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2National Fund for Scientific Research, Belgium
3Ocean Circulation Group, University of South Florida, 140 7th Avenue South, St. Petersburg,
Florida 33701, USA
4NATO Undersea Research Centre (NURC), Viale San Bartolomeo 400, 19126 La Spezia, Italy

Correspondence to: A. Barth
(a.barth@ulg.ac.be)

Abstract. A method is presented to create an ensemble of perturbations that satisfies linear dynam-

ical constraints. A cost function is formulated defining the probability of each perturbation. It is

shown that the perturbations created with this approach take the land-sea mask into account in a

similar way as variational analysis techniques. The impact of the land-sea mask is illustrated with an

idealized configuration of a barrier island. Perturbations with a spatially variable correlation length5

can be also created by this approach. The method is applied to a realistic configuration of the West

Florida Shelf to create perturbations of the M2 tidal parameters for elevation and depth-averaged

currents. The perturbations are weakly constrained to satisfy the linear shallow-water equations.

Despite that the constraint is derived from an idealized assumption, it is shown that this approach is

applicable to a non-linear and baroclinic model. The amplitude of spurious transient motions cre-10

ated by constrained perturbations of initial and boundary conditions is significantly lower compared

to perturbing the variables independently or to using only the momentum equation to compute the

velocity perturbations from the elevation.

1 Introduction

In numerous modelling applications, the uncertainty of the model results needs to be estimated. An15

estimation of this uncertainty is often obtained by realizing a stochastic ensemble forecast: inputs to

the model are perturbed within the bounds of their respective uncertainty and for each of those per-

turbations the model is integrated forward. For ocean models, the model uncertainty stems, among

others, from the forcing fields and initial conditions (e.g. Lermusiaux et al., 2006). The spread of an
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ensemble forecast using perturbed forcings fields and initial conditions gives the estimation of the20

model uncertainty.

This uncertainty (often formally expressed as model error covariance) is also required in vari-

ous data assimilation techniques such as the Ensemble Kalman Filter (Evensen, 2003), the Error

Subspace Statistical Estimation (Lermusiaux and Robinson, 1999) and the Singular Evolutive Inter-25

polated Kalman Filter (Pham, 2001). The success of the data assimilation depends crucially on the

realism of the model error covariance which in turns depends on the realism of the applied perturba-

tions.

Ensemble simulations are also very resource-intensive. There is the need, thus, to restrict explo-30

ration of the state space only to model states which are physically reasonable and which respect

certain dynamical equilibria. Otherwise resources might be wasted to compute ensemble members

using unlikely initial or boundary conditions.

Physically unbalanced initial and boundary conditions produce transient motions during the ini-35

tialization, often in form of spurious barotropic waves. Several techniques have been proposed to

reduce those waves in the context of data assimilation (e.g. Vallis, 1992; Dobricic et al., 2007; Barth

et al., 2007b). These methods, which basically damp barotropic waves, are difficult to apply to mod-

els which include tides, since tidal waves are also barotropic waves.

40

The objective of this study is to present a method to create smooth, Gaussian-distributed, mono-

variate or multivariate perturbations that have to satisfy a given linear balance. In particular, a

method to produce balanced perturbations for tidal models is presented here. As the method relies

on the definition of a cost function, the land-sea mask and a possibly variable correlation-length can

be taken into account.45

The motivation for applying this technique to tidal boundary conditions is to assimilate a data set

resolving tides. Since part of the model error is associated with erroneous tidal boundary conditions

and initial conditions, those errors have to be taken into account. In an ensemble approach, the un-

certainty of those fields is represented by an ensemble of likely and physically balanced initial and50

boundary conditions.

In section 2, the general method is introduced to generate smooth perturbations satisfying certain

constraints. Section 3 shows how the structure of the perturbations depends on the land-sea mask in

an idealized configuration. A case with a spatially variable correlation length is also presented. As55

an example, the constraint from a shallow water model is introduced and implemented in a realistic
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configuration of the West Florida Shelf (WFS) in section 4. This method is compared to other

simpler techniques (section 5) and the results are discussed in section 6. In section 7, the numerical

cost of this method is studied for different domain sizes. Section 8 summarizes our findings and

provides the conclusions.60

2 Methods

All model variables at all grid points that need to be perturbed are grouped into the perturbation

vector x which is composed by n elements. We will seek a method that provides smooth stochastic

perturbations that satisfy approximately m-constraints given by the m× n matrix M:

Mx = 0 (1)65

We consider only linear constraints here. Non-linear constraints have to be linearized around the

unperturbed state. This constraint can be any relationship between different elements of the vector

x known a priori, such as the geostrophic equilibrium, zero horizontal divergence of surface winds,

a climatological TS diagram, stationary solution to the advection diffusion equation or the linear

shallow water equations. The constraint can also be the requirement that the perturbations have to70

belong to a subspace defined by e.g. empirical orthogonal functions (EOFs). In this case the columns

of M would be all vectors orthogonal to the set of EOFs.

Only homogeneous constraints (i.e. the right-hand side of equation (1) is zero) are considered here

because otherwise the perturbations would have a non-zero mean. The forcing fields to be perturbed75

are generally assumed to be unbiased, as it is also a requirement for most assimilation schemes.

To describe our a priori knowledge of what a realistic perturbation is, we introduce a cost function

J , similar to the cost function in variational analysis techniques:

2J(x) = (Mx)T WM (Mx) + (Dx)T WD(Dx) + xT WEx (2)80

where WM , WD and WE are, for simplicity, diagonal weighting matrices. The first term pe-

nalizes the deviations from the linear constraint (1). It is not enforced strictly (strong constraint), but

it has to be satisfied approximately (weak constraint). The diagonal elements of W−1/2
M define the

magnitude of an acceptable deviation from the linear constraint. The matrix D is a diffusion operator

that ensures the smoothness of the perturbation (Brasseur, 1991; Weaver and Courtier, 2001). The85

last term controls the amplitude (or total energy) of the perturbations. Later, this cost function will

be related to the likelihood of a given perturbation. It is necessary that all constraints added in the

cost function are compatible to obtain useful perturbations.
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The cost function is a quadratic function in x and can thus be written as:90

2J(x) = xT (MT WMM + DT WDD + WE)x (3)

= xT B−1x (4)

where the matrix B−1 (the Hessian matrix of J(x)) is defined as:

B−1 = MT WMM + DT WDD + WE (5)

The dynamically constrained covariance matrix B could be used directly in assimilation schemes95

that are based on the inverse of the background covariