# Generated on 2020-02-20 12:33 # Deltares, Sobek3 To D-Flow FM converter, version 1.18 [General] Program = D-Flow FM Version = fileVersion = 1.09 # File version (do not edit this) fileType = modelDef # File type (do not edit this) AutoStart = 0 # Autostart simulation after loading MDU (0: no, 1: autostart, 2: autostartstop) [geometry] NetFile = rijn-flow-model_net.nc # Unstructured grid file *_net.nc OneDNetworkFile = # 1d networkfile BedlevelFile = # street_level.xyz , Bedlevels points file e.g. *.xyz, only needed for bedlevtype not equal 3 DryPointsFile = # Dry points file *.xyz (third column dummy z values), or dry areas polygon file *.pol (third column 1/-1: inside/outside) IniFieldFile = initialFields.ini # Initial and parameter field file *.ini LandBoundaryFile = # Land boundaries file *.ldb, used for visualization ThinDamFile = # Polyline file *_thd.pli, containing thin dams FixedWeirFile = # Polyline file *_fxw.pliz, containing fixed weirs with rows x, y, crest level, left ground level, right ground level Gulliesfile = # Polyline file *_gul.pliz, containing lowest bed level along talweg x, y, z level VertplizFile = # Vertical layering file *_vlay.pliz with rows x, y, Z, first Z, nr of layers, second Z, layer type ProflocFile = # Channel profile location file *_proflocation.xyz with rows x, y, z, profile number ref ProfdefFile = # Channel profile definition file *_profdefinition.def with definition for all profile numbers ProfdefxyzFile = # Channel profile definition file _profdefinition.def with definition for all profile numbers Uniformwidth1D = 1. # Uniform width for channel profiles not specified by profloc Uniformheight1D = 1. # Uniform height for channel profiles not specified by profloc ManholeFile = # File *.ini containing manholes PipeFile = # File *.pliz containing pipe-based 'culverts' ShipdefFile = # File *.shd containing ship definitions StructureFile = Structures.ini # File *.ini containing structures CrossLocFile = CrossSectionLocations.ini # Name and location of the file containing the locations of the cross sections CrossDefFile = CrossSectionDefinitions.ini # Name and location of the file containing the definitions of the cross sections frictFile = roughness-Main.ini;roughness-FloodPlain1.ini;roughness-FloodPlain2.ini # Name and location of the file containing the roughness data WaterLevIni = -999.0 # Initial water level at missing s0 values BedlevUni = -5. # Uniform bed level used at missing z values if BedlevType > 2 BedlevType = 1 # Bathymetry specification # 1: at cell centers # 2: at faces # 3: at nodes, face levels mean of node values # 4: at nodes, face levels min. of node values # 5: at nodes, face levels max. of node values # 6: at nodes, face levels max. of cell-center values PartitionFile = # Domain partition polygon file *_part.pol for parallel run AngLat = 0. # Angle of latitude S-N (deg), 0: no Coriolis AngLon = 0. # Angle of longitude E-W (deg), 0: Greenwich, used in solar heat flux computation. Conveyance2D = -1 # -1: R=HU,0: R=H, 1: R=A/P, 2: K=analytic-1D conv, 3: K=analytic-2D conv Slotw2D = 0. # - NonLin1D = 0 [numerics] CFLMax = 0.7 # Maximum Courant number AdvecType = 33 # Advection type (0: none, 1: Wenneker, 2: Wenneker q(uio-u), 3: Perot q(uio-u), 4: Perot q(ui-u), 5: Perot q(ui-u) without itself) TimeStepType = 2 # Time step handling (0: only transport, 1: transport + velocity update, 2: full implicit step-reduce, 3: step-Jacobi, 4: explicit) Icoriolistype = 5 # 0=No, 1=yes, if jsferic then spatially varying, if icoriolistype==6 then constant (anglat) Limtypmom = 4 # Limiter type for cell center advection velocity (0: none, 1: minmod, 2: van Leer, 3: Kooren, 4: monotone central) Limtypsa = 4 # Limiter type for salinity transport (0: none, 1: minmod, 2: van Leer, 3: Kooren, 4: monotone central) TransportMethod = 1 # Transport method (0: Herman's method, 1: transport module) TransportTimestepping = 1 # Timestepping method in Transport module, 0 = global, 1 = local (default) Vertadvtypsal = 6 # Vertical advection type for salinity (0: none, 1: upwind explicit, 2: central explicit, 3: upwind implicit, 4: central