MPICH2 Logging
Version 0.1
DRAFT of August 24, 2011

Mathematics and Computer Science Division
Argonne National Laboratory

David Ashton

August 24, 2011



1 INTRODUCTION 1

1 Introduction

This manual assumes that MPICH2 has already been installed. For instruc-
tions on how to install MPICH2, see the MPICH2 Installer’s Guide, or the
README in the top-level MPICH2 directory. This manual will explain
how the internal logging macros are generated and how the user can gener-
ate log files viewable in Jumpshot. Use of Jumpshot is described in the mpe
documentation.

2 Configuring mpich2 to create log files

When users run configure they can specify logging options. There are three
configure options to control logging.

--enable-timing=<timing_type>

Add this option to enable timing. The two options for timing_type
are log and log detailed. The log option will log only the MPI
functions just like the MPE logging interface does. The log_detailed
will log every function in mpich2. This option gives fine grained log-
ging information and also creates large log files. It must be used in
conjunction with a timer-type that can log very short intervals on the
order of 100’s of nanoseconds.

--with-logging=<logger>
Specify the logging library to use. Currently the only logger option is
rlog.

--enable-timer-type=<timer_type>
Specify the timer type. The options are
e gethrtime - Solaris timer (Solaris systems only)
e clock_gettime - Posix timer (where available)
e gettimeofday - Most Unix systems
e 1inux86_cycle - Linux x86 cycle counter™®
*

e linuxalpha cycle - Like linux86_cycle, but for Linux Alpha
e gcc_iab4 cycle - IA64 cycle counter*



3 GENERATING LOG FILES 2

* Note that CPU cycle counters count cycles, not elapsed time. Be-
cause processor frequencies are variable, especially with modern power-
aware hardware, these are not always reliable for timing and so should
only be used if you’re sure you know what you’re doing.

Here is an example:

mpich2/configure
-—enable-timing=log
--with-logging=rlog
--enable-timer-type=gettimeofday

3 Generating log files
Run your mpi application to create intermediate .irlog files.

mpicc myapp.c —-o myapp
mpiexec -n 3 myapp

There will be .irlog files created for each process:

log0.irlog
logl.irlog
log2.irlog

4 RLOG tools

For performance reasons each process produces a local intermediate log
file that needs to be merged into a single rlog file. Use the rlog tools to
merge the .irlog files into an .rlog file. The rlog tools are found in
mpich2 build/src/util/logging/rlog. Currently they are not copied to
the install directory.

irlog2rlog
This tool combines the intermediate .irlog files into a single .rlog



5 VIEWING LOG FILES 3

file. The usageis: “irlog2rlog outname.rlog inputO.irlog inputl.irlog
...”7 Ashortcut is provided: “irlog2rlog outname.rlog <num files>”.
Execute irlog2rlog without any parameters to see the usage options.

printrlog
This tool prints the contents of an .rlog file.

printirlog

This tool prints the contents of an .irlog file.

Continuing the example from the previous section:
irlog2rlog myapp.rlog 3

will convert 1og0.irlog, logl.irlog and log2.irlog to myapp.rlog.

5 Viewing log files

This section describes how to view a log file

.rlog files can be printed from a command shell using the printrlog
tool but the more interesting way to view the log files is from Jumpshot.
Jumpshot displays slog2 files and has a built in converter to convert .rlog
files to .slog2 files. Start Jumpshot and open your .rlog file. Jumpshot
will ask you if you want to convert the file and you say yes.

6 Logging state code generation

This section can be skipped by users. It describes the internal scripts used
to develop the logging macros.

This is how the maint/genstates script works:
1. maint/updatefiles creates genstates from genstates. in replacing
@PERL@ with the appropriate path to perl and then runs genstates.

2. genstates finds all .i, .h and .c files in the mpich2 directory tree,
searches for _STATE_DECL in each file and builds a list of all the MPID_STATEs.



6 LOGGING STATE CODE GENERATION 4

It validates that the states start in a _STATE_DECL statement, followed
by a FUNC_ENTER statement, and then at least one FUNC_EXIT state-
ment. Errors are printed out if the code does not follow this format
except for macros. State declarations in macros are assumed to be
correct.

3. genstates finds all the describe_states.txt files anywhere in the
mpich2 tree. describe_states.txt files are optional and are used to
set the output name of the state and its associated color.

4. The describe_states.txt file format is this:
MPID_STATE_XXX <user string for the state> <optional rgb color>
Here is an example line:
MPID_STATE_MPI_SEND MPI_Send O O 255

If you don’t specify a state in a describe_states.txt file then the
state user name will be automatically created by stripping off the
MPID_STATE._ prefix and the color will be assigned a random value.

5. genstates ouputs mpich2/src/include/mpiallstates.h with this
enum in it:

enum MPID_TIMER_STATE

{
MPID_STATE_XXX,

+;
6. genstates outputs mpich2/src/util/logging/describe_states.c

with the MPIR Describe_timer_states() function in it. Currently,
only the rlog version of MPIR Describe_timer_states() is generated.



	Introduction
	Configuring mpich2 to create log files
	Generating log files
	RLOG tools
	Viewing log files
	Logging state code generation

