the method
starts with the standard DS scheme performing a number of
directional simulations (pre-sampling). When enough points have
been sampled, the obtained limit-state function information is
used to construct a response surface (RS), see Section 2.5 for more
details. This response surface, being an approximation of the real
limit-state function, is then used in the DS scheme. In addition,
the obtained limit-state function information is used to determine
a threshold β-sphere βth, depicted in Fig. 2 for the final optimal
situation, enclosing the most important parts of the limit state.

The response surface is computationally very efficient, since
no more expensive exact G-function evaluations are required.
The downside is that the accuracy is not guaranteed by the
approximate nature of the RS. Therefore, if an important direction
is sampled having an (approximated) distance to the limit-state
β lying within the threshold β-sphere, the grey area in Fig. 2 for
the final optimum situation, then this direction is re-evaluated
using exact G-function evaluations. The extra limit-state function
information is subsequently used to improve the accuracy of
the response surface and to improve the current estimate of
β-sphere, making the scheme adaptive. In other words, for the
most important part(s) of the limit state, the probability content
is determined by expensive but exact G-function evaluations and
for the remainder part of the domain cheap response surface
evaluations are used to approximate the corresponding small
amount of probability content. In this way the method is very
efficient, using only expensive G-function evaluations in the most
important regions, and accurate, using exact limit state evaluations
in the most important directions. The scheme is also robust
since the DS method is inherently robust and because it can
handle complex limit states such as a noisy failure function,
highly nonlinear failure function, multiple design points and/or
multiple failure functions. This robustness will be demonstrated
by the numerical examples in Section 3. These criteria are satisfied
as long as a response surface can be found that approximates
the most important part(s) of the limit state well. Finally, as a
result of the exact directional simulations in these directions the
resulting response surface will be a very good approximation
of these areas. Even better still, most of these points will be
located close to the limit state since an estimate of the limit-state
point location is already available from the preceding response
surface evaluation. The resulting response surface is much more
accurate than by applying other point sampling methods such as
random sampling or factorial designs, which aim at a more global
G-function approximation. However, away from the limit state a
less accurate approximation of the limit-state function suffices,
since only the sign of the gradient is important here, i.e. increasing
or decreasing limit-state function in a specific direction.

In the next section, the algorithm behind ADIS will be discussed
in more detail assuming that the problem is already formulated
in U-space. The basic steps of the ADIS algorithm are depicted in
the flow diagram of Fig. 3. These steps are discussed next in more
detail. Details with respect to the response surface are discussed in
Section 2.5.

2.4. Algorithmic details

At the start of the algorithm, initial values are set for the
parameters βmin, ∆β , Pratio, related to the optimal β-sphere
discussed below. Next, the DS method is initialised, for example
initialisation of the random number generator. The directional
simulation is (re)started and for each sampled direction it is
checked whether an exact simulation was already performed in a
previous loop, in which case the next direction will be simulated.
When available, the response surface will be used in a line search
to determine the approximate distance β to the limit state;
otherwise, an exact line search will be performed. The β-value
is a measure for the probability content in that direction. If the
approximate β-value is less than a threshold value βth, then the
point lies on an important part of the limit state, visualised in
Fig. 2 by the grey areas for the final situation. In that case an
exact line search is performed in the same direction to determine
the exact distance to the limit state. In general, only a few
G-function evaluations are required to converge, because an
estimate of the limit-state point is available from the approximate
line search. The corresponding points therefore all lie close to the
limit state. This extra G-function information is subsequently used
to improve the response surface and the threshold β-value. Due to
the location of the extra points close to the limit state the resulting
response surface will approximate this part of the limit-state best,
which is exactly the region where it should be most accurate.
In all, apart from the directions sampled to generate the initial
response surface, the sampling process performs almost only exact
G-function evaluations in those regions that matter making the
method very efficient and accurate.

