Memo

To Alexander van Duinen

Date 23 December 2015 From Virginie Trompille Reference 1220111-006-BGS-0002 Direct line +31(0)88335 7626 Number of pages 11 E-mail virginie.trompille@deltares.nl

Subject

User Manual D-Geo Stability 16.1.2.901

This memo is a user manual for the new shear strength model, called "Su-calculated with Yield Stress", implemented in D-Geo Stability version 16.1.2.901.

Note that this new model is not yet available in combination with the Reliability Analysis Module (probabilistic analyses). This will be implemented in a future version.

1 Theory

1.1 New Su-calculated model (with yield stress)

The new undrained shear strength model is implemented as follows:

 $s_u = \sigma'_{vi} \times S \times OCR^m$, with OCR = $\sigma'_{vy} / \sigma'_{vi} = (\sigma'_{vi} + POP) / \sigma'_{vi}$

with:

Su	Undrained shear strength [kN/m ²]
σ' _{vi}	Effective vertical stress [kN/m ²]
S	Undrained shear strength ratio (normally consolidated) = $(s_u/\sigma'_{vc})_{nc}$ [-]
OCR	Overconsolidation ratio [-]
m	Strength increase exponent [-]
σ' _{νν}	Vertical yield stress [kN/m ²]
PÓP	Pre overburden pressure [kN/m ²]

1.2 Procedure for the determination of the POP from a list of σ'_{vy} -measurements

When one or more yield stress values are measured at certain levels, these data must be assigned to the soils. The following procedure is used:

- First, the geometry is divided in columns, and these columns are divided in areas (see paragraph 3.2.1 called "Definition of a stress grid" of the functional design of the WTI kernel for a detailed description how to get those area's).
- Next, all the POP-values are calculated (POP = σ'_{vy} σ'_{vi}) by the kernel at the specified yield stress positions.
- If one or more calculated POP are present in the same soil material, all the areas with this soil material get the average value of these POP.
 - Next, along a column, the following is done for the areas without a POP:
 - The areas situated above the highest area with a POP get that POP.

 Date
 Our reference
 Page

 23 December 2015
 1220111-006-BGS-0002
 2/11

- The areas situated below the lowest area with a POP get that POP.
- The areas with a POP above and below get an interpolated value over the Zcoordinate at the middle of these areas.
- Finally, per row, the following is done for the areas without a POP:
 - If no POP is available in an area, the POP given to that area is the POP with the X-coordinate closest to the X-coordinate of the middle of the area.
- In case there are still areas without POP (meaning a column without POP), all the areas in the column get the value of the closest calculated POP.

When determining the POP of a layer, it is not taken into account that the layer changes in thickness or that the surface line above changes.

2 User Interface Input

2.1 Model window

In the Model window, the new shear strength method *Su-calculated with yield stress* can be choose as default shear strength model.

The Su-calculated with POP model per soil type is still available.

For sand layers, the *C-phi* model can be used; this has to be defined in the *Materials* window, see § 2.3.

Model									
Model	Default shear strength								
© Bishop	C phi □ Alternative strength								
O <u>S</u> pencer	O Stress tables								
⊂ <u>F</u> ellenius	C Su calculated with POP								
⊂ Uplift <u>V</u> an	O Su calculated with yield stress								
◯ Uplift Sp <u>e</u> ncer	O Su measured								
O Bishop probabilistic random field	O Su gradient								
C Horizontal balance	C Pseudo values Measurements								
Reinforcements	Reliability analysis								
☑ Geotextiles	Enable Default Input Values								
🗖 <u>N</u> ails So <u>i</u> l Resistance									
	Zone plot								
Porepressure	🗖 Enab <u>l</u> e								
Enable additional porepressure									
	OK Cancel Help								

2.2 Measured Yield Stresses window

23 December 2015

Date

The list of yield stress points with X- and Z-coordinates needed with the *Su-calculated with yield stress* model, can be entered by selecting *Measured Yield Stresses* under the *Soil* menu.

Our reference

1220111-006-BGS-0002

Note that the copy and paste buttons are available to fill the list (copy and paste from an Excel sheet or Matlab or Python output).

