

Date 2019-02-06

Reference e02 - f28 - c99

[entry]nyt/global/

1 Bélanger surface profile with zero bed slope

Quality Assurance

Date	Author	Initials	Review	Initials	Approval	Initials
08 Dec 2017	Andries Paarlberg		Arthur van Dam		Aukje Spruyt	
06 Feb 2019						

Version information

Date of study :	2019-02-06			
Executable :	Deltares, D-Flow FM Version 1.2.26.60016M, Jan 25 2019, 12:08:55			
Location :	: \$HeadURL:https://svn.oss.deltares.nl/repos/			
	openearthmodels/trunk/riverlab/schematic/f28_			
	<pre>morld_bakprof_hydraulics/c99_belangerflat1d2d/doc/</pre>			
	chapters/case_text.tex\$			
SVN revision :	Rev: 2587			

Purpose

The purpose of this validation case is to examine the performance of D-Flow FM for a schematized channel flow simulation. For stationary flow through a river with a rectangular cross-section, the Bélanger surface profile equation can be utilized to compare the numerical solution with.

In the D-Flow FM test bench, a case is available where a numerical approximation of the surface profile based on the Bélanger equation is implemented. For use in further test cases we test a Matlab-version of this implementation for bed slope $i_b \ge 0$ The case for flat bed slope $(i_b = 0)$ is of specific interest, since for a number of test cases, it is convenient to use a flat bed (without a bed slope).

Linked claims

Claims that are related to the current test case are:

- Water levels in 1D-model are identical to Quasi2D-model for flat bed.
- Water levels are identical to semi-analytical solution.
- Matlab implementation of Bélanger approximation is equal to that in D-Flow FM.

Page 2/5

Date 2019-02-06 Reference e02 - f28 - c99

Approach

Base case: /DSCTestbench/cases/e02_dflowfm/f03_advection/c010_belanger/ This case is set-up for arbitrary bed slopes ($i_b \ge 0$). Here we investigate how the Matlab code performs w.r.t. the D-Flow FM code for the case with a horizontal flat bed ($i_b = 0$) and a bed slope of $i_b = 4 \text{x} 10^{-4} \text{ m/m}$.

A straight channel with a rectangular cross-section is defined. Given an inflow discharge Q, a channel width B, a bottom slope i_b and a Chézy friction factor C, the distance between the free surface profile and the bed profile can be described by the Bélanger equation for d as the water depth:

$$\frac{\mathrm{d}d}{\mathrm{d}x} = i_b \frac{d^3 - d_e^3}{d^3 - d_q^3} \tag{1}$$

with d_e the equilibrium depth and d_q the limit depth (associated with Fr = 1) following:

$$d_e = \left(\frac{Q^2}{B^2 g}\right)^{1/3}$$
 and $d_g = \left(\frac{Q^2}{B^2 C^2 i_b}\right)^{1/3}$. (2)

Given a certain inflow discharge Q_{in} and a certain outflow water level condition h_{out} , the surface profile can hence numerically be estimated in the most simple way as:

$$\frac{d_i - d_{i-1}}{\Delta x} = i_b \frac{d_i^3 - d_e^3}{d_i^3 - d_g^3},\tag{3}$$

having $d_i = h_{out} + i_b L$ at the outflow boundary. This, in fact *semi-analytical*, solution can be used for comparison.

For zero bed slope we use a slightly different formula for the estimation of the surface profile, which is independent of the equilibrium depth:

$$\frac{d_i - d_{i-1}}{\Delta x} = -\frac{c_f d_g^3}{d_i^3 - d_g^3},\tag{4}$$

where:

$$c_f = \frac{g}{C^2} \tag{5}$$

Model description

Relevant files for the case with zero bed slope are:

- MDU-file: belangerflat1d2d_rst.mdu
- Grid-file: 5001d2dflat_net.nc
- External forcings file: flat.ext

For the case of non-zero bed slope, the bed levels are set *inside* D-Flow FM (only implemented for 2D) by using a 2D-grid file with NaN-values and specifying the bed slope directly in the

- MDU-file: belanger_AP_rst.mdu
- Grid-file: 5002dmis_net.nc

The 1D and 2D channels have equal length, see figure below.