After each directional simulation, convergence is checked
according to the criterion discussed in Section 3. At convergence, it
is checked whether new exact G-function evaluations have been
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Fig. 3. Basic steps of ADIS scheme.

performed resulting in an update of the response surface and
threshold β-sphere. In that case, all the approximated directions
are re-evaluated against the new response surface and β-sphere.
To this end, the DS algorithm is re-initialised and the whole
algorithm is redone, evaluating only those directions for which
no exact solution is available. Re-evaluation is only done after a
converged solution has been obtained to limit the number of such
restarts. If none of the approximate line searches of a full loop is
followed by an exact line search, no improvements can be made
and the algorithm ends.

The β-sphere with radius βth, the dotted blue-line in Fig. 2, is
constructed from the current minimum distance to the limit-state
βmin with an added offset∆β enclosing themost important part(s).
Initially, the value of βmin is set to a very high value, but is updated
after each exact line search, being an adaptive process. This value
converges to the real minimum β-value (see [13]). Normally, a
limited number of exact line searches suffice to confine the most
important part(s) of the limit state. For the offset∆β , a small initial
value of 0.1 is selected based on a large number of test cases.
To guarantee accuracy, a new offset ∆β value is determined at
convergence based on the maximum probability content within
the approximate failure domain. To this, the ratio of the part of
the failure probability determined by the approximate directions
Papprox
f to the total failure probability Pf is defined:

Pratio =
Papprox
f

Pf
. (6)
When the solution is converged the probability content for
all evaluated directions is available in a p-vector together with
information whether an exact or approximate line search was
applied. The ratio can be easily computed using Eq. (3) and should
be less than a specified value. For the test cases, a value of 0.4
resulted in accurate solutions. After sorting of the p-vector, a new
offset ∆β value is determined that satisfies this criterion.

2.5. Response surface

The initial response surface is a linear or in incomplete second-
order approximation of the limit-state function:

G

u


= a +

n−
i=1

biui +

n−
i=1

ciu2
i (7)

in which a, bi, ci are the unknown constants that have to
be determined and n is the number of random variables. The
minimum number of G-function evaluations required to make an
initial fit therefore is 2n + 1. This initial response surface not
necessarily is a very good approximation of the real response.
At this stage, it suffices to only capture part of the global
behaviour of the real response at first. This response surface is
improved adaptively with extra information that comes available
from additional exact directional simulations during the sampling
scheme, as explained in the previous section. Hence, the response
surface will converge to the one best describing the problem.

The incomplete function neglecting the cross-terms, which is
frequently used by others, can lead to severe errors. Therefore,
active cross-terms (cij ≠ 0) are added when more G-function
values become available during the sample process, eventually
yielding a full second-order fit:

G

u


= a +

n−
i=1

biui +

n−
i=1

i−
j=1

cijuiuj. (8)

The number of limit-state function points required to obtain a
full fit is at most:

Nmax ≤ 1 + n +
n (n + 1)

2
. (9)

In general, the number of random variables will be limited,
since in most structural analyses the number of model parameters
is limited. A problem with 25 random variables requires at
maximum351G-function evaluations to obtain a full second-order
approximation. For most problems, the number of G-function
evaluations will be large enough to fit the full quadratic function,
especially since many cross-terms will be zero in general.

For the RS, all limit-state function points found during exact line
searches are used. Many of these points are located near and on
the limit state in the most important regions. The response surface
thus approximates the global limit-state function and is best at the
most important regions in the neighbourhood of the limit state. In
this way all the (expensively determined) information is located in
the areas of highest interest that determine the accuracy.

Often more points are available than strictly necessary for
fitting the full second-order polynomial. Therefore, the fit is
obtained by a regression analysis, including all points, which
improves accuracy.