<u> </u>	/leasur	ed	Yield	Stresses		×						
				×co-ordinate [m]	Y co-ordinate [m]	Ordinate Yield stress [kN/m²] 115.000 131.000 131.000 130.000 164.000 41.000 43.000 5 42.000 24.000 28.000 0 38.000						
	1 e	Þ	1	2.000	-2.820	115.000						
	•×		2	2.000	-5.520	131.000						
			3	2.000	-7.420	130.000						
	\ge		4	2.000	-13.270	164.000						
	00		5	29.000	-3.565	41.000						
	-		6	29.000	-9.540	43.000						
	ra I		7	29.000	-11.635	42.000						
1	-		8	80.000	-7.630	24.000						
			9	80.000	-8.605	28.000						
			10	80.000	-11.580	38.000						
		*										
,		,		2.000 -5.520 131.000 2.000 -7.420 130.000 2.000 -13.270 164.000 29.000 -3.565 41.000 29.000 -9.540 43.000 29.000 -7.635 42.000 80.000 -7.630 24.000 80.000 -7.630 24.000 80.000 -11.580 38.000								

2.3 Materials window

The shear strength model (and the needed parameters) can be defined by selecting *Materials* under the *Soil* menu. For *Su-calculated with yield stress* model, two parameters need to be defined:

S Undrained shear strength ratio (normally consolidated) = $(s_u/\sigma'_{vc})_{nc}$ [-]

m Strength increase exponent [-]

 Date
 Our reference
 Page

 23 December 2015
 1220111-006-BGS-0002
 4/11

Materials		×
Material <u>n</u> ame zand kreftenheye basisveen gorkum zwaar 15,8 gorkum zwaar 16,3	Parameters Database Total unit weight Above phreatic level Below phreatic level	[kN/m²] 15.80 [kN/m²] 15.80
gorkum zwaar 14,8 gorkum zandig hollandveen diep onder	Sh <u>e</u> ar strength model Su calculate	ed with yield stress
hollandveen diep naast gorkum licht onder gorkum licht naast hollandveen 11,2 hollandveen 11,0 hollandveen 10,8 hollandveen 11,5 gorkum licht 13,2 tiel onder tiel naast dijksmateriaal oud dijksmateriaal nieuw	Undrained shear strength ratio S Strength increase exponent m	[-] 0.23 [-] 0.91
Add Insert Delete Rename		
	ОК	Cancel Help

2.4 View Input window

The positions of the yield stress measurements inputted in the *Measured Yield Stresses* window (see § 2.2) are displayed in the *View Input* window (I*nput* tab) with the marker \mathbb{X} , see figure below.

2.5 Reference Level for Ratio S

In this window, it is possible to define a reference surface level. This option applies only to the calculated undrained strength models. It is appropriate to use the reference level, if an embankment has been added to initially over-consolidated soil.

Reference Level for Ratio S
Initial surface level (Su calculated models only)
<u>T</u> op of layer dijkenklei oud ▼
QK Cancel Help

Top of layer: Select the top of the layer that will be used as the reference level.

D-GEO STABILITY uses the reference level to calculate the yield stress: $\sigma'_{vy} = max(\sigma'_{vi,ref} + POP; \sigma'_{vi})$

 $\sigma'_{vi,ref}$ The reference value of the vertical effective stress is determined from a reference level of the historic ground surface.

 Date
 Our reference
 Page

 23 December 2015
 1220111-006-BGS-0002
 6/11

 σ'_{vi} The vertical effective stress is determined from the top of a new embankment.

3 User Interface Output

3.1 Report window

In the *Report*, the yield stress, POP and OCR per slice are reported. Note that results per slices are available in the *Report* only if option *Long report* was selected in the *Calculation* >> *Start* window.

