The NetCDF Installation and Porting Guide

NetCDF Version 4.1.1
Last Updated 27 February 2010

Ed Hartnett, Russ Rew, John Caron
Unidata Program Center

Copyright (©) 2005-2009 University Corporation for Atmospheric Research

Permission is granted to make and distribute verbatim copies of this manual provided that
the copyright notice and these paragraphs are preserved on all copies. The software and any
accompanying written materials are provided “as is” without warranty of any kind. UCAR
expressly disclaims all warranties of any kind, either expressed or implied, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.

The Unidata Program Center is managed by the University Corporation for Atmospheric
Research and sponsored by the National Science Foundation. Any opinions, findings, con-
clusions, or recommendations expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

Mention of any commercial company or product in this document does not constitute an
endorsement by the Unidata Program Center. Unidata does not authorize any use of
information from this publication for advertising or publicity purposes.

Table of Contents

1 Installing the NetCDF Binaries............... 1
2 Quick Instructions for Installing NetCDF on

Unix......oooo 3

2.1 Building NetCDF Without HDF5, 3

2.2 Building NetCDF With HDF5. oo 3

2.3 Building with HDF4 Support........o i, 4

3 Building and Installing NetCDF on Unix

Systems 5

3.1 Installation Requirements, 5
3.2 Specifying the Environment for Building........................ 5
3.2.1 Variable Description Notes 6
3.3 Building on 64 Bit Platforms............ 8
3.4 Building on Platforms with Parallel I/O..................... ... 8
3.4.1 Building HDF5 for Parallel I/O............................ 8
3.4.2 The parallel-netcdf Libraryoo it 8
3.4.3 Building NetCDF 8
3.5 Running the configure Script 9
3.6 Running make 13
3.7 Testing the Build o i 13
3.8 Installing NetCDF e 14
3.9 Platform Specific Notes 15
3.9.1 ALK . 15
3.9.2 CygwWin ..ottt 15
3.9.3 HPUX ..o 15
3.9 4 IriX oo 16
3.9.5 LINUX .ot 16
3.9.6 Macintosh....... ..o 16
3.9.7 OSF L 17
3.9.8 SunOS .. 17
3.9.9 Handling Fortran Compilers................... ..., 17
3.10 Additional Porting Notes. ... 17
3.11 Contributing to NetCDF Source Code Development 18
4 Using NetCDF on Unix Systems............. 21
4.1 Using Linker Flags with NetCDF.........., 21
4.2 Using Compiler Flags with NetCDF 21

4.3 Using the nc-config Utility to Find Compiler and Linker Flags.. 21

ii NetCDF Installation and Porting Guide
5 Building and Installing NetCDF on Windows

.. 23

5.1 Getting Prebuilt netedf.dll 23
5.2 Imstalling the DLL 23
5.3 Building netcdf.dll with VC++6.0............................ 24
5.4 Using netedf.dll with VC++ 6.0..............oiiiiii... 26
5.5 Building netedf.dll with VC++NET 26
5.6 Using netedf.dll with VC++.NET, 27
6 If Something Goes Wrong 29
6.1 The Usual Build Problems i .. 29
6.1.1 Taking the Easy Way Out............ ...t 29
6.1.2 How to Clean Up the Mess from a Failed Build 29
6.1.3 Platforms On Which NetCDF is Known to Work 29
6.1.4 Platforms On Which NetCDF is Reported to Work 30
6.1.5 If You Have a Broken Compiler........................... 30
6.1.6 What to Do If NetCDF Still Won’t Build................. 30
6.2 Troubleshooting........ ... i 30
6.2.1 Problems During Configuration........................... 30
6.2.2 Problems During Compilation 31
6.2.3 Problems During Testing..............ccooiiiiiiiii... 31
6.3 Finding Help On-line......... ... i, 32
6.4 Reporting Problems......... 32

Chapter 1: Installing the NetCDF Binaries 1

1 Installing the NetCDF Binaries

The easiest way to get netCDF is through a package management program, such as rpm,
yum, adept, and others. NetCDF is available from many different repositories, including
the default Red Hat and Ubuntu repositories.

Another way to get netCDF is to get a pre-built binary distribution. To get them, see
http://www.unidata.ucar.edu/downloads/netcdf/index. jsp.

To install the binary distribution, uncompress and unpack the tar file. You will end up
with 4 subdirectories, lib, include, man, and bin.

The lib subdirectory holds the netCDF libraries (C, Fortran, and C++). The include
directory holds the necessary netcdf.h file (for C), netedf.inc (for Fortran), netcdfcpp.h (for
C++), and the .mod files (for Fortran 90). The bin directory holds the ncgen and ncdump
utilities, and the man directory holds the netCDF documentation.

You can have these directories anywhere you like, and use netCDF. But when compiling
a netCDF program, you will have to tell the linker where to find the library (e.g. with the
-L option of most C compilers), and you will also have to tell the C pre-processor where to
find the include file (e.g. with the -I option).

If you are using shared libraries, you will also have to specify the library
location for run-time dynamic linking. See your compiler documentation. For
some general information see the netCDF FAQ “How do I use shared libraries” at
http://www.unidata.ucar.edu/netcdf/faq.html#using_shared.

http://www.unidata.ucar.edu/downloads/netcdf/index.jsp
http://www.unidata.ucar.edu/netcdf/faq.html#using_shared

Chapter 2: Quick Instructions for Installing NetCDF on Unix 3

2 Quick Instructions for Installing NetCDF on
Unix

Who has time to read long installation manuals these days?

When building netCDF-4, you must first decide whether to support the use of HDF5 as
a storage format.

2.1 Building NetCDF Without HDF5
If you don’t want netCDF-4/HDF5, then build like this:

./configure --prefix=/home/ed/local --disable-netcdf-4
make check install

(Replace “/home/ed/local” with the name of the directory where netCDF is to be in-
stalled.)

If you get the message that netCDF installed correctly, then you are done!

2.2 Building NetCDF With HDF5

If you want to use the HDF5 storage format, you must have the HDF5 1.8.4-
patchl release. You must also have the zlib compression library, version 1.2.3
(or better). Both of these packages are available from the netCDF-4 ftp site at
ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.

Make sure you run “make check” for the HDF5 and zlib distributions. They are very well-
behaved distributions, but sometimes the build doesn’t work (perhaps because of something
subtly misconfigured on the target machine). If one of these libraries is not working, netCDF
will have serious problems.

Optionally, you can also build netCDF-4 with the szip 2.0 library (a.k.a. szlib). NetCDF
cannot create szipped data files, but can read HDF5 data files that have used szip.

There are license restrictions on the use of szip, see the HDF5 web page:
http://hdf .ncsa.uiuc.edu/doc_resource/SZIP/Commercial_szip.html. These license
restrictions seem to apply to commercial users who are writing data. (Data readers are
not restricted.) But here at NetCDF World Headquarters, in Sunny Boulder, Colorado,
there are no lawyers, only programmers, so please read the szip documents for the license
agreement to see how it applies to your situation.

If you wish to use szip, get it from the HDF5 download page: http://hdfgroup.org/HDF5//HDF5/release/

If “make check” fails for either zlib or HDF5, the problem must be resolved before the
netCDF-4 installation can continue. For HDF5 problems, send email to the HDF5 help
desk: help@hdfgroup.org.

Build zlib like this:

./configure --prefix=/home/ed/local
make check install

(If you want a shared library build of HDF5, you must set CFLAGS to -fPIC before
building zlib.)

Then you build HDF5, specifying the location of the zlib library:

ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4
http://hdf.ncsa.uiuc.edu/doc_resource/SZIP/Commercial_szip.html
http://hdfgroup.org/HDF5//HDF5/release/beta/obtain518.html

4 NetCDF Installation and Porting Guide

./configure --with-zlib=/home/ed/local --prefix=/home/ed/local --disable-shared
make check install

This builds a static version of the HDF5 library. For a shared build, don’t use —
disable-shared. For a shared build to work you must have compiled zlib (and, optionally,
szip) with CFLAGS=-fPIC. In this case you may need to add the install directory to the
LD_LIBRARY_PATH environment variable. See the FAQ for more details on using shared
libraries: http://www.unidata.ucar.edu/netcdf/faq.html.

If you are building HDF5 with szip, then include the —with-szlib= option, with the
directory holding the szip library.

After HDF5 is done, build netcdf-4, specifying the location of the HDF5, zlib, and (if
built into HDF5) the szip libraries with the —with-hdf5, —with-zlib, and —with-szlib option.
(If they are all in the same directory, you only need to use one of these options.)

./configure --with-hdf6=/home/ed/local --prefix=/home/ed/local
make check install

The configure script will try to find necessary tools in your path. When you run
configure you may optionally use the —prefix argument to change the default installa-
tion directory. For example, the above examples install the zlib, HDF5, and netCDF-4
libraries in /home/ed/local/lib, the header file in /home/ed/local/include, and the utilities
in /home/ed/local/bin.

The default install root is /usr/local (so there’s no need to use the prefix argument if
you want the software installed there).

If HDF5 and zlib are found on your system, they will be used by netCDF in the build.
To prevent this use the —disable-netcdf-4 argument to configure.