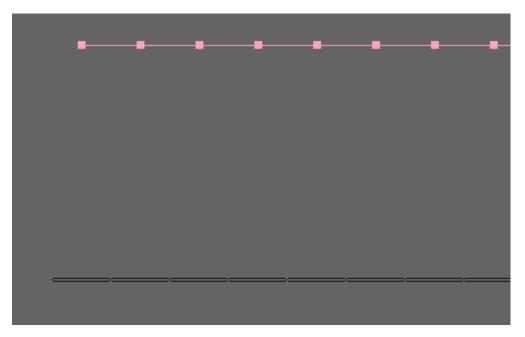


Figure 1: Figure of the layout of the model

The 2D computational domain has the sizes $L \times B = 100 \text{ km} \times 20 \text{ m}$. The grid consists of 200×1 cells. The cell size is $500 \times 20 \text{ m}^2$ everywhere. The bed slope i_b is 0. The inflow discharge is $Q = 600 \text{ m}^3$ /s. The Chézy coefficient is $C = 60 \text{ m}^{1/2}$ /s. The outflow water *level* is set equal to -0.12600 m (w.r.t. reference); the water *depth* at the downstream boundary is approximately 10 meters (differs per bed slope). Recall that the water depth is computed as the difference between the upstream water level (computed at the *cell center*) and the bed level at the velocity point (computed at the *cell face*), invoking a $\Delta x/2$ spatial shift. In the computational model, the bed level at the outflow boundary is equal to -10 m+NAP. Therefore, the specified water level holds at a distance $\Delta x/2$ outside the grid (mirrored location).

The case is run for 1 day, starting from a restart-file, to ensure a numerically converged solution.

Results

In D-Flow FM, the semi-analytical solution is implemented. When running the model in the interactive GUI, the deviations from the semi-analytical solution are shown on the screen, which are, for the case of a zero bed slope, approximately:

Date	Reference
2019-02-06	e02 - f28 - c99
• 2D @unstream: () 0157 m – 1 57 cm

- 2D @upstream: 0.0157 m = 1.57 cm
- 1D @upstream: 0.0220 m = 2.22 cm
 2D @ 80 km: 0.0224 m = 2.24 cm
- 1D @ 80 km: 0.0296 m = 2.96 cm

For the case of non-zero bed slope, the difference are sligthly larger, with a maximum of approximately 5 cm at the upstream boundary. In all cases, D-Flow FM is slightly lower than the analytical solution.

The result from D-Flow FM for the water *depth* is shown in the figures below in combination with its semi-analytical equivalent (here found with a Matlab code). The semi-analytical solution is based on the equation for the Bélanger surface profile.

Note!: to correctly reproduce the semi-analytical solution, Δx should be chosen small enough (here 1 m).

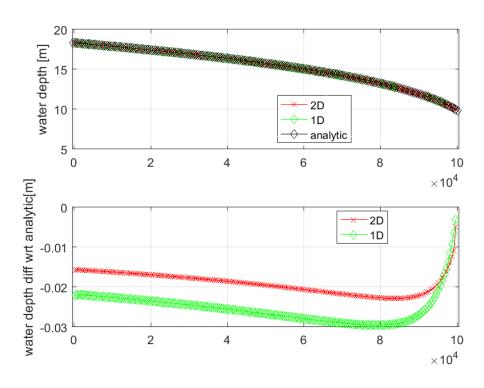


Figure 2: Comparison of the numerical solution and the semi-analytical solution for the water depth for zero bed slope ($i_b = 0$).

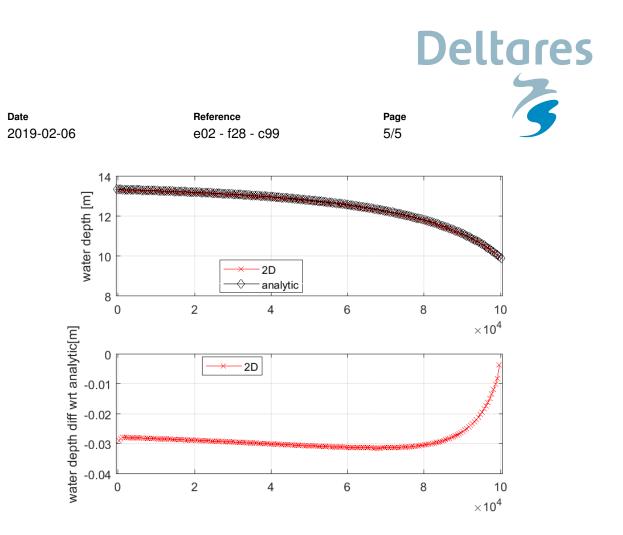


Figure 3: Comparison of the numerical solution and the semi-analytical solution for the water depth for $i_b = 4x10^{-4}$ m/m.

The difference in water depth compared to the analytical solution are equal to the difference computed in D-Flow FM. From validation document: root-mean-square difference between the numerical outcome from D-Flow FM and the semi-analytical solution is in the order of 10^{-3} m (for a channel of 100 km).

Conclusion

Water levels in the 1D-model are identical to those in the Quasi2D-model for the case of zero bed slope. For non-zero bed slope ($i_b = 4x10^{-4}$) the surface profiles found with D-Flow FM and Matlab are nearly identical.

This gives confidence to use the Matlab-code for $i_b \ge 0$ for further test cases.