d_ply {plyr}R Documentation

Split data frame, apply function, and discard results.

Description

For each subset of a data frame, apply function and discard results

Usage

  d_ply(.data, .variables, .fun = NULL, ...,
    .progress = "none", .inform = FALSE, .drop = TRUE,
    .print = FALSE, .parallel = FALSE, .paropts = NULL)

Arguments

.fun

function to apply to each piece

...

other arguments passed on to .fun

.progress

name of the progress bar to use, see create_progress_bar

.parallel

if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts

a list of additional options passed into the foreach function when parallel computation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

.inform

produce informative error messages? This is turned off by by default because it substantially slows processing speed, but is very useful for debugging

.data

data frame to be processed

.variables

variables to split data frame by, as as.quoted variables, a formula or character vector

.drop

should combinations of variables that do not appear in the input data be preserved (FALSE) or dropped (TRUE, default)

.print

automatically print each result? (default: FALSE)

Value

Nothing

Input

This function splits data frames by variables.

Output

All output is discarded. This is useful for functions that you are calling purely for their side effects like displaying plots or saving output.

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical Software, 40(1), 1-29. http://www.jstatsoft.org/v40/i01/.

See Also

Other data frame input: daply, ddply, dlply

Other no output: a_ply, l_ply, m_ply


[Package plyr version 1.8 Index]