For cases with multiple limit-state functions (series systems,
parallel systems or combinations), such as the ones depicted
in Figs. 2 and 4, separate response surfaces are constructed for
each of them, instead of one response surface approximating the
overall limit-state function (OALSF). The latter would be much less
accurate, because of the non-smoothness and high nonlinearity of
this function in general, which can be seen in example problems 12
and 13 of Fig. 4 that have a complex limit state. At any point in the
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problem 2 problem 4 problem 5 

problem 6 problem 7 problem 8 

problem 12 problem 13 problem 14  

Fig. 4. Sample plots for two-dimensional test problems.
stochastic domain, the OALSF equals the minimum or maximum
of the separate limit-state functions at this point for a series,
respectively, parallel system (or a combination for more complex
systems) and is represented by the individual response surfaces for
each failure function. The OALSF value is used in the line search to
determine the location of a possible limit-state point.

Generating a response surface for each failure function does not
require any extra computational effort, because at each exact G-
function evaluation, blue points in Fig. 4, information about each
individual failure function can be obtained.

The algorithm is demonstrated for a second-order response
surface, but it is stressed here that any other type of meta-model
can be used as well, such as a Kriging meta-model or component
meta-model [12], which may even further improve accuracy.
3. Numerical examples

The ADIS method is applied to a set of widely used test
problems obtained from the literature, representing a broad range
of possible limit states that can occur in practice of which several
pose potential problems to stochastic methods in general. The
problems are summarized in Table 1, in which the last column
gives the corresponding reference. Since these problems are used
by various authors, the reference is not necessarily the first one.
Because of the simple nature of the limit-state functions, they
can be evaluated many times, making a near exact evaluation
possible by crude Monte Carlo or Directional Simulation. This
near exact value is given in column 5 of Table 1. The presented
ADIS methodology, however, is developed for implicit limit-state
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Table 1
Limit-state function descriptions.

Case Limit-state function(s) Stochastic variables Description Pf PADIS
f (Error) Ref.

1 g = x1 + 2x2 + 2x3 + x4 − 5x5
− 5x6 + 0.001

∑6
i=1 sin (100xi)

x1...4: LN(120,12)
x5: LN(50,15)
x6: LN(40,12)

Linear LS with noise term 1.22e−02 1.19e−02 (−2.4%) [4]

2 g = x1x2 − 146.14 x1: N(78064.4, 11709.7) Multiple design points 1.46e−07 1.61e−07 (10.8 %) [4]
x2: N(0.0104, 0.00156)

3 g = 2 + 0.015
∑9

i=1 x
2
i − x10 x1...10: N(0, 1) Quadratic LS 10 terms 5.34e−03 5.25e−03 (−1.7%) [3]

4 g = 0.1 (x1 − x2)2 −
(x1+x2)

√
2

+ 2.5 x1: N(0, 1) Quadratic LS with mixed term, convex LS 4.16e−03 3.69e−03 (−11.3%) [17]
x2: N(0, 1)

5 g = −0.5 (x1 − x2)2 −
(x1+x2)

√
2

+ 3 x1: N(0, 1) Concave LS 1.05e−01 1.02e−01 (−2.1%) [17]
x2: N(0, 1)

6 g = 2 − x2 − 0.1x21 + 0.06x31 x1: N(0, 1) Nonlinear LS with saddle point 3.47e−02 3.04e−02 (−12.4%) [3]
x2: N(0, 1)

7 g = 2.5 − 0.2357 (x1 − x2) +

0.00463 (x1 + x2 − 20)4
x1: N(10, 3)
x2: N(10, 3)

Highly nonlinear LS 2.86e−03 3.10e−03 (8.4 %) [18]

8 g = 3 − x2 + (4x1)4 x1: N(0, 1) Highly nonlinear LS 1.80e−04 1.91e−04 (6.0%) [19]
x2: N(0, 1)

9 g1 = 2.677 − x1 − x2 x1...5: N(0, 1) Parallel system 2.11e−04 2.02e−04 (−4.4%) [19]
g2 = 2.500 − x2 − x3
g3 = 2.323 − x3 − x4
g4 = 2.250 − x4 − x5
g = max (g1, g2, g3, g4)

10 g1 = −x1 − x2 − x3 + 3
√
3 x1: N(0, 1) Series system 2.57e−03 2.72e−03 (6.0%) [2]

g2 = −x3 + 3 x2: N(0, 1)
min (g1, g2) x3: N(0, 1)

