

Delft3D FM 1D

Webinar

Victor Chavarrias

23-04-2021

Who am I?!

I really like rivers!

RiverLab

Community of users and resources: <u>https://oss.deltares.nl/web/riverlab-models</u>

- Forum •
- Webinars ٠
- Models ٠
- Processing tools ۲

HOME

Deltares

SEARCH Q

You will find answers to the questions:

- 1. Why 1D modelling?
- 2. Which software can I use?
- 3. How do I create a simple hydrodynamic model?
- 4. How do I extend it for modelling morphodynamics?

Learn by **DOING**.

Difficult to read your emotions remotely. Dare to participate!

1D modelling

1D, 2D, or 3D, in all cases we deal with free-surface shallow flows.

1D, 2D, or 3D, in all cases we deal with free-surface shallow flows.

Shallow water approximation:

- Horizontal length scale >> Vertical length scale
- Vertical flow accelerations are small (but not zero!)
- Hydrostatic pressure

This is not the case for flow over:

- Steep bed topography gradients,
- Structures (e.g., bridge piles),

• .

3D: Turbulence is filtered. Vertical velocities are computed using the continuity equation once the horizontal velocities are obtained. I.e., quasi-3D flow.

3D: Turbulence is filtered. Vertical velocities are computed using the continuity equation once the horizontal velocities are obtained. I.e., quasi-3D flow.

2D: Depth-averaging of the 3D equations yield extra terms in the equations. Three-dimensional processes (e.g., secondary flow) are not resolved and need to be parametrized.

3D: Turbulence is filtered. Vertical velocities are computed using the continuity equation once the horizontal velocities are obtained. I.e., quasi-3D flow.

2D: Depth-averaging of the 3D equations yield extra terms in the equations. Three-dimensional processes (e.g., secondary flow) are not resolved and need to be parametrized.

1D: Cross-sectional average of 2D equations (i.e., De Saint-Venant (1871) equations).

1D modelling

- Length scale of interest in 3D > 2D > 1D.
- 1D model allows for less and larger cells.
- If our questions concerns large length scales and a cross-sectional average is representative: choose 1D.

Example 1D modelling

• Large scale impact of nourishment strategy.

Example 1D modelling

• Large scale impact of nourishment strategy.

Example 2D modelling

• Small scale impact of nourishment strategy.

Software

- 1) Delft3D-Flow (Delft3D-4, Delft3D, Delft3D curvilinear)
- Being developed for decades.
- Morphodynamics 'online' since beginning 2000.
- 2DH, 2DV, 3D hydrostatic (sigma-layers, z-layers, non-hydrostatic correction).
- Curvilinear grid.
- ADI scheme.

- 1) Delft3D-Flow (Delft3D-4, Delft3D, Delft3D curvilinear, ...)
- 2) Delft3D Flexible Mesh (D-Flow-FM, D-Hydro, Flexible Mesh, ...)
- Being developed for the last 10 years. Most features are beta.
- 1D, 2DH, 2DV, 3D hydrostatic (sigma-layers, z-layers, sigma-z-layers).
- Flexible mesh.
- Explicit scheme.

- 1) Delft3D-Flow (Delft3D-4, Delft3D, Delft3D curvilinear, ...)
- 2) Delft3D Flexible Mesh (D-Flow-FM, D-Hydro, Flexible Mesh, ...)
- 3) Coupling modules.
- Real Time Control
- Water quality
- ...

- 1) Delft3D-Flow (Delft3D-4, Delft3D, Delft3D curvilinear, ...)
- 2) Delft3D Flexible Mesh (D-Flow-FM, D-Hydro, Flexible Mesh, ...)
- 3) Coupling modules.
- 4) SOBEK-2, SOBEK-3
- 1D-2D.
- Hydrodynamics only (hidden functionality for morphodynamics).
- Explicit scheme.

- 1) Delft3D-Flow (Delft3D-4, Delft3D, Delft3D curvilinear, ...)
- 2) Delft3D Flexible Mesh (D-Flow-FM, D-Hydro, Flexible Mesh, ...)
- 3) Coupling modules.
- 4) SOBEK-2, SOBEK-3
- 5) SOBEK-RE
- 1D.
- 90's.
- Unconditionally stable scheme.
- Currently being phased out.
- Morphodynamics.