implicit, 5: central implicit but upwind for neg. stratif., 6: higher order explicit, no Forester) Vertadvtyptem = 6 # Vertical advection type for temperature (0: none, 1: upwind explicit, 2: central explicit, 3: upwind implicit, 4: central implicit, 5: central implicit but upwind for neg. stratif., 6: higher order explicit, no Forester) Icgsolver = 4 # Solver type (1: sobekGS_OMP, 2: sobekGS_OMPthreadsafe, 3: sobekGS, 4: sobekGS + Saadilud, 5: parallel/global Saad, 6: parallel/Petsc, 7: parallel/GS) Noderivedtypes = 5 # 0=use der. types. , 1 = less, 2 = lesser, 5 = also dealloc der. types Tlfsmo = 0. # Fourier smoothing time (s) on water level boundaries Slopedrop2D = 0. # Apply drop losses only if local bed slope > Slopedrop2D, (<=0: no drop losses) cstbnd = 0 # Delft-3D type velocity treatment near boundaries for small coastal models (1: yes, 0: no) Epshu = 1.d-4 # Threshold water depth for wet and dry cells jaupwindsrc = 1 # 1st-order upwind advection at sources/sinks (1) or higher-order (0) jasfer3D = 0 # corrections for spherical coordinates [physics] UnifFrictCoef = 50 # Uniform friction coefficient (0: no friction) UnifFrictType = 0 # Uniform friction type (0: Chezy, 1: Manning, 2: White-Colebrook, 3: idem, WAQUA style) UnifFrictCoef1D = 50 # Uniform friction coefficient in 1D links (0: no friction) UnifFrictCoef1D2D = 50 # Uniform friction coefficient in 1D links (0: no friction) UnifFrictCoefLin = 0. # Uniform linear friction coefficient for ocean models (m/s) (0: no friction) Vicouv = 1. # Uniform horizontal eddy viscosity (m2/s) Dicouv = 1. # Uniform horizontal eddy diffusivity (m2/s) Smagorinsky = 0. # Smagorinsky factor in horizontal turbulence, e.g. 0.15 Elder = 0. # Elder factor in horizontal turbulence irov = 0 # 0=free slip, 1 = partial slip using wall_ks wall_ks = 0. # Wall roughness type (0: free slip, 1: partial slip using wall_ks) Rhomean = 1000. # Average water density (kg/m3) Ag = 9.81 # Gravitational acceleration TidalForcing = 1 # Tidal forcing, if jsferic=1 (0: no, 1: yes) SelfAttractionLoading = 0 # Self attraction and loading (0=no, 1=yes, 2=only self attraction) VillemonteCD1 = 1. # Calibration coefficient for Villemonte. Default = 1.0. NB. For Bloemberg data set 0.8 is recommended. VillemonteCD2 = 10. # Calibration coefficient for Villemonte. Default = 10.0. NB. For Bloemberg data set 0.8 is recommended. Salinity = 0 # Include salinity, (0=no, 1=yes) Temperature = 0 # Include temperature (0: no, 1: only transport, 3: excess model of D3D, 5: composite (ocean) model) SecondaryFlow = 0 # Secondary flow (0: no, 1: yes) [wind] ICdtyp = # Wind drag coefficient type (1=Const; 2=Smith&Banke (2 pts); 3=S&B (3 pts); 4=Charnock 1955, 5=Whang 2005, 6=Wuest 2005, 7=Hersbach 2010 (2 pts) Cdbreakpoints = # Wind drag coefficient break points Windspeedbreakpoints = # Wind speed break points (m/s) Relativewind = # Wind speed relative to top-layer water speed, 1=yes, 0 = no) Rhoair = # Air density (kg/m3) PavBnd = # Average air pressure on open boundaries (N/m2) (only applied if > 0) Pavini = # Average air pressure for initial water level correction (N/m2) (only applied if > 0) [time] RefDate = 20000101 # Reference date (yyyymmdd) Tzone = 0. # Time zone assigned to input time series DtUser = 3600.000 # Time interval (s) for external forcing update DtNodal = 60. # Time interval (s) for updating nodal factors in astronomical boundary conditions DtMax = 600. # Maximal computation timestep (s) Dtfacmax = 1.1 # Max timestep increase factor ( ) DtInit = # Initial computation timestep (s) Timestepanalysis = 0 # 0=no, 1=see file *.steps Autotimestepdiff = 0 # 0 = no, 1 = yes (Time limitation based on explicit diffusive term) Tunit = S # Time unit for start/stop times (D, H, M or S) TStart = 0.0 # Start time w.r.t. RefDate (in TUnit) TStop = 345600.0 # Stop time w.r.t. RefDate (in TUnit) [restart] RestartFile = # Restart netcdf-file, either *_rst.nc or *_map.nc RestartDateTime = # Restart date and time (YYYYMMDDHHMMSS) when restarting from *_map.nc [external forcing] ExtForceFile = # Old format for external forcings file *.ext, link with tim/cmp-format boundary