11 g1 = −x1 − x2 − x3 + 3
√
3 x1: N(0, 1) Parallel system 1.23e−04 1.15e−04 (−6.3%) [2]

g2 = −x3 + 3 x2: N(0, 1)
max (g1, g2) x3: N(0, 1)

12 g1 = 2−x2+exp

−0.1 x21


+(0.2x1)4 x1: N(0, 1) Series system 3.54e−03 3.90e−03 (10.1%) [19]

g2 = 4.5 − x1x2 x2: N(0, 1) Multiple design points
min (g1, g2)

13 g1 = 2−x2+exp

−0.1 x21


+(0.2x1)4 x1: N(0, 1) Parallel system 2.50e−04 2.11e−04 (−15.6%) [19]

g2 = 4.5 − x1x2 x2: N(0, 1)
max (g1, g2)

14 g1 = 0.1 (x1 − x2)2 −
(x1+x2)

√
2

+ 3 x1: N(0, 1) Series system 4.492e−03 4.850e−03 (8.0%) [17]
g2 = 0.1 (x1 − x2)2 +

(x1+x2)
√
2

+ 3 x2: N(0, 1) Multiple design points
g3 = x1 − x2 + 3

√
2

g4 = −x1 + x2 + 3
√
2

g = min (g1, g2, g3, g4)
functions and therefore makes no use whatsoever of any explicit
limit-state information available in the provided test problems!

The ADIS method is examined on

• Efficiency. This is reflected by the number of G-function
evaluations necessary to obtain a converged solution. This
number is compared with MCS and DS.

• Robustness. This reflects how the method performs in the
case of a complex limit-state function: noisy failure function,
highly nonlinear failure function, multiple design points and/or
multiple failure functions.

• Accuracy. Does the method converge to the exact solution,
provided that enough samples are taken into account.

Sampling is ended when the maximum relative error in the
probability value is below a threshold value. Hence an equal
accuracy level is obtained with all three sampling methods
and therefore their efficiencies can be compared. The maximum
relative error is given by

Erel
max = zα/2 COVpf = Φ−1


γ + 1

2


COVPf (10)

where γ is the confidence level and Φ the cumulative standard
normal distribution. For each design point, the current value of the
COVPf is checked against a threshold value, where COVPf is given
by

COVPf =


1 − Pf
NsimPf

. (11)

For all problems the threshold coefficient of variation for the
probability of failure COVPf was set to 0.1, which means that with
95% confidence the relative error in the estimate of the probability
of failure Pf is less than

E
pf
max = 1.96 COVPf ≈ 20%. (12)
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Table 2
Number of deterministic analyses required by the different stochastic methods.

Case MCS DS ADIS

1 7655 2680 136
2 >109 107 57
3 17830 11216 116
4 27096 999 65
5 942 190 32
6 2734 307 81
7 36835 1502 71
8 354130 4039 148
9 361701 19688 91

10 37659 859 51
11 563723 2504 63
12 24902 212 32
13 351660 1573 65
14 41220 448 28

This accuracy is acceptable for most engineering applications.
In general, the real error will be less than 10%, which is often
better than the errors produced in other parts of the analysis
(e.g. accuracy of the underlying deterministic and/or numerical
model). Reducing the COV value reduces the error at the expense
of more simulation.

3.1. Discussion

The various problems serve to demonstrate the accuracy,
efficiency and robustness of the ADIS method. In all problems, the
same default settings for ∆β = 0.1 and Pratio = 0.4, presented in
Section 2, have been used. As previously stated, all results have a
similar accuracy level by selecting a fixed value for the coefficients
of variation of Pf .

The value obtained for the probability of failure with the ADIS
method, given the above accuracy level, is presented in column6 of
Table 1 together with the relative error in Pf between parentheses.
This error was (well) below the maximum expected error of 20%
for all problems. The ADIS method therefore produced accurate
results.