Deltares

23

- 1) Delft3D-Flow (Delft3D-4, Delft3D, Delft3D curvilinear, ...)
- 2) Delft3D Flexible Mesh (D-Flow-FM, D-Hydro, Flexible Mesh, ...)
- 3) Coupling modules.
- 4) SOBEK-2, SOBEK-3
- 5) SOBEK-RE
- 1D.
- 90's.
- Unconditionally stable scheme.
- Currently being phased out.
- Morphodynamics.

24

Delft3D FM 1D: Awesome but beta.

Idealized hydrodynamic simulation

Inspiration

Inspiration

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus '53 km

Inspiration

- Rectangular cross-section
- Constant friction

• ...

Whatever resemblance to reality is pure chance ©!

Create FM model

- 1. "c:\Program Files (x86)\Deltares\D-HYDRO Suite 1D2D (Beta) (0.9.9.52575)\bin\DeltaShell.Gui.x86.exe"
- 2. Empty project
- 3. Add -> New Model -> Flow Flexible Mesh Model

Create network Spatial Operations Home View Tools Map Grid DIMR File 5.5.2 🔈 🔀 🗲 Zoom Previous 🚺 Map Coordinate System \land 🏹 🔣 Show Profile ⁻ T I 🗢 I 🔽 😿 I 🐨 I 🛸 I 🛸 📥 坐 🚍 🔔 🗏 🕋 💢 鸿 🔍 A North Arrow 🗙 Generate links ৎ ን. 🕘 👿 🐺 🔺 🖱 🗈 ປີ 📖 🚯 🔍 🌛 Zoom Next 🐴 Export As Image 👝 😣 🦟 🏝 🗋 - Add link Legend Embedded ¥ 2. 👁 🔺 🔪 🛏 🖾 🖑 📷 🕕 Query Features 🛛 Query Time Series ٦ 👿 🖽 🔄 🔽 15 Scale Bar 1-to-1 • FM Region 1D2D Links Tools Decorations Edit Grid Profile Network Area R FlowFM X Project • 0 × 🖃 - 祝 r001 🖶 🕎 FlowFM 🗄 📄 General 🖮 🚞 1D - 🔣 network 🛞 Computational 1D G 🗄 📄 1D Roughness 🗄 🛅 1D Initial Conditions ---- 📴 1D Boundary Condit Lateral Sources 🗄 - 📄 2D - 🚯 1D2D Links 🦾 🔁 Output Ш > Properties • џ × Hydro node Ŧ ₿ Ž↓ 🖾 ✓ General ds_waal Name X coordinate -86602 **Deltares** Y coordinate -50000 km 10 20 30 40 (0 attributes) Attributes

- Q=2000.*[1,2/3,1/3]; %discharge of each branch [m^3/s]
- B=[300,200,100]; %width of each branch [m]
- s=[1e-4,5e-5,6e-5]; %slope of each branch [-]
- L=100000*[1,1,1]; %length of each branch [m]
- detab_b_1=0.5; %bed level step from branch ds_1 to branch us

- etab_0=-round(h(2:3)*10)/10; %bed level at mouth [m]
- etab_b_ds=etab_0+L(2:3).*s(2:3); %bed level at downstream part of bifurcation [m]
- etab_b_us=etab_b_ds(1)+detab_b_1; %bed level at upstream part of bifurcation [m]
- etab_us=etab_b_us+L(1)*s(1); %bed level at upstream end [m]

- etab_0=[-5.20,-4.90] m
- etab_b_ds=[-0.2,1.1] m
- etab_b_us=0.3 m
- etab_us=10.3 m

Cross-sectional information

width

Cross-sectional information

Add one at beginning and end of each branch. Right click -> Edit -> Cross-section elevation

width

Cross-sectional information

С	hannels Bour	dary Data 1D 🗙	
Name		DataType	Outlet Compartment
	us - Q(t)	Q(t) : Flow time series	
	Node002 - None	None	
	• ds_lek - H: 0 m	H : Constant water level	
	ds_waal - H:	H : Constant water level	