By default the netCDF configuration will build static libraries only. For shared libraries
as well, use the —enable-shared option to configure.

To use netCDF-4 you must link to all the libraries, netCDF, HDF5, zlib, and (if used
with HDF5 build) szip. This will mean -L options to your build for the locations of the
libraries, and -1 (lower-case L) for the names of the libraries.

For example, one user reports that she can build other applications with netCDF-4 by
setting the LIBS envoronment variable:

LIBS=’-L/X/netcdf-4.0/1ib -lnetcdf -L/X/hdf5-1.8.4/1ib -1hdf5_hl -1hdf5 -1z -1m -L/X/s

The nc-config command can be used to learn what options are needed for the local
netCDF installation.

2.3 Building with HDF4 Support

The netCDF-4 library can (since version 4.1) read HDF4 data files, if they were created
with the SD (Scientific Data) API. To enable this feature, use the —enable-hdf4 option. The
—with-hdf4= option may be used to specify a location for the HDF4 library.

http://www.unidata.ucar.edu/netcdf/faq.html

Chapter 3: Building and Installing NetCDF on Unix Systems 5

3 Building and Installing NetCDF on Unix
Systems

The latest version of this document is available at http://www.unidata.ucar.edu/netcdf/docs/netcdf-inst

This document contains instructions for building and installing the netCDF package
from source on various platforms. Prebuilt binary releases are (or soon will be) available for
various platforms from http://www.unidata.ucar.edu/downloads/netcdf/index. jsp.

A good general tutorial on how software is built from source on Linux platforms can me
found at http://www.tuxfiles.org/linuxhelp/softinstall.html.

3.1 Installation Requirements

If you wish to build from source on a Windows (Win32) platform, different instructions
apply. See Chapter 5 [Building on Windows], page 23.

Depending on the platform, you may need up to 25 Mbytes of free space to unpack,
build, and run the tests. You will also need a Standard C compiler. If you have compilers
for FORTRAN 77, FORTRAN 90, or C++, the corresponding netCDF' language interfaces
may also be built and tested. Compilers and associated tools will only be found if they
are in your path, or if you specify the path and compiler in the appropriate environment
variable. (Example for csh: setenv CC /some/directory/cc).

If you want to run the large file tests, you will need about 13 GB of free disk space, as
some very large files are created. The created files are immediately deleted after the tests
complete. These large file tests are not run unless the —enable-large-file-tests option is used
with configure. (The —with-temp-large option may also be used to specify a directory to
create the large files in).

Unlike the output from other netCDF test programs, each large test program deletes its
output before successfully exiting.

To use the netCDF-4 features you will also need to have a HDF5-1.8.4-patchl release
installed. HDF5, in turn, must have been built with zlib, version 1.2.3 (or better).

A tested version of HDF5 and zlib can be found at the netCDF-4 ftp site at
ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.

For more information about HDF5 see the HDF5 web site at http://hdfgroup.org/HDF5/.
For more information about zlib see the zlib web site at http://www.zlib.net.

To use the DAP features you will also need to have a version of libcurl (version 7.18.0
or later) installed. Depending on how this library was built, you may also need zib (version
1.2.3 or later). Information about libcurl may be obtained at http://curl.haxx.se.

3.2 Specifying the Environment for Building

The netCDF configure script searches your path to find the compilers and tools it needed.
To use compilers that can’t be found in your path, set their environment variables.

The configure script will use gce and associated GNU tools if they are found. Many users,
especially those with performance concerns, will wish to use a vendor supplied compiler.

For example, on an AIX system, users may wish to use xlc (the AIX compiler) in one of
its many flavors. Set environment variables before the build to achieve this.

http://www.unidata.ucar.edu/netcdf/docs/netcdf-install
http://www.unidata.ucar.edu/downloads/netcdf/index.jsp
http://www.tuxfiles.org/linuxhelp/softinstall.html
ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4
http://hdfgroup.org/HDF5/
http://www.zlib.net
http://curl.haxx.se

6 NetCDF Installation and Porting Guide

For example, to change the C compiler, set CC to xlc (in sh: export CC=xlc). (But
don’t forget to also set CXX to xIC, or else configure will try to use g++, the GNU C++
compiler to build the netCDF C++ API. Similarly set FC to xI1f90 so that the Fortran APIs

are built properly.)

By default, the netCDF library is built with assertions turned on. If you wish to turn
off assertions, set CPPFLAGS to -DNDEBUG (csh ex: setenv CPPFLAGS -DNDEBUG).

If GNU compilers are used, the configure script sets CPPFLAGS to “-g -02”. If this is
not desired, set CPPFLAGS to nothing, or to whatever other value you wish to use, before
running configure.

For cross-compiles, the following environment variables can be used to override the de-
fault fortran/C type settings like this (in sh):

export NCBYTE_T=’’integer(selected_int_kind(2))’’
export NCSHORT_T=’’integer*2’’

export NF_INT1_T=’’integer(selected_int_kind(2))’’
export NF_INT2_T=’’integer*2’’

export NF_INT1_IS_C_SHORT=1

export NF_INT2_IS_C_SHORT=1

export NF_INT_IS_C_INT=1

export NF_REAL_IS_C_FLOAT=1

export NF_DOUBLEPRECISION_IS_C_DOUBLE=1

In this case you will need to run configure with —disable-fortran-compiler-check and
—disable-fortran-type-check.

3.2.1 Variable Description Notes

CcC C compiler If you don’t specify this, the configure script will try
to find a suitable C compiler. The default choice
is gee. If you wish to use a vendor compiler you
must set CC to that compiler, and set other environ-
ment variables (as described below) to appropriate

settings.
FC Fortran If you don’t specify this, the configure script will try
compiler (if to find a suitable Fortran and Fortran 77 compiler.
any) Set FC to "" explicitly, or provide the —disable-f77

option to configure, if no Fortran interface (neither
F90 nor F77) is desired. Use —disable-f90 to disable
the netCDF Fortran 90 API, but build the netCDF
Fortran 77 APL

Chapter 3: Building and Installing NetCDF on Unix Systems 7

Fr7

CXX

CFLAGS

CPPFLAGS

FCFLAGS

FFLAGS

CXXFLAGS

ARFLAGS,
NMFLAGS,

FPP, MAFLAGS,
LIBS, FLIBS,
FLDFLAGS
HDF5DIR

Fortran 77
compiler (if
any)

C++ compiler

C compiler
flags

C preprocessor
options

Fortran 90
compiler flags

Fortran 7
compiler flags

C++
flags
Miscellaneous

compiler

configure
option

Only specify this if your platform explicitly needs a
different Fortran 77 compiler. Otherwise use FC to
specify the Fortran compiler. If you don’t specify
this, the configure script will try to find a suitable
Fortran compiler. For vendor compilers, make sure
you're using the same vendor’s Fortran 90 compiler.
Using Fortran compilers from different vendors, or
mixing vendor compilers with g77, the GNU F77
compiler, is not supported and may not work.

If you don’t specify this, the configure script will
try to find a suitable C++ compiler. Set CXX to ""
explicitly, or use the —disable-cxx configure option,
if no C++ interface is desired. If using a vendor C++
compiler, use that vendor’s C compiler to compile
the C interface. Using different vendor compilers for
C and C++ may not work.

"-O" or "-g", for example.

"_DNDEBUG" to omit assertion checks, for exam-
ple.

"-O" or "-g", for example. These flags will be used
for FORTRAN 90. If setting these you may also need
to set FFLAGS for the FORTRAN 77 test programs.

"-O" or "-g", for example. If you need to pass the
same arguments to the FORTRAN 90 build, also set
FCFLAGS.

"-O" or "-g", for example.

One or more of these were needed for some platforms,
as specified below. Unless specified, you should not
set these environment variables, because that may
interfere with the configure script.

Set this to the directory you wish to specify in the
—with-hdf5 argument of configure.

The section marked Tested Systems below contains a list of systems on which we have
built this package, the environment variable settings we used, and additional commentary.

8 NetCDF Installation and Porting Guide

3.3 Building on 64 Bit Platforms

The compiler options for SunOS, Irix, and AIX are listed below. The zlib and HDF5
libraries must also be built with 64-bit options.

AIX Set -q64 option in all compilers, and set NMFLAGS to -X64, and ARFLAGS
to -X64 cru’. Alternatively, set environment variable OBJECT_MODE to 64
before running configure.

IRIX Set the -64 option in all compilers.
Sun0S Use the -xarch=v9 or -m64 flag on all compilers for Sparc, or -m64 on x86
platforms.

3.4 Building on Platforms with Parallel I/0

NetCDF makes available the parallel I/O features of HDF5 and the parallel-netcdf libraries,
allowing parallel I/O from netCDF-4 linked programs.

3.4.1 Building HDF'5 for Parallel I/0

For parallel I/O to work, HDF5 must be installed with —enable-parallel, and an MPT li-
brary (and related libraries) must be made available to the HDF5 configure. This can be
accomplished with the mpicc wrapper script, in the case of MPICH2.

The following works to build HDF5 with parallel I/O on our netCDF testing system:
CC=mpicc ./configure --enable-parallel --prefix=/shecky/local_par --with-zlib=/shecky/

3.4.2 The parallel-netcdf Library

Optionally, the parallel-netcdf library should also be installed, and the replacement for
pnetedf.h should be copied from ftp://ftp.unidata.ucar.edu/pub/netcdf/contrib/pnetcdf.h.