🔼 Report						
		DOD I	0070		_	. Cr. 1
Slice SPieload S-err.	Ileid	202 1	OCR			<u>5u</u>
[KN/m2] [KN/m2] [KN/m2]	[-] [[-] [[-]	[_]	[[KN/m2] {
1 0 00 1 12 60	0 00 1	0 00 1	1 00 1	0 00	0.00	
2 0 00 1 36 39	1 0 00 1	0 00 1	1 00 1	0 00	0.00	0 00 1
3 0.00 50.28	0.00 1	0.00 1	1.00	0.00	0.00	0.00
4 0.00 57.88	i 0.00 i	0.00 i	1.00	0.00	0.00	0.00 i
5 0.00 1 67.29	0.00	0.00 1	1.00	0.00	0.00	0.00 1
6 0.00 76.34	0.00 1	0.00 1	1.00	0.00	0.00	0.00 1
7 0.00 82.45	0.00	0.00	1.00	0.00	0.00	0.00
8 85.35 85.35	110.36	25.01	1.29	0.21	0.89	22.53
9 87.81 87.81	112.82	25.01	1.28	0.21	0.89	23.05
10 91.29 91.29	116.29	25.01	1.27	0.21	0.89	23.78
11 94.13 94.13	117.83	23.70	1.25	0.33	0.86	37.68
12 96.06 96.06	119.76	23.70	1.25	0.33	0.86	38.32
13 98.77 98.77	122.46	23.70	1.24	0.33	0.86	39.21
14 101.26 101.26	124.96	23.70	1.23	0.33	0.86	40.04
15 103.56 103.56	127.26	23.70	1.23	0.33	0.86	40.80
16 106.16 106.16	119.58	13.42	1.13	0.23	0.89	27.15
17 109.05 109.05	122.47	13.42	1.12	0.23	0.89	27.81
18 111.70 111.70	125.12	13.42	1.12	0.23	0.89	28.42
19 114.14 114.14	127.56	13.42	1.12	0.23	0.89	28.98
20 115.71 115.71	129.13	13.42	1.12	0.23	0.89	29.34
21 115.38 115.38	128.80	13.42	1.12	0.23	0.89	29.27
22 113.85 113.85	127.27	13.42	1.12	0.23	0.89	28.92
23 109.29 109.29	126.20	16.91	1.15	0.33	0.86	40.81
24 102.81 102.81	119.72	16.91	1.16	0.33	0.86	38.67
25 97.63 97.63	111.06	13.44	1.14	0.23	0.91	25.25
26 92.66 92.66	106.10	13.44	1.15	0.23	0.91	24.11
27 87.60 87.60	101.04	13.44	1.15	0.23	0.91	22.94
28 82.44 82.44	95.88	13.44	1.16	0.23	0.91	21.75
29 77.19 77.19	90.63	13.44	1.17	0.23	0.91	20.55
30 71.87 71.87	85.30	13.44	1.19	0.23	0.91	19.32
31 66.46 66.46	1 79.90 1	13.44	1.20	0.23	0.91	18.08
32 61.27 61.27	74.71	13.44	1.22	0.23	0.91	16.88
	1 70 10 1	16.91	1.30	0.23	0.91	10.45
	1 67 10 1	16.91	1 24	0.23	0.91	1 15 02 1
36 1 46 36 1 46 36	1 67.10	16.91	1 27 1	0.23	0.91	1 10.03
30 40.20 40.20	1 63.1/	16.91	1.3/	0.23	0.91	1 19 21 1
20 1 22 20 1 22 20	1 52.20 1	16.91	1 46 1	0.23	0.91	1 11 04 1
29 27 71 27 71	1 49 62 1	16.91	1 52 1	0.23	0.91	1 10 99 1
00 02./1 02./1	1 49.02	10.91	1.02	0.23	0.91	1 10.33

3.2 Stresses window

On the menu bar, click *Results* and then select the *Stresses* option to open a window which gives access to various graphical representations of the calculated results.

Clicking on the buttons **P O Y** gives access respectively to the POP, OCR and yield stress per slice along the calculated slip plane.

4 Testing the Su-calculated with yield stress model

Our reference

Date

A comparison with the results given by the WTI kernel Macro-Stability has been performed as the *Su-calculated with yield stress* model is also implemented in this kernel. Four test cases have been used, for the three methods Bishop, Spencer and Uplift-Van and for a single slip plane.

Our reference Page 23 December 2015 1220111-006-BGS-0002 8/11

4.1 Test case 1: Lekdijk dp 183

4.2

4.3 Test case 3: Markermeerdijk

23 December 2015

Date

Our reference

1220111-006-BGS-0002

4.4 Test case 4: Wolpherensedijk

 Date
 Our reference
 Page

 23 December 2015
 1220111-006-BGS-0002
 10/11

4.5 Test case 5: Lekdijk west 10a ultimate A

4.6 Results of the comparison between D-Geo Stability and WTI MacroStability kernel

The results of the comparison are given in the table below.

The calculated safety factors are very close (and sometimes exactly the same) for the first test case, but not for the other ones because in those test cases the same material is used in different layers and/or contains several yield stress measurements: D-Geo Stability uses an average value of all the POP values available for the material whereas WTI MacroStability uses also an average value of the POP values but per column (of the pre-process calculation) not for the complete section.