Script available

pe Q(t) : Flow time series			
🛓 Clipboard import 團 Csv im	port 🖳 Csv export		
Time [yyyy/MM/dd HH:mm:ss]	flow [m3/s]		
2000/01/01 00:00:00	2000		— flow [m3/s]
2000/01/01 00:05:00	2000		
2000/01/0100:10:00	2000	6000	
2000/01/0100:15:00	2000	5800	
2000/01/01 00:20:00	2000	5400	
2000/01/01 00:25:00	2000	5200	
2000/01/01 00:30:00	2000	5000	↓
2000/01/01 00:35:00	2000	4800	
2000/01/01 00:40:00	2000	4600	
2000/01/01 00:45:00	2000	4400	
2000/01/01 00:50:00	2000	4000	
2000/01/01 00:55:00	2000	3800	
2000/01/0101:00:00	2000	3600	1
2000/01/0101:05:00	2000	3400	
2000/01/0101:10:00	2000	3200	
2000/01/01 01:15:00	2000	2800	
2000/01/01 01:20:00	2000	2600	
2000/01/01 01:25:00	2000	2400	
2000/01/01 01:30:00	2000	2200	
2000/01/01 01:35:00	2000	2000	
2000/01/01 01:40:00	2000	_	2000-01-03 2000-01-06 2000-01-09 2000-01-1

• Interested in 10 km long features -> 1000 m cells

Deltares

km

Output

- History file (at observation stations, more frequent)
- Map file (entire domain, less frequent)

General

Physical parameters -> Chezy = 31 Initial conditions -> Water depth = 5 Output parameters -> history to 15 min, map to 1 h

Numerical	Parameters		Output Parameters	
General	Time Frame		Geometry Parameter	s
▲ Time Frame				
Max Courant nr	().7		
Reference date	(01/Jar	n/2000 00:00:00 🗢 🕶	
Time zone	()		
User time step		0d 00	: 05: 00.000	
Max. time step (s)	3	300		
Initial time step (s)	1	1		
Update interval for roughness (s)	time dep {	36400		
Start Time	(01/Jar	n/2000 00:00:00 🗢 🗸	
Stop Time	•	14/Jar	n/2000 00:00:00 🗲 🗸	
 Time step analy 	sis			
Autotimestep exclu	de structure links 🛛	/		
Exclude negative qi	n 💽	/		

Run

Results

- Observations (his)
- Routes (map)

Extension to morphodynamics

File-based

Kernel allows for much more than the GUI.

Export DIMR configuration

Inspect files

Export DIMR configuration

_		
1	[]	
	[output]	
	branches	gui
3	crsdef	ini
3	crsloc	ini
	FlowFM	cache
	FlowFM	mdu
	FlowFM_bnd	ext
	FlowFM_boundaryconditions1d	bc
	FlowFM_lateral_sources	bc
	FlowFM_meteo	bc
	FlowFM_net	nc
3	initialFields	ini
3	InitialWaterDepth	ini
3	obsFile1D_obs	ini
3	roughness-Channels	ini
33	roughness-Main	ini
3	roughness-Sewer	ini
	routes	gui
3	structures	ini

VTools

- A collection of Matlab scripts without any warranty ③ (let me know if something does not work).
- Available in the Open Earth Tools:
 - <u>https://svn.oss.deltares.nl/repos/openearthtools/trunk/matlab</u>
- How to check out the OET (as the RiverLab repository):
 - <u>https://oss.deltares.nl/web/riverlab-models/accessing-models</u>
- You do **not** need a Matlab license, I have compiled some of them (and can compile all of them):
 - <u>https://svn.oss.deltares.nl/repos/openearthtools/trunk/matlab/applications/vtools/D3D/deploy</u>

Cross-section interpolation

- A cross-section is needed at every cell center.
- A matlab script is available for that (D3D_interpolate_crosssections)