The required number of simulations is presented in Table 2
columns 2–4, for respectively, MCS, DS and ADIS. For all problems
ADIS proves to be very efficient, requiring (much) less than 200
simulations to determine the failure probability for specified
accuracy level. Problem 3 reflects the efficiency in the case of a
larger number of variables.

Robustness is demonstrated by the noisy limit state of problem
1,multiple design points of problem2, highly nonlinear limit states
of problems 6–8; multiple failure functions of problems 9–14, in
which multiple design points are present for problems 12 and 14
as well. Problem 14 has been slightly modified compared to the
original problem, in order to obtain a more complex situation with
four equally significant design points. For all problems, the ADIS
method proved to be robust.

Fig. 4 shows sample plots obtained with ADIS for the two-
dimensional problems, clearly demonstrating the approach. The
sample points that lie on a sphere, see for example problems 4, 7, 8
and 13, relate to the exact line search at start of the DS method
before a response surface could be fit. In addition, all problems
show a clustering of points around themost important parts of the
limit state.

Because of the above characteristics, ADIS is of particular
interest in applications with a low probability of failure and
medium number (up to about 40) of stochastic variables, such as
in structural reliability analyses of aircraft structure.

3.2. Dimensionality test problem

To demonstrate the efficiency of the ADIS method for higher
dimensional problems, the following test problem was evaluated:
Fig. 5. Number of samples (efficiency) versus the number of problem dimensions.

g = 3
√
n −

n−
i=1

xi (13)

where n is the number of dimensions and xi are standard normal
variables N(0, 1).

The limit state is a linear hyper-plane at a fixed distance β = 3
from the origin, yielding a fixedβ-sphere radius and corresponding
probability of failure Pf = Φ(−β) = 0.00135. For various
number of dimensions up to 50, the probability of failure has been
computed with the ADIS method and compared with the solution
obtained with FORM which provides an exact solution for this
problem. The obtained efficiency, number of required G-function
evaluations (deterministic analyses), is depicted in Fig. 5 for both
ADIS (filled-circle symbol) and FORM (open-circle symbol). In this
case, both methods prove to be efficient even for high dimensions
and ADIS is even somewhatmore efficient than FORM. The number
of G-function evaluations to build the initial response surface is
depicted by the line with triangles resulting in a linear response
surface which suffices for this problem. The number of additional
G-function evaluations needed by ADIS to arrive at a converged
solution (here COVβ = 0.01) is given by the difference between
this line and the line with circles and shows a linear behaviour
for increasing dimensions as well. These additional G-function
evaluations represent the exact line searches in themost important
directions, to improve the accuracy of the failure probability and is
used to update the response surface as well. The latter is not of
importance in this particular example due to the linearity of the
problem, but is important in general.

The required number of G-function evaluations to arrive at
an incomplete (diamond symbol) and full quadratic (square
symbol) response surface is depicted in the figure as well. For the
latter, the number of function evaluations increases considerably
demonstrating the curse of dimensionality. As such, the ADIS
method is of particular interest in applications with a low
probability of failure and medium number (up to about 40) of
stochastic variables. For many real applications (for instance in
aircraft industry), the number of most important random variables
(e.g. material properties and loading) will be (much) less than 40.
Furthermore, the characterisation of this number of distribution
functions already poses a difficult task.

4. Conclusion

Importance sampling methods are more efficient than Monte
Carlo simulation and directional simulation, but require informa-
tion about the location of the limit state(s), especially the part
closest to the origin in U-space. Gathering this information can be
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expensive and can fail to locate all the important parts. In this
paper, a new importance sampling method ADIS has been pre-
sented combining directional simulation and a response surface
approach in an efficient adaptive scheme. The method has been
demonstrated on a broad range of complex limit states that can
occur in practice, of which several that pose potential problems
to stochastic methods in general, and proved to be very efficient,
accurate and robust. For this reason, the method is of particular
interest in applications with a low probability of failure and
medium number (up to about 40) of stochastic variables, such as
structural reliability in aircraft industry.
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