Date 23 December 2015											Our reference 1220111-006-BGS-0002																	
e A			Error [%]		3.46	0.00	3.46				Error [%]		2.27		9.18	4.49	6.22		0.01	4.09	3.52	2.52				Error [%]		2.90
10a ultimat			D-Geo	Stability	0.926	50199.62	46495.89				D-Geo	Stability	0.881		230.97	120.87	110.01		52518.79	38731.55	-157.36	720.15				D-Geo	Stability	1.208
Lekdijk west	bm5-06m	Bishop	WTI Macro-	Stability	0.958	50199.28	48106.10		bm5-06n	Uplift-Van	WTI Macro-	Stability	0.901		209.77	115.44	103.17		52522.75	40315.81	-151.82	701.99		bm5-06o	Spencer	WTI Macro-	Stability	1.243
			Error [%]		0.94	00.00	0.94				Error [%]		1.60		1.13	0.91	0.91		0.04	1.84	0.26	0.05				Error [%]		1.09
lik			D-Geo	Stability	1.061	25878.25	27458.96				D-Geo	Stability	1.125		301.44	138.00	234.61		31085.60	27098.24	-594.62	1065.59				D-Geo	Stability	1.925
Volpherensec	om5-06j	sishop	WTI Macro-	stability	1.071	25878.25	27716.12		m5-06k	Jplift-Van	WTI Macro-	Stability	1.107		304.86	139.26	236.75		31099.17	26600.92	-593.10	1066.12		m5-06l	pencer	WTI Macro-	Stability	1.904
_	-		Error [%]		1.51	0.00	1.51		-	-	Error [%]		1.19		10.00	7.85	20.55		0.03	5.58	0.03	13.82		_	0	Error [%]		0.91
×			D-Geo	Stability	0.729	11850.9	8642.15				D-Geo	Stability	1.178		274.45	281.94	25.89		10845.03	7569.99	-1061.65	1971.00				D-Geo	Stability	0.769
Markermeerdi	om5-06g	Bishop	WTI Macro-	Stability	0.718	11851.36	8511.81		om5-06h	Jplift-Van	WTI Macro-	Stability	1.164		247.00	259.82	20.57		10842.09	7992.45	-1061.36	1698.64		om5-06i	pencer	WTI Macro-	Stability	0.776
eer 1	4		Error [%]		1.19	0.00	1.21			-	Error [%]		1.50		7.21	7.60	4.42		0.03	0.12	5.42	11.70				Error [%]		2.00
(zonder verk			D-Geo	Stability	0.838	44104.18	36969.04				D-Geo	Stability	0.799		179.94	175.32	4.98		29656.41	20062.91	-234.69	986.60				D-Geo	Stability	1.198
Lekdijk op 190	bm5-06d	Bishop	WTI Macro-	stability	0.848	44106.07	37415.50		bm5-06e	Uplift-Van	WTI Macro-	Stability	0.811		192.92	188.64	4.76		29648.78	20086.75	-221.97	1102.03		bm5-06f	Spencer	WTI Macro-	Stability	1.222
			Error [%]		0.00	0.00	0.02				Error [%]		0.11		0.22	0.19	0.28		0.00	0.01	0.70	0.01				Error [%]		0.00
-			D-Geo	Stability	0.954	35534.28	33898.17				D-Geo	Stability	0.944		403.25	396.32	25.36		44482.16	31042.11	-1687.78	2849.28				D-Geo	Stability	1.351
Lekdijk op 18:	bm5-06a	Bishop	WTI Macro-	Stability	0.954	35534.18	33890.61		bm5-06b	Uplift-Van	WTI Macro-	Stability	0.945		404.13	397.08	25.29		44482.44	31043.68	-1699.63	2848.96		bm5-06c	Spencer	WTI Macro-	Stability	1.351
					[-]	[kNm/m]	[kNm/m]						Ξ		[kN/m]	[kN/m]	[kN/m]		[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]						[-]
	Benchmark name	Model			Safety factor	Driving moment	Resisting moment		Benchmark name	Model			Safety factor	Forces :	Force la	Force Ip	Force Fs	Moments :	Active driving moment	Active resisting moment	Passive driving moment	Passive resisting moment		Benchmark name	Model			Safety factor