Adding morphodynamics

• Modify mdu-file

[sediment]	
MorFile	= mor.mor
SedFile	= sed.sed
Sedimentmodelnr	= 4

Adding morphodynamics

- Create mor-file and sed-file (copy example!)
- Think about boundary conditions

Run batch file

• Create and execute a batch file

@ echo off

call "c:\Program Files (x86)\Deltares\D-HYDRO Suite 1D2D (Beta) (0.9.9.52575)\plugins\DeltaShell.Dimr\kernels\x64\dimr\scripts\run_dimr.bat" dimr_config.xml :end

• Check the dia-file

Visualize results

• QuickPlot

🔺 Delft3[D-QUICKPLOT	×
File Mad	cro Window Help	
ල් 🖻 🗂	` 📾 🛱 🖂 🗕 📭 😐 🔤 🕼	
\01 eimu	lations\r004\dflowfm\outputtElowEM_map.pc	Line Style
		Width 0.5
Domain	×	Colour Limits
cum. erosi	ion/sedimentation V	automatic 🗸 🗸
Subfield	V	Symmetric Limits
Time Step	All 313 313	Colour Map
		jet 🗸 🗸
	<u>^</u>	✓ Draw Colourbar
		Horizontal
Show 1	Times 🗸 🗸	Clipping Values
M range ar	nd N range V K range V	-999
м		X
		Υ
N	_ All	Export File Type
К	All	csv file ✓
Load Dat	ta Define Var. Add to Plot Quick View	Export Data

Visualize results

• Matlab routines (also compiled)

Sediment hump

- Add cross-sections
- Run hydrodynamics
- Interpolate cross-sections

Much more!

- Why this boundary conditions?
- How do we model mixed-size sediment?
- Nodal point relation?
- How can we accelerate morphodynamic simulations?

End

I know h, u, z_b everywhere for a given time.

I know h, u, z_b everywhere for a given time.

Can I know the state at the star after some time?

l know *h*, *u*, z_b everywhere for a given time.

Can I know the state at the star after some time?

Depends on the time...

Saint-Venant - Exner

 $\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = 0$ $\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q^2}{h} + \frac{gh^2}{2} \right) + gh \frac{\partial z_{\rm b}}{\partial x} = -ghS_f$ $\frac{\partial z_{\rm b}}{\partial t} + \frac{1}{1-p} \frac{\partial q_b}{\partial x} = 0$

Saint-Venant - Exner

$$\begin{split} &\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = 0\\ &\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q^2}{h} + \frac{gh^2}{2} \right) + gh \frac{\partial z_{\rm b}}{\partial x} = -ghS_f\\ &\frac{\partial z_{\rm b}}{\partial t} + \frac{1}{1-p} \frac{\partial q_b}{\partial x} = 0 \end{split}$$

Linearization and matrix formulation

$$\frac{\partial \mathbf{Q}'}{\partial t} + \mathbf{A}_0 \frac{\partial \mathbf{Q}'}{\partial x} = \mathbf{0}$$

$$\mathbf{A}_{0} = \begin{bmatrix} 0 & 1 & 0 \\ gh_{0} - u_{0}^{2} & 2u_{0} & gh_{0} \\ \frac{\partial q_{b}}{\partial h} \Big|_{0} & \frac{\partial q_{b}}{\partial q} \Big|_{0} & 0 \end{bmatrix}$$
$$\mathbf{Q}' = \begin{bmatrix} h' \\ q' \\ z_{b}' \end{bmatrix}$$

Saint-Venant - Exner

Deltares

 $\mathbf{A}_{0} = \begin{pmatrix} 0 & 1 & 0 \\ gh_{0} - u_{0}^{2} & 2u_{0} & gh_{0} \\ \frac{\partial q_{b}}{\partial h} \Big|_{0} & \frac{\partial q_{b}}{\partial q} \Big|_{0} & 0 \end{pmatrix}$

 c_1, c_2 : Flow celerities c_3 : Bed celerity

Saint-Venant - Exner

Lyn (1987)

Deltares

A boundary condition is needed for each outgoing characteristic for obtaining a well-posed model.

> c_1, c_2 : Flow celerities c_3 : Bed celerity

67

Saint-Venant - Exner

Under subcritical flow conditions:

- Flow upstream
- Flow downstream
- Morphodynamics upstream

With Delft3D you can model supercritical flow, but not at the boundaries.

Lyn (1987)