conditions specification ExtForceFileNew = rijn-flow-model.ext # New format for external forcings file *.ext, link with bc-format boundary conditions specification [output] OutputDir = # Output directory of map-, his-, rst-, dat- and timings-files, default: DFM_OUTPUT_. Set to . for current dir. FlowGeomFile = # Flow geometry NetCDF *_flowgeom.nc ObsFile = ObservationPoints.ini # Points file *.xyn with observation stations with rows x, y, station name CrsFile = ObservationPoints_crs.ini # Polyline file *_crs.pli defining observation cross sections FouFile = # Fourier analysis input file *.fou HisFile = # HisFile name *_his.nc MapFile = # MapFile name *_map.nc HisInterval = 3600.000 0. 0. # History output times, given as "interval" "start period" "end period" (s) XLSInterval = 0. # Interval (s) between XLS history MapInterval = 3600.000 0. 0. # Map file output, given as "interval" "start period" "end period" (s) RstInterval = 0. 0. 0. # Restart file output times, given as "interval" "start period" "end period" (s) WaqInterval = 0. 0. 0. # DELWAQ output times, given as "interval" "start period" "end period" (s) StatsInterval = -60. # Screen step output interval in seconds simulation time, if negative in seconds wall clock time TimingsInterval = 0. # Timings statistics output interval TimeSplitInterval = 0X # Time splitting interval, after which a new output file is started. value+unit, e.g. '1 M', valid units: Y,M,D,h,m,s. MapFormat = 4 # Map file format, 1: netCDF, 2: Tecplot, 3: netCFD and Tecplot, 4: NetCDF-UGRID Wrihis_balance = 1 # Write mass balance totals to his file (1: yes, 0: no) Wrihis_sourcesink = 1 # Write sources-sinks statistics to his file (1=yes, 0=no) Wrihis_turbulence = 1 # Write k, eps and vicww to his file (1: yes, 0: no) Wrihis_wind = 1 # Write wind velocities to his file (1: yes, 0: no) Wrihis_rain = 1 # Write precipitation to his file (1: yes, 0: no) Wrihis_temperature = 1 # Write temperature to his file (1: yes, 0: no) Wrihis_heatflux = 1 # Write heat flux to his file (1: yes, 0: no) Wrihis_salinity = 1 # Write salinity to his file (1: yes, 0: no) Wrimap_waterlevel_s0 = 1 # Write water levels for previous time step to map file (1: yes, 0: no) Wrimap_waterlevel_s1 = 1 # Write water levels to map file (1: yes, 0: no) Wrimap_velocity_component_u0 = 1 # Write velocity component for previous time step to map file (1: yes, 0: no) Wrimap_velocity_component_u1 = 1 # Write velocity component to map file (1: yes, 0: no) Wrimap_velocity_vector = 1 # Write cell-center velocity vectors to map file (1: yes, 0: no) Wrimap_upward_velocity_component = 1 # Write upward velocity component on cell interfaces (1: yes, 0: no) Wrimap_density_rho = 1 # Write flow density to map file (1: yes, 0: no) Wrimap_horizontal_viscosity_viu = 1 # Write horizontal viscosity to map file (1: yes, 0: no) Wrimap_horizontal_diffusivity_diu = 1 # Write horizontal diffusivity to map file (1: yes, 0: no) Wrimap_flow_flux_q1 = 1 # Write flow flux to map file (1: yes, 0: no) Wrimap_spiral_flow = 1 # Write spiral flow to map file (1: yes, 0: no) Wrimap_numlimdt = 1 # Write the number times a cell was Courant limiting to map file (1: yes, 0: no) Wrimap_taucurrent = 1 # Write the shear stress to map file (1: yes, 0: no) Wrimap_chezy = 1 # Write the chezy roughness to map file (1: yes, 0: no) Wrimap_turbulence = 1 # Write vicww, k and eps to map file (1: yes, 0: no) Wrimap_wind = 1 # Write wind velocities to map file (1: yes, 0: no) Wrimap_tidal_potential = 1 # Write tidal potential to map file (1: yes, 0: no) MapOutputTimeVector = # File (*.mpt) containing fixed map output times (s) w.r.t. RefDate FullGridOutput = 0 # Full grid output mode (0: compact, 1: full time-varying grid data) EulerVelocities = 0 # Euler velocities output (0: GLM, 1: Euler velocities) Wrirst_bnd = 1 # Write waterlevel, bedlevel and coordinates of boundaries to restart files Writepart_domain = 1 # Write partition domain info. for postprocessing [sediment] MorFile = # Morphology settings file (*.mor) SedFile = # Sediment characteristics file (*.sed) Sedimentmodelnr = # Sediment model nr, (0=no, 1=Krone, 2=SvR2007)