3.4.3 Building NetCDF

To build netCDF with parallel I/O, build as usual, but point the configure at a version of
HDF5 that has been built for parallel I/O.

FC=mpif90 CXX=mpicxx CC=mpicc ./configure --with-hdfb=/shecky/local_par
make check install

To enable the parallel tests, specify —enable-parallel-tests as an option to configure.
These tests will be run as mpiexec calls. This may not be appropriate on all systems,
especially those which use some queue for jobs.

To use parallel-netedf to perform parallel 1/O on classic and 64-bit offset files, use the
—enable-pnetcdf option (and, optionally, the —with-pnetcdf option to specify a location for
the parallel-netcdf library).

FC=mpif90 CXX=mpicxx CC=mpicc ./configure --with-hdfb=/shecky/local_par --enable-pnetc
make check install

For parallel builds the netCDF examples are not built. This is to avoid cluttering them
with MPI_Init/Finalize calls.

Chapter 3: Building and Installing NetCDF on Unix Systems 9

3.5 Running the configure Script

To create the Makefiles needed to build netCDF, you must run the provided configure script.
Go to the top-level netCDF directory.

Decide where you want to install this package. Use this for the "—prefix=" argument to
the configure script below. The default installation prefix is “/usr/local,” which will install
the package’s files in usr/local/bin, usr/local/lib, and usr/local/man. The default can be
overridden with the —prefix argument to configure.

Here’s how to execute the configure script with a different installation directory:
./configure --prefix=/whatever/you/decided --with-hdf5=/home/ed/local

The above would cause the netCDF libraries to be installed in /what-
ever/you/decided/lib, the header files in /whatever/you/decided/include, the
utilities (ncdump/ncgen) in /whatever/you/decided/bin, and the man pages in
/whatever/you/decided /man.

The —with-hdf5 option tells configure the location of the HDF5 and zlib libraries. HDF5
must be version 1.8.4-patchl or better, and the HDF5 library must have been built with
zlib, version 1.2.3 or better.

If the configure script finds HDF5 in the system directories, it will (attempt to) build
the netCDF-4 enhanced features. To turn this off use the —disable-netcdf-4 option.

There are other options for the configure script. The most useful ones are listed below.
Use the —help option to get the full list.

—--prefix Specify the directory under which netCDF will be installed. Subdirectories lib,
bin, include, and man will be created there, if they don’t already exist.

--disable-netcdf-4
Turn off netCDF-4 features, even if HDF5 library is found.

--with-hdf5=/location
Specify the location of the HDF5 library.

--with-zlib=/location
Specify the location of the zlib library. NetCDF-4 requires that HDF5 be built
with zlib, for variable compression.

--with-szlib=/location
Optionally specify the location of the szlib (a.k.a. szip) library. (HDF5 must
have been built with szlib support.)

--enable-shared
Build shared libraries (as well as static) on platforms which support them.

--enable-dap
Enable DAP support. This flag is set by default if the configure script can
locate a usable instance of the curl-config program. The curl-config program
can be specified explicitly using —with-curl-config=/some/path/curl-config, or
configure will attempt some heuristics to locate the curl-config program; typi-
cally by checking the PATH environment variable. If the flag —enable-dap flag
is not set to either —enable-dap or —disable-dap, and a usable curl library can be
found, then DAP support will be enabled by default. Note that when DAP is

10 NetCDF Installation and Porting Guide

enabled, this can be tested for in a configure script by looking for the function
“nc__opendap”.

—-—with-curl-config
This flag may be used to specify the curl-config program so that DAP support
can be enabled. Note that it should specify the actual program using something
like —with-curl-config=/some/path/curl-config.

--enable-dap-remote-tests
If DAP support is enabled, then remote tests are run that utilize the test server
at opendap.org. This option is enabled by default. Since that server may be
inaccessible for a variety of reasons, these tests may fail, in which case this flag
should be disabled.

--enable-dap-long-tests
If —enable-dap-remote-tests is enabled, then this flag can also be enabled to add
extra tests that may take signficant time to execute. This flag is off by default.

-—enable-hdf4
Turns on the HDF4 read layer. This reads HDF4 files created with the SD
(Scientific Data) API of HDF4. If the HDF4 library is in a different directory,
use the —with-hdf4= option to specify its location.

--with-hdf4=/your/hdf4/location
Use the —with-hdf4 option to specify a location for the HDF4 directory, if it is
not in any of the system directories, nor in the same directory as HDF5.

—--enable-hdf4-file-tests
Causes make check to use wget to fetch some HDF4 data files from the Unidata
FTP server, and check that they are properly understood. This is done as part
of automatic netCDF testing, and should not be done by users.

—--enable-pnetcdf
Allows parallel I/O with classic and 64-bit offset format files,
using the parallel-netcdf (formerly pnetcdf) library from — Ar-
gonne/Northwestern. The parallel-netedf library must be installed,
and a specially modified pnetcdfh must be used. (Get it at
ftp://ftp.unidata.ucar.edu/pub /netcdf/user/contrib /pnetedf.h)

--with-udunits
Builds UDUNITS2 as well as netCDF. The UDUNITS2 package supports
units of physical quantities (e.g., meters, seconds). Specifically, it
supports conversion between string and binary representations of units,
arithmetic manipulation of units, and conversion of numeric values
between compatible units. For more information about UDUNITS, see:
http://www.unidata.ucar.edu/software/udunits/

--disable-largefile
This omits OS support for large files (i.e. files larger than 2 GB).

--disable-fortran
Turns off Fortran 77 and Fortran 90 API. (Same as —disable-{77.)

Chapter 3: Building and Installing NetCDF on Unix Systems 11

--disable-£f77
This turns off building of the F77 and F90 APIs. (The F90 API cannot be built
without the F77 API). This also disables some of the configure tests that relate
to fortran, including the test of the F90 compiler. Setting the environment
variables FC or F77 to NULL will have the same effect as —disable-f77.

--disable-£90
This turns off the building of the F90 API. Setting the environment variable
F90 to null for configure will have the same effect.

--disable-cxx
This turns off the building of the C++ API. Setting the environment variable
CXX to null for configure will have the same effect.

--disable-v2
This turns of the V2 API. The V2 API is completely replaced with the V3 API,
but is usually built with netCDF for backwards compatibility, and also because
the C++ API depends on the V2 API. Setting this has the effect of automatically
turning off the CXX API, as if —disable-cxx had also been specified.

-—enable-cxx4
Turns on the new C++ API, which is currently under development, and will
expose the full expanded model in the C++ API. The cxx4 API is experiemental,
unfinished, and untested. It is provided for experiemental purposes only.

--enable-large-file-tests
Turn on tests for large files. These tests create files over 2 GB in size, and
need about 13 GB of free disk space to run. These files are deleted after
the test successfully completes. They will be created in the netCDF nc_test
directory, unless the —with-temp-large option is used to specify another location
(see below).

--with-temp-large
Normally large files are not created during the netCDF build, but they will
be if —enable-large-file-tests is specified (see above). In that case, this config-
ure parameter can be used to specify a location to create these large files, for
example: —with-large-files=/tmp/ed.

-—enable-benchmarks
Turn on tests of the speed of various netCDF operations. Some of these oper-
ations take a long time to run (minutes, on a reasonable workstation).

-—-enable-valgrind-tests

Causes some tests to be re-run under valgrind, the memory testing tool. Val-
grind must be present for this to work. Also HDF5 must be built with —enable-
using-memchecker, and netCDF must be compiled without optimization (at
least on the Unidata test platform where this is tested). The valgrind tests are
run by shell script libsrc4 /run_valgrind_tests.sh. It simply reruns the test pro-
grams in that directory, using valgrind, and with settings such that any error
reported by valgrind will cause the “make check” to fail.

12 NetCDF Installation and Porting Guide

--disable-fortran-compiler-check
Normally the netCDF configure checks the F77 and F90 compilers with small
test programs to see if they work. This is very helpful in supporting netCDF
installations on different machines, but won’t work with cross-compilation. Use
the —disable-fortran-compiler-check to turn off the fortran compiler tests, and
just assume that the compilers will work.

--disable-fortran-type-check
The netCDF configure compiles and runs some programs to test fortran vs.
C type sizes. Setting this option turns off those test, and uses a set of de-
fault values (which can be overridden by environment variables see Section 3.2
[Environment|, page 5).

--disable-compiler-recover

Normally, if the netCDF configure finds a F90 compiler, and it fails to build the
test program described in —disable-f90-check, it will print a warning, and then
continue to build without the F90 API, as if the user has specified —disable-
f90. With the —disable-compiler-recover option set, it will not continue, but will
just stop if the fortran 90 compiler doesn’t work. This is useful for automatic
testing, where we want the tests to fail if something causes the fortran compiler
to break.

--disable-examples
Starting with version 3.6.2, netCDF comes with some examples in the “exam-
ples” directory. By default, the examples are all built during a “make check”
unless the —disable-examples option is provided.

--enable-separate-fortran
This will cause the Fortran 77 and Fortran 90 APIs to be built into their own
separate library, instead of being included in the C library. This is useful for
supporting more than one fortran compiler with the same netCDF C library.
This is turned on by default for shared library builds.

--enable-extra-tests
This option may turn on tests which are known to fail (i.e. bugs that we are
currently working to fix).

--with-default-chunk-size
Change the size (in bytes) that will be used as a target size when computing
default chunksizes for netCDF-4/HDF5 chunked variables.

-—default-chunks-in-cache
Change the number of chunks that are accomodated in the per-variable chunk
caches that are used by default.

-—-max-default-cache-size
Change the maximum size of the per-variable chunk caches that are used by
default.

--with-chunk-cache-size
Change the size of the default file-level chunk cache size that will be used when
opening netCDF-4/HDF5 files.

Chapter 3: Building and Installing NetCDF on Unix Systems 13

--with-chunk-cache-nelems
Change the size of the default file-level chunk cache number of elements that
will be used when opening netCDF-4/HDF5 files. Should be a prime number.

—--with-chunk-cache-preemption
Change the default preemption of the file-level chunk cache that will be used
when opening netCDF-4/HDF5 files. Must be a number between 0 and 1
(inclusive).

The configure script will examine your computer system — checking for attributes that
are relevant to building the netCDF package. It will print to standard output the checks
that it makes and the results that it finds.

The configure script will also create the file "config.log", which will contain error mes-
sages from the utilities that the configure script uses in examining the attributes of your
system. Because such an examination can result in errors, it is expected that "config.log"
will contain error messages. Therefore, such messages do not necessarily indicate a problem
(a better indicator would be failure of the subsequent "make"). One exception, however, is
an error message in "config.log" that indicates that a compiler could not be started. This
indicates a severe problem in your compilation environment — one that you must fix. If this
occurs, configure will not complete and will exit with an error message telling you about
the problem.

3.6 Running make

Run "make". This will build one or more netCDF libraries. It will build the basic netCDF
library libnetcdf.a. If you have Fortran 77 or Fortran 90 compilers, then the Fortran library
will also be built (libnetcdff.a). If you have a C++ compiler, then the C++ interface will be
built (libnetcdf_c++.a.)

A “make” will also build the netCDF utilities ncgen(1) and ncdump(1).
Run make like this:

make

3.7 Testing the Build

Run “make check” to verify that the netCDF library and executables have been built
properly (you can instead run “make test” which does the same thing).

A make check will build and run various test programs that test the C, Fortran, and
C++ interfaces as well as the "ncdump" and "ncgen" utility programs.

Lines in the output beginning with "***" report on success or failure of the tests; any

failures will be reported before halting the test. Compiler and linker warnings during the
testing may be ignored.

Run the tests like this:
make check
If you plan to use the 64-bit offset format (introduced in version 3.6.0) or the netCDF-
4/HDF5 format to create very large files (i.e. with variables larger than 2 GB), you should

probably specify the —enable-large-file-tests to configure, which tests the large file features.
You must have 13 GB of free disk space for these tests to successfully run.

14 NetCDF Installation and Porting Guide

If you are running the large file tests, you may wish to use the —with-temp-large option
to specify a temporary directory for the large files. (You may also set the environment
variable TEMP_LARGE before running configure).

The default is to create the large files in the nc_test subdirectory of the netCDF build.

Run the large file tests like this:

./configure --enable-large-file-tests --with-temp-large=/home/ed/tmp
make check

All of the large files are removed on successful completion of tests. If the test fails, you
may wish to make sure that no large files have been left around.

If any of the the large file tests test fail, check to ensure that your file system can handle
files larger than 2 GiB by running the following command:

dd if=/dev/zero bs=1000000 count=3000 of=$(TEMP_LARGE)/largefile

If your system does not have a /dev/zero, this test will fail. Then you need to find some
other way to create a file larger than 2 GiB to ensure that your system can handle them.

See Chapter 6 [Build Problems], page 29.

3.8 Installing NetCDF

To install the libraries and executables, run "make install". This will install to the directory
specified in the configure step.

Run the installation like this:
make install

The install will put files in the following subdirectories of the directory you provided as
a prefix, creating the subdirectories if needed:

lib Libraries will be installed here. If static libraries are built, without separate
fortran libraries, then libnetcdf.a and libnetedf.la will be installed. If the C++
API is built, libnetcdf_c++.a and libnetcdf_c++.la will be added. If separate
fortran libraries are built, libnetedff.a and libnetcdff.la will also be added.

Static library users should ignore the .la files, and link to the .a files.
Shared library builds will add some .so files to this directory, as well.

include Header files will be installed here. The C library header file is netcdf.h. If the
C++ library is built, ntedfcpp.h, ncvalues.h and netcdf.hh will be installed here.
If the F77 API is built, netcdf.inc will be copied here. If the F90 API is built,
the netcdf.mod and typesizes.mod files will be copied here as well.

bin Utilities ncdump and ncgen will be installed here.

man The ncdump/ncgen man pages will be installed in subdirectory manl, and the
three man pages netcdf.3, netcdf_f77.3, and netcdf_f90.3 will be installed in the
man3 subdirectory.

share If the configure is called with the —enable-docs option, the netCDF documenta-
tion set will be built, and will be installed under the share directory, under the
netedf subdirectory. This will include postscript, PDF, info and text versions
of all netCDF manuals. These manuals are also available at the netCDF web
site.

Chapter 3: Building and Installing NetCDF on Unix Systems 15

Try linking your applications. Let us know if you have problems (see Section 6.4 [Re-
porting Problems], page 32).

3.9 Platform Specific Notes

The following platform-specific note may be helpful when building and installing netCDF.
Consult your vendor manuals for information about the options listed here. Compilers can
change from version to version; the following information may not apply to your platform.

Full output from some of the platforms of the test platforms for netCDF 4.1.1 can be
found at http://www.unidata.ucar.edu/netcdf/builds.

3.9.1 AIX

We found the vendor compilers in /usr/vac/bin, and included this in our PATH. Compilers
were xlc, xIf, x1f90, xI1C.

The F90 compiler requires the gsuffix option to believe that F90 code files can end with
.£90. This is automatically turned on by configure when needed:

FCFLAGS=-qsuffix=f=£f90
We had to use xIf for F77 code, and x1f90 for F90 code.
To compile 64-bit code, set the appropriate environment variables (documented below).

The environment variable OBJECT_MODE can be set to 64, or use the -q64 option on
all AIX compilers by setting CFLAGS, FFLAGS, and CXXFLAGS to -q64.

The following is also necessary on an IBM AIX SP system for 64-bit mode:

ARFLAGS=’-X64 cru’
NMFLAGS=’-X64"

There are thread-safe versions of the AIX compilers. For example, xlc_r is the thread-
safe C compiler. To use thread-safe compilers, override the configure script by setting CC
to xlc_r; similarly for FC and CXX.

For large file support, AIX requires that the macro _.LARGE_FILES be defined. The
configure script does this using AC_SYS_LARGEFILES. Unfortunately, this misfires when
OBJECT_MODE is 64, or the q64 option is used. The netCDF tries to fix this by turning
on _.LARGE_FILES anyway in these cases.

The GNU C compiler does not mix successfully with the AIX fortran compilers.

3.9.2 Cygwin
NetCDF builds under Cygwin tools on Windows just as with Linux.

3.9.3 HPUX
The HP Fortran compiler (f77, a.k.a. fort77, also f90) requires FLIBS to include -1U77 for
the fortran tests to work. The configure script does this automatically.

For the ¢89 compiler to work, CPPFLAGS must include -D_HPUX_SOURCE. This isn’t
required for the cc compiler. The configure script adds this as necessary.

For large file support, HP-UX requires _FILE_OFFSET_BITS=64. The configure script
sets this automatically.

http://www.unidata.ucar.edu/netcdf/builds

16 NetCDF Installation and Porting Guide

The HPUX C++ compiler doesn’t work on netCDF code. It’s too old for that. So either
use GNU to compile netCDF, or skip the C++ code by setting CXX to ” (in csh: setenv
CXX 7).

Building a 64 bit version may be possible with the following settings:

CC=/bin/cc

CPPFLAGS=’"-D_HPUX_SOURCE -D_FILE_OFFSET_BITS=64’ # large file support
CFLAGS=’-g +DD64’ # 64-bit mode
FC=/opt/fortran90/bin/f90 # Fortran-90 compiler
FFLAGS=’-w +noppu +DA2.0W’ # 64-bit mode, no "_" suffixes
FLIBS=-1U77

CXX="> # no 64-bit mode C++ compiler

Sometimes quotas or configuration causes HPUX disks to be limited to 2 GiB files. In
this cases, netCDF cannot create very large files. Rather confusingly, HPUX returns a
system error that indicates that a value is too large to be stored in a type. This may
cause scientists to earnestly check for attempts to write floats or doubles that are too large.
In fact, the problem seems to be an internal integer problem, when the netCDF library
attempts to read beyond the 2 GiB boundary. To add to the confusion, the boundary for
netCDF is slightly less than 2 GiB, since netCDF uses buffered I/O to improve performance.

3.9.4 Irix

A 64-bit version can be built by setting the appropriate environment variables.
Build 64-bit by setting CFLAGS, FFLAGS, and CXXFLAGS to -64.

On our machine, there is a /bin/cc and a /usr/bin/cc, and the -64 option only works
with the former.

3.9.5 Linux

The f2cFortran flag is required with GNU fortran:
CPPFLAGS=-Df2cFortran
For Portland Group Fortran, set pgiFortran instead:
CPPFLAGS=-DpgiFortran
Portland Group F90/F95 does not mix with GNU g77.
The netCDF configure script should notice which fortran compiler is being used, and set
these automatically.
For large file support, _.FILE_OFFSET_BITS must be set to 64. The netCDF configure
script should set this automatically.

3.9.6 Macintosh

The f2cFortran flag is required with GNU fortran (CPPFLAGS=-Df2cFortran). The
NetCDF configure script should and set this automatically.
For IBM compilers on the Mac, the following may work (we lack this test environment):
CC=/usr/bin/cc
CPPFLAGS=-DIBMR2Fortran
Fr7=x1f
FC=x1£90
FCFLAGS=-gsuffix=cpp=£90

Chapter 3: Building and Installing NetCDF on Unix Systems 17

3.9.7 OSF1
NetCDF builds out of the box on OSF1.

3.9.8 SunOS
PATH should contain /usr/ccs/bin to find make, nm, ar, etc.

For large file support, _-FILE_OFFSET _BITS must be 64, also _LARGEFILE64_SOURCE
and _LARGEFILE_SOURCE must be set. Configure will turn this on automatically for
netCDF, but not for HDF5. So when building HDF5, set these variables before running
configure, or HDF5 will not be capable of producing large files.

To compile in 64-bit mode, set -m64 (formerly -xarch=v9, which works on SPARC
platforms only) on all compilers (i.e. in CFLAGS, FFLAGS, FCFLAGS, and CXXFLAGS).

When compiling with GNU Fortran (g77), the -Df2cFortran flag is required for the
Fortran interface to work. The NetCDF configure script turns this on automatically if
needed.

3.9.9 Handling Fortran Compilers

Commercial fortran compilers will generally require at least one flag in the CPPFLAGS
variable. The netCDF configure script tries to set this for you, but won’t try if you have
used —disable-flag-setting, or if you have already set CPPFLAGS, CFLAGS, CXXFLAGS,
FCFLAGS, or FFLAGS yourself.

The first thing to try is to set nothing and see if the netCDF configure script finds your
fortran compiler, and sets the correct flags automatically.

If it doesn’t find the correct fortran compiler, you can next try setting the FC environ-
ment variable to the compiler you wish to use, and then see if the configure script can set
the correct flags for that compiler.

If all that fails, you must set the flags yourself.

The Intel compiler likes the pgiFortran flag, as does the Portland Group compiler. (Au-
tomatically turned on if your fortran compiler is named “ifort” or “pgf90”).

Alternatively, Intel has provided a web page on “Building netCDF with the Intel com-
pilers” at http://www.intel.com/support/performancetools/sb/CS-027812.htm, pro-
viding instructions for building netCDF (without using the pgiFortran flag).

The Portland Group also has a “PGI Guide to NetCDF” at http://wuw.pgroup.com/resources/netcdf/n
pgi71.htm.

3.10 Additional Porting Notes

The configure and build system should work on any system which has a modern "sh" shell,
"make", and so on. The configure and build system is less portable than the "C" code
itself, however. You may run into problems with the "include" syntax in the Makefiles.
You can use GNU make to overcome this, or simply manually include the specified files
after running configure.

Instruction for building netCDF on other platforms can be found at
http://www.unidata.ucar.edu/netcdf/other-builds.html. If you build
netCDF on a new platform, please send your environment variables and any other

http://www.intel.com/support/performancetools/sb/CS-027812.htm
http://www.pgroup.com/resources/netcdf/netcdf362_pgi71.htm
http://www.pgroup.com/resources/netcdf/netcdf362_pgi71.htm
http://www.unidata.ucar.edu/netcdf/other-builds.html

18 NetCDF Installation and Porting Guide

important notes to support-netcdf@unidata.ucar.edu and we will add the information to
the other builds page, with a credit to you.

If you can’t run the configure script, you will need to create config.h and
fortran/nfconfig.inc. Start with ncconfig.in and fortran/nfconfig.in and set the defines as
appropriate for your system.

Operating system dependency is isolated in the "ncio" module. We provide two versions.
posixio.c uses POSIX system calls like "open()", "read()" and "write(). ffio.c uses a special
library available on CRAY systems. You could create other versions for different operating
systems. The program "t_ncio.c" can be used as a simple test of this layer.

Note that we have not had a Cray to test on for some time. In particular, large file
support is not tested with ffio.c.

Numerical representation dependency is isolated in the "ncx" module. As supplied,
nex.m4 (nex.c) supports IEEE floating point representation, VAX floating point, and CRAY
floating point. BIG_ENDIAN vs LITTLE_ENDIAN is handled, as well as various sizes of
"int", "short", and "long". We assume, however, that a "char" is eight bits.

There is a separate implementation of the ncx interface available as ncex_cray.c which
contains optimizations for CRAY vector architectures. Move the generic ncx.c out of the
way and rename ncx_cray.c to ncx.c to use this module. By default, this module does not
use the IEG2CRAY and CRAY2IEG library calls. When compiled with aggressive in-lining
and optimization, it provides equivalent functionality with comparable speed and clearer
error semantics. If you wish to use the IEG library functions, compile this module with
-DUSE_IEG.

3.11 Contributing to NetCDF Source Code Development

Most users will not be interested in working directly with the netCDF source code. Rather,
they will write programs which call netCDF functions, and delve no further. However some
intrepid users may wish to dig into the netCDF code to study it, to try and spot bugs, or
to make modifications for their own purposes.

To work with the netCDF source code, several extra utilities are required to fully build
everything from source. If you are going to modify the netCDF source code, you will need
some or all of the following Unix tools.

m4 Macro processing language used heavily in libsrc, nc_test. Generates (in these
cases) C code from m4 source. Version 1.4 works fine with release 3.5.1 through
3.6.2.

flex and yacc
Used in ncgen directory to parse CDL files. Generates C files from .y and .1 files.
You only need to use this to modify ncgen’s understanding of CDL grammar.

makeinfo Generates all documentation formats (except man pages) from texinfo source.
I’'m using makeinfo version 4.8, as of release 3.6.2. If you have trouble with
makeinfo, upgrade to this version and try again. You only need makeinfo if you
want to modify the documentation.

tex Knuth’s venerable typesetting system. The version I am running (for netCDF
release 3.6.2) is TeX 3.141592 (Web2C 7.5.4). I have found that some recent

Chapter 3:

autoconf

automake

libtool

sed

Building and Installing NetCDF on Unix Systems 19

installations of TeX will not build the netCDF documentation - it’s not clear
to me why.

The user generally will just want to download the latest version of netCDF docu-
ments at the netCDF website. http://wwuw.unidata.ucar.edu/netcdf/docs.

Generates the configure script. Version 2.59 or later is required.

Since version 3.6.2 of netCDF, automake is used to generate the Makefile.in
files needed by the configure script to build the Makefiles.

Since version 3.6.2 of netCDF, libtool is used to help generate shared libraries
platforms which support them. Version 2.1a of libtool is required.

This text processing tool is used to process some of the netCDF examples before
they are included in the tutorial. This is only needed to build the documenta-
tion, which the user generally will not need to do.

NetCDF has a large and enterprising user community, and a long history of accepting
user modifications into the netCDF code base. Examples include the 64-bit offset format,
and the F90 API.

All suggested changes and additions to netCDF code can be sent to support-
netcdf@unidata.ucar.edu.

http://www.unidata.ucar.edu/netcdf/docs

Chapter 4: Using NetCDF on Unix Systems 21

4 Using NetCDF on Unix Systems

To use netCDF you must link to the netCDF library, and, if using the netCDF-4/HDF5
features, also two HDF5, at least one compression library, and (on some systems) the math
library.

4.1 Using Linker Flags with NetCDF
For this to work, you have to tell the linker which libraries to link to (with the -1 option),
and where to find them (with the -L option).

Use the -L option to your linker to pass the directories in which netCDF, HDF5, and
zlib are installed.

Use the -1 (lower-case L) option to list the libraries, which must be listed in the correct
order:

-lnetcdf -1hdf5_hl -1hdf5 -1z -1m
If szip was used when building HDF5, you must also use -1sz.
On some systems you must also include -Im for the math library.
If HDF4 was used when building netCDF, you must also use -lmfhdf -1df -ljpeg.
Finally, if you use the parallel-netcdf library, you must use -lpnetcdf.
The worst case scenario is, using all of the above libraries:
-lnetcdf -lpnetcdf -1mfhdf -1df -1jpeg -1hdf5_hl -1hdf5 -1z -1sz -1lm

In such a case one also needs to provide the locations of the libraries, with the -L flag.
If libraries are installed in the same directory, this is easier.

Use the nc-config to learn the exact flags needed on your system (see Section 4.3 [nc-
config], page 21).

4.2 Using Compiler Flags with NetCDF

Depending on how netCDF was built, you may need to use compiler flags when building
your code. For example, many systems build both 32-bit and 64-bit binaries. The GNU C
compiler, for example, uses -m32 and -m64 as compiler flags for this purpose.

If netCDF is built with the default compiler flags (i.e. no special flags are used), then
no flags need to be used by the user.

If netCDF is built using flags that control architecture or other important aspects of the
binary output, then those flags may need to be set by all users as well.

4.3 Using the nc-config Utility to Find Compiler and Linker
Flags
To assist with the setting of compiler and linker flags, the nc-config utility is provided with

netCDF. The nc-config utility is a very simple script which contains the settings of the C
and Fortran flags used during the netCDF build.

For example, the nc-config command can be used to get the command line options needed
to link a C program to netCDF:

22 NetCDF Installation and Porting Guide

nc-config --1libs
-L/usr/local/lib -lnetcdf -L/shecky/local_post/lib -1hdf5_hl -1hdf5 -1z

The nc-config utility can also be used to learn about the features of the current netCDF
installation. For example, it can show whether netCDF-4 is available:

./nc-config --has-nc4
yes

Use the —help option to nc-config for a full list of available information.

Chapter 5: Building and Installing NetCDF on Windows 23

5 Building and Installing NetCDF on Windows

NetCDF can be built and used from a variety of development environments on Windows.
The netCDF library is implemented as a Windows dynamic link library (DLL). The simplest
way to get started with netCDF under Windows is to download the pre-built DLL from the
Unidata web site.

Building under the Cygwin port of GNU tools is treated as a Unix install. See Section 3.9
[Platform Notes|, page 15.

Instructions are also given for building the netCDF DLL from the source code.

VC++ documentation being so voluminous, finding the right information can be a chore.
There’s a good discussion of using DLLs called “About Dynamic-Link Libraries” at (per-
haps) http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/dynamic_
link_libraries.asp.

From the .NET point of view, the netCDF dll is unmanaged code. As a starting point,
see the help topic “Consuming Unmanaged DLL Functions” which may be found at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconConsumin
unless the page has been moved.

5.1 Getting Prebuilt netcdf.dll

We have pre-built Win32 binary versions of the netcdf dll and static library, as

well as ncgen.exe and ncdump.exe (dll and static versions). You can get them from
ftp://ftp.unidata.ucar.edu/pub/netcdf/contrib/win32/netcdf-3.6.1-betal-win32d1ll.zip.
(Note: we don’t have a C++ interface here).

5.2 Installing the DLL

Whether you get the pre-built DLL or build your own, you’ll then have to install it some-
where so that your other programs can find it and use it.

To install a DLL, you just have to leave it in some directory, and (possibly) tell your
compiler in which directory to look for it.

A DLL is a library, and functions just like libraries under the Unix operating system.
As with any library, the point of the netCDF DLL is to provide functions that you can call
from your own code. When you compile that code, the linker needs to be able to find the
library, and then it pulls out the functions that it needs. In the Unix world, the -L option
tells the compiler where to look for a library. In Windows, library search directories can be
added to the project’s property dialog.

Similarly, you will need to put the header file, netcdf.h, somewhere that you compiler
can find it. In the Unix world, the -I option tells the compiler to look in a certain directory
to find header files. In the Windows world, you set this in the project properties dialog box
of your integrated development environment.

Therefore, installing the library means nothing more than copying the DLL somewhere
that your compiler can find it, and telling the compiler where to look for them.

The standard place to put DLLs is Windows\System32 folder (for Windows2000/XP)
or the Windows\System folder (for Windows 98 /ME). If you put the DLL there, along with

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/dynamic_link_libraries.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/dynamic_link_libraries.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconConsumingUnmanagedDLLFunctions.asp
ftp://ftp.unidata.ucar.edu/pub/netcdf/contrib/win32/netcdf-3.6.1-beta1-win32dll.zip

24 NetCDF Installation and Porting Guide

the ncgen and ncdump executables, you will be able to use the DLL and utilities without
further work, because compilers already look there for DLLs and EXEs.

Instead of putting the DLL and EXEs into the system directory, you can leave them
wherever you want, and every development project that uses the dll will have to be told
to search the netCDF directory when it’s linking, or, the chosen directory can be added to
your path.

On the .NET platform, you can also try to use the global assembly cache. (To learn
how, see MSDN topic “Global Assembly Cache”, at www.msdn.microsoft.com).

Following Windows conventions, the netCDF files belong in the following places:

File(s) Description Location

netcdf.dll C and Fortran function in DLL Windows\System
(98/ME) or
Windows\System32
(2000/XP)

netcdf.lib Library file Windows\System
(98/ME) or
Windows\System32
(2000/XP)

ncgen.exe, NetCDF' utilities Windows\System

ncdump.exe (98/ME) or
Windows\System32
(2000/XP)

netedf-3 netCDF source code Program
Files\Unidata

5.3 Building netcdf.dll with VC++ 6.0

The most recent releases of netCDF aren’t tested under VC++ 6.0. (They are tested with
VC++.NET). Older versions of the library, notably 3.5.0, did compile with VC++ 6.0, and
the instructions for doing so are presented below.

Note that the introduction of better large file support (for files larger than 2 GiB) in
version 3.6.0 and greater requires an off_t type of 8 bytes, and it’s not clear how, or if, this
can be found in VC++ 6.0.

To build the library yourself, get the file ftp://ftp.unidata.ucar.edu/pub/netcdf/contrib/win32/netcdf-
3.5.0.win32make.VC6.zip

The makefiles there describe how to build netcdf-3.5 using the using Microsoft Visual C++
6.x and (optionally) Digital Visual Fortran 6.x. Because of difficulties in getting Microsoft
Visual Studio to fall in line with our existing source directory scheme, we chose _not_ to
build the system "inside" Visual Studio. Instead, we provide a simple group of "msoft.mak"

www.msdn.microsoft.com

Chapter 5: Building and Installing NetCDF on Windows 25

files which can be used. If you wish to work in Visual Studio, go ahead. Read the section
called "Macros" at the end of this discussion.

As of this writing, we have not tried compiling the C++ interface in this environment.

nmake is a Microsoft version of make, which comes with VC 6.0 (and VC 7.0) in di-
rectory C:\Program Files\Microsoft Visual Studio\VC98\Bin (or, for VC 7.0, C:\Program
Files\Microsoft Visual Studio .NET 2003\Vc7\bin).

To build netcdf, proceed as follows:

unpack source distribution.

copy netcdf-3.5.0.win32make.VC6.zip
copy netcdf-3.5.0.win32make.VC6.zip into the netcdf-3.5.0/src directory, and
unzip it from there.

cd src\libsrc; nmake /f msoft.mak
Run this command in src\libsrc. This will build netedf.lib and netcdf.dll Note:
This makefiles make DLLs. To make static libraries see section on static li-
braries.

nmake /f msoft.mak test
Optionally, in src\libsrc, make and run the simple test.

cd ..\fortran; nmake /f msoft.mak
Optionally build the fortran interface and rebuild dll in ..\libsrc to include the
fortran interface. Note Bene: We don’t provide a .DEF file, so this step changes
the "ordinals" by which entry points in the DLL found. Some sites may wish
to modify the msoft.mak file(s) to produce a separate library for the fortran
interface.

nmake /f msoft.mak test
(necessary if you want to use fortran code) While you are in src\fortran; nmake
/f msoft.mak test This tests the netcdf-2 fortran interface.

cd ..\nctest; nmake /f msoft.mak test
(optional, but recommended) In src\nctest; nmake /f msoft.mak test This tests
the netedf-2 C interface.

cd ..\nc_test; nmake /f msoft.mak test
(optional, but highly recommended) In src\nc_test; nmake /f msoft.mak test
This tortures the netcdf-3 C interface.

cd ..\nf_test; nmake /f msoft.mak test
(optional, but highly recommended if you built the fortran interface) In
src\nf_test; nmake /f msoft.mak test This tortures the netcdf-3 fortran
interface.

..\ncdump; nmake /f msoft.mak
In src\ncdump; nmake /f msoft.mak This makes ncdump.exe.

..\ncgen; nmake /f msoft.mak
In src\ncgen; nmake /f msoft.mak This makes ncgen.exe.

26 NetCDF Installation and Porting Guide

..\ncdump; nmake /f msoft.mak test
(optional) In src\ncdump; nmake /f msoft.mak test This tests ncdump. Both
ncgen and ncdump need to be built prior to this test. Note the makefile sets
the path so that ..\libsrc\netcdf.dll can be located.

..\ncgen; nmake /f msoft.mak test
(optional) In src\ncgen; nmake /f msoft.mak test This tests ncgen. Both ncgen
and ncdump need to be built prior to this test. Note the makefile sets the path
so that ..\libsrc\netcdf.dll can be located.

To Install
Copy libsrc\netcdf.lib to a LIBRARY directory. Copy libsrc\netcdf.h
and fortran/netcdf.inc to an INCLUDE directory. Copy libsrc\netedf.dll,
ncdump/ncdump.exe, and ncgen/ncgen.exe to a BIN directory (someplace in
your PATH).

5.4 Using netcdf.dll with VC++ 6.0
To use the netedf.dll:

1. Place these in your include directory: netcdf.h C include file netcdf.inc Fortran include

file

2a. To use the Dynamic Library (shared) version of the netcdf library: Place these in a
directory that’s in your PATH: netcdf.dll library dll ncgen.exe uses the dll ncdump.exe uses
the dll

Place this in a library directory to link against: netcdf.lib library
2b. Alternatively, to use a static version of the library
Place this in a library directory to link against: netcdfs.lib library

Place these in a directory that’s in your PATH: ncgens.exe statically linked (no DLL
needed) ncdumps.exe statically linked (no DLL needed)

5.5 Building netcdf.dll with VC++.NET

To build the netCDF dll with VC++.NET open the win32/NET /netcdf.sln file with Visual
Studio. Both Debug and Release configurations are available - select one and build.

The resulting netcdf.dll file will be in subdirectory Release or Debug.

The netCDF tests will be built and run as part of the build process. The Fortran 77
interface will be built, but not the Fortran 90 or C++ interfaces.

Unfortunately, different fortran compilers require different flag settings in the netCDF
configuration files. (In UNIX builds, this is handled by the configure script.)

The quick_large_files test program is provided as an extra project, however it is not
run during the build process, but can be run from the command line or the IDE. Note
that, despite its name, it is not quick. On Unix systems, this program runs in a few
seconds, because of some features of the Unix file system apparently not present in Windows.
Nonetheless, the program does run, and creates (then deletes) some very large files. (So
make sure you have at least 15 GiB of space available). It takes about 45 minutes to run
this program on our Windows machines, so please be patient.

Chapter 5: Building and Installing NetCDF on Windows 27

5.6 Using netcdf.dll with VC++.NET

Load-time linking to the DLL is the most straightforward from C++. This means the
netedf.lib file has to end up on the compile command line. This being Windows, that’s
hidden by a GUI.

In Visual Studio 2003 this can be done by modifying three of the project’s properties.

Open the project properties window from the project menu. Go to the linker folder and
look at the general properties. Modify the property “Additional Library Directories” by
adding the directory which contains the netcdf.dll and netcdf.lib files. Now go to the linker
input properties and set the property “Additional Dependencies” to netcdf.lib.

Finally, still within the project properties window, go to the C/C++ folder, and look at
the general properties. Modify “Additional Include Directories” to add the directory with
the netcdf.h file.

Now use the netCDF functions in your C++ code. Of course any C or C++ file that wants
to use the functions will need:

#include <netcdf.h>

Chapter 6: If Something Goes Wrong 29

6 If Something Goes Wrong

The netCDF package is designed to build and install on a wide variety of platforms, but
doesn’t always. It’s a crazy old world out there, after all.

6.1 The Usual Build Problems

6.1.1 Taking the Easy Way Out
Why not take the easy way out if you can?

Many Linux systems contain package management programs which allow netCDF to be
installed easily. This is the prefered installation method for netCDF.

Precompiled binaries for some platforms can be found at http://www.unidata.ucar.edu/downloads/netce
Click on your platform, and copy the files from the bin, include, lib, and man directories
into your own local equivalents (Perhaps /usr/local/bin, /usr/local/include, etc.).

6.1.2 How to Clean Up the Mess from a Failed Build

If you are trying to get the configure or build to work, make sure you start with a clean
distribution for each attempt. If netCDF failed in the “make” you must clean up the mess
before trying again. To clean up the distribution:

make distclean

6.1.3 Platforms On Which NetCDF is Known to Work

At NetCDF World Headquarters (in sunny Boulder, Colorado), as part of the wonderful
Unidata organization, we have a wide variety of computers, operating systems, and compil-
ers. At night, house elves test netCDF on all these systems.

Output for the netCDF test platforms can be found at http://www.unidata.ucar.edu/netcdf/builds.

Compare the output of your build attempt with ours. Are you using the same compiler?
The same flags? Look for the configure output that lists the settings of CC, FC, CXX,
CFLAGS, etc.

On some systems you have to set environment variables to get the configure and build
to work.

For example, for a 64-bit IRIX install of the netCDF-3.6.2 release, the variables are set
before netCDF is configured or built. In this case we set CFLAGS, CXXFLAGS, FCFLAGS,
and FFLAGS.

flip% uname -a

IRIX64 flip 6.5 07080050 IP30 mips

flip) setenv CFLAGS -64

flip), setenv CXXFLAGS -64

flip% setenv FFLAGS -64

flip}% setenv FCFLAGS -64

flip), make distclean;./configure;make check

http://www.unidata.ucar.edu/downloads/netcdf/index.jsp
http://www.unidata.ucar.edu/netcdf/builds

30 NetCDF Installation and Porting Guide

6.1.4 Platforms On Which NetCDF is Reported to Work

If your platform isn’t listed on the successful build page, see if another friendly
netCDF user has sent in values for environment variables that are reported to work:
(http://www.unidata.ucar.edu/netcdf/other-builds.html).

If you build on a system that we don’t have at Unidata (particularly if it’s something
interesting and exotic), please send us the settings that work (and the entire build output
would be nice too). Send them to support-netcdf@unidata.ucar.edu.

6.1.5 If You Have a Broken Compiler

For netCDF to build correctly, you must be able to compile C from your environment, and,
optionally, Fortran 77, Fortran 90, and C++. If C doesn’t work, netCDF can’t compile.

What breaks a C compiler? Installation or upgrade mistakes when the C compiler was
installed, or multiple versions or compilers installed on top of each other. Commercial
compilers frequently require some environment variables to be set, and some directories to
appear ahead of others in your path. Finally, if you have an expired or broken license, your
C compiler won’t work.

If you have a broken C compiler and a working C compiler in your PATH, netCDF
might only find the broken one. You can fix this by explicitly setting the CC environmental
variable to a working C compiler, and then trying to build netCDF again. (Don’t forget to
do a “make distclean” first!)

If you can’t build a C program, you can’t build netCDF. Sorry, but that’s just the way
it goes. (You can get the GNU C compiler - search the web for “gec”).

If netCDF finds a broken Fortran 90, Fortran 77, or C++ compiler, it will report the
problem during the configure, and then drop the associated API. For example, if the C++
compiler can’t compile a very simple test program, it will drop the C++ interface. If you
really want the C++ API, set the CXX environment variable to a working C++ compiler.

6.1.6 What to Do If NetCDF Still Won’t Build

If none of the above help, try our troubleshooting section: See Section 6.2 [Troubleshooting],
page 30.

Also check to see of your problem has already been solved by someone else (see Section 6.3
[Finding Help|, page 32).

If you still can’t get netCDF to build, report your problem to Unidata, but please make
sure you submit all the information we need to help (see Section 6.4 [Reporting Problems],
page 32).

6.2 Troubleshooting

6.2.1 Problems During Configuration

If the ./configure; make check fails, it’s a good idea to turn off the C++ and Fortran inter-
faces, and try to build the C interface alone. All other interfaces depend on the C interface,
so nothing else will work until the C interface works. To turn off C++ and Fortran, set
environment variables CXX and FC to NULL before running the netCDF configure script
(with csh: setenv FC ”;setenv CXX 7).

http://www.unidata.ucar.edu/netcdf/other-builds.html

Chapter 6: If Something Goes Wrong 31

Turning off the Fortran and C++ interfaces results in a much shorter build and test cycle,
which is useful for debugging problems.

If the netCDF configure fails, most likely the problem is with your development envi-
ronment. The configure script looks through your path to find all the tools it needs to
build netCDF, including C compiler and linker, the ar, ranlib, and others. The configure
script will tell you what tools it found, and where they are on your system. Here’s part of
configure’s output on a Linux machine:

checking CPPFLAGS... -Df2cFortran
checking CC CFLAGS... cc -g

checking which cc... /usr/bin/cc
checking CXX... c++

checking CXXFLAGS... -g -02

checking which c++... /usr/local/bin/c++

checking FC... f77

checking FFLAGS. ..

checking which £77... /usr/bin/f77
checking F90... unset

checking AR... ar

checking ARFLAGS... cru

checking which ar... /usr/bin/ar
checking NM... nm

checking NMFLAGS. ..

checking which nm... /usr/bin/nm

Make sure that the tools, directories, and flags are set to reasonable values, and com-
patible tools. For example the GNU tools may not inter-operate well with vendor tools. If
you're using a vendor compiler, you may need to use the ar, nm, and ranlib that the vendor
supplied.

As configure runs, it creates a config.log file. If configure crashes, do a text search
of config.log for thing it was checking before crashing. If you have a licensing or tool
compatibility problem, it will be obvious in config.log.

6.2.2 Problems During Compilation

If the configure script runs, but the compile step doesn’t work, or the tests don’t complete
successfully, the problem is probably in your CFLAGS or CPPFLAGS.

Frequently shared libraries are a rich source of problems. If your build is not working,
and you are using the —enable-shared option to generate shared libraries, then try to build
without —enable-shared, and see if the static library build works.

6.2.3 Problems During Testing

If you are planning on using large files (i.e. > 2 GiB), then you may wish to rerun configure
with —enable-large-file-tests to ensure that large files work on your system.

Some DAP tests (in the directory ncdap_test) attempt to access an external server at
opendap.org. It is possible that the DAP server may not be running at test time, or the
network access may be faulty or that the output of the test server has changed. In this
case, the DAP tests may fail. Because of this, the use of these tests is controlled by the
—enable-dap-remote-tests option.

32 NetCDF Installation and Porting Guide

6.3 Finding Help On-line

The latest netCDF documentation (including this manual) can be found at
http://www.unidata.ucar.edu/netcdf/docs.

The output of successful build and test runs for recent versions of netCDF can be found
at http://www.unidata.ucar.edu/netcdf/builds.

A list of known problems with netCDF builds, and suggested fixes, can be found at
http://www.unidata.ucar.edu/netcdf/docs/known_problems.html.

Reportedly successful settings for platforms unavailable for netCDF testing can be found
at http://www.unidata.ucar.edu/netcdf/other-builds.html. If you build netCDF on
a system that is not listed, please send your environment settings, and the full output of
your configure, compile, and testing, to support-netcdf@unidata.ucar.edu. We will add the
information to the other-builds page, with a credit to you.

The replies to all netCDF support emails are on-line and can be searched. Before re-
porting a problem to Unidata, please search this on-line database to see if your problem has
already been addressed in a support email. If you are having build problems it’s usually
useful to search on your system host name. On Unix systems, use the uname command to
find it.

The netCDF Frequently Asked Questions (FAQ) list can be found at
http://www.unidata.ucar.edu/netcdf/faq.html.

To search the support database, see /search. jsp?support&netcdf.

The netCDF mailing list also can be searched; see /search. jsp?netcdfgroup.

6.4 Reporting Problems
To help us solve your problem, please include the following information in your email to
support-netcdf@unidata.ucar.edu.

Unfortunately, we can’t solve build questions without this information; if you ask for
help without providing it, we’re just going to have to ask for it.

So why not send it immediately, and save us both the extra trouble?
1. the exact version of netCDF - see the VERSION file.

2. the *complete* output of “./configure”, “make”, and “make check. Yes, it’s long, but
it’s all important.

3. if the configure failed, the contents of config.log.

4. if you are having problems with very large files (larger than 2GiB), send the output
of "make check" after first running "make distclean" and invoking the configure script
with the —enable-large-file-tests option included.

Although responses to your email will be available in our support database, your email
address is not included, to provide spammers with one less place to harvest it from.

http://www.unidata.ucar.edu/netcdf/docs
http://www.unidata.ucar.edu/netcdf/builds
http://www.unidata.ucar.edu/netcdf/docs/known_problems.html
http://www.unidata.ucar.edu/netcdf/other-builds.html
http://www.unidata.ucar.edu/netcdf/faq.html
/search.jsp?support&netcdf
/search.jsp?netcdfgroup
support-netcdf@unidata.ucar.edu

Index

Index

--default-chunks-in-cache 12
--disable-compiler-recover................. 12
—=disable=CXXcoviiiiiiiiiiiii 11
--disable-examplesc.couuuiiiiiinnnn. 12
—-disable-f77 i 11
—-disable-f90........ ... 11
--disable-fortran........................ ... 10
--disable-fortran-compiler-check.......... 12
--disable-fortran-type-check............... 12
--disable-largefile......................... 10
--disable-netcdf-4 9
--disable-v2.............. ... 11
--enable-benchmarks 11
——enable—CXX4 ... 11
-—enable-dapl 9
--enable-dap-long-tests..................... 10
--enable-dap-remote-tests 10
--enable-extra-tests.................i. 12
--—enable-hdf4 oo 10
--enable-hdf4-file-tests 10
--enable-large-file-tests 11
—enable-parallel-tests............. 8
--enable-pnetcdf............ L 10
--enable-separate-fortran.................. 12
--enable-shared..................... 9
--enable-valgrind-tests..................... 11
--max-default-cache-size 12
—-prefix. ... 9
--with-chunk-cache-nelems 13
--with-chunk-cache-preemption.............. 13
--with-chunk-cache-size..................... 12
--with-curl-config.......................... 10
--with-default-chunk-size 12
--with-hdf4=/your/hdf4/location........... 10
—-with-hdf5=/location...............coouuuunn 9
--with-szlib=/location....................... 9
--with-temp-large..............cooiiuinnnnn. 11
—-—with-udunits............l 10
—-with-zlib=/location................ccoouuu.. 9
_LARGE_FILES, on ATX ... 14

6

64-bit platformso 8

A

AIX 64-bit build.......... 8
AIX, building on ... 15
autoconf 19

33
automake 19
B
bigendian....... L 17
binaries, Windows., 23
binary install 1
binary releases......... ... 5
bugs, reporting oo 32
compiler flags........... ... 21
config.log. ... o 9
configure, running oL oL 9
CRAY, porting toooviiiiiiiii .. 17
Cygwin, building with........ 15
D
debug directory, windows 26
DL 23
dll, getting ... i 23
documentation oo 32
documents, latest version 5
E
earlier netCDF versions......................... 5
enable-large-file-tests........................ 5,13
extra_check requirements, 5
extra_test requirements............. o 5
F
FAQ for netCDF i, 32
fHo.C oo 17
flexandyacc................... il 18
fortran, Intel o 15
fortran, Portland Group 15
GNUmake ... 17
HPUX, buildingon............................ 15
I
install directory......... ... i i 9
installation requirements........................ 5

installing binary distribution.................... 1

34

installing netCDF 14
Intel fortran......... 15
Irix, building on............. ... 15

K

known problems............. .. oL 32

L

large file testscvviiii 13
large file tests requirements..................... 5
large file tests, for windows 26
1ibtood oo 19
link options 21
Linux, building on............ 15
littleendian ... 17

M

M4 et 18
Macintosh, building on 15
mailing lists o 32
make all_large_tests............................ 13
make check.......... 13
make install 14
make Ifs_test 13
make slow_check............................... 13
make test........ ... 13
make, running.......... ..o oo 13
makeinfo........ 18
Microsoft 23
MPICH2 ... 8

N

NC-CONfig ..o 21
nceconfig.h ... 17
neconfigin. ... 17
nceonfig.ine. ... 17
ncdump, windows location..................... 23
ncgen, windows location 23
TICIO & e e 17
NCX.INA o ottt 17
NET 23
netedf.dll, location...............cooiiiiiiii.. 23
netedflib. ... 23

@)

OBJECT_MODE, on AIX ..., 14
OSF1, building on ... 15
other builds document 32

NetCDF Installation and Porting Guide

P

parallel platforms............... 8
porting notes, additional 17
Portland Group fortran........................ 15
POSIXIO.C.vvv vttt 17
prefix argument of configure 9
problems, reporting............. ..., 32
Q

quick unix instructions.............., 3
quick_large_files, in VC++ NET 26

R

release directory, windows 26
reporting problemso 32
running configure.......... i 9
running make........ ... oo oL 13

Sed. . 19
shared libraries, building..................... ... 3
shared libraries, using............ 1
successful build output, on web................ 32
SunOS 64-bit buildl 8
SunOS, building on...........ol 15
support email o o i 32

T

TEMP_LARGE ... 13
testing large file features....................... 13
testing, for windows oo 26
tests, running.......... ... ool 13
e 18
troubleshooting........ oL 30
turning off C++, Fortran interface.............. 30

Vv

VOH 23
VC++ 6.0, building with 24
VC++ 6.0, using netedf with 26
VC++.NET, building with...................... 26
VC++.NET, using netedf with.................. 27
visual studio 2003 properties................... 27

\%\%

windows large file tests 26
windows testing oo 26
windows, building on L 23

	Installing the NetCDF Binaries
	Quick Instructions for Installing NetCDF on Unix
	Building NetCDF Without HDF5
	Building NetCDF With HDF5
	Building with HDF4 Support

	Building and Installing NetCDF on Unix Systems
	Installation Requirements
	Specifying the Environment for Building
	Variable Description Notes

	Building on 64 Bit Platforms
	Building on Platforms with Parallel I/O
	Building HDF5 for Parallel I/O
	The parallel-netcdf Library
	Building NetCDF

	Running the configure Script
	Running make
	Testing the Build
	Installing NetCDF
	Platform Specific Notes
	AIX
	Cygwin
	HPUX
	Irix
	Linux
	Macintosh
	OSF1
	SunOS
	Handling Fortran Compilers

	Additional Porting Notes
	Contributing to NetCDF Source Code Development

	Using NetCDF on Unix Systems
	Using Linker Flags with NetCDF
	Using Compiler Flags with NetCDF
	Using the nc-config Utility to Find Compiler and Linker Flags

	Building and Installing NetCDF on Windows
	Getting Prebuilt netcdf.dll
	Installing the DLL
	Building netcdf.dll with VC++ 6.0
	Using netcdf.dll with VC++ 6.0
	Building netcdf.dll with VC++.NET
	Using netcdf.dll with VC++.NET

	If Something Goes Wrong
	The Usual Build Problems
	Taking the Easy Way Out
	How to Clean Up the Mess from a Failed Build
	Platforms On Which NetCDF is Known to Work
	Platforms On Which NetCDF is Reported to Work
	If You Have a Broken Compiler
	What to Do If NetCDF Still Won't Build

	Troubleshooting
	Problems During Configuration
	Problems During Compilation
	Problems During Testing

	Finding Help On-line
	Reporting Problems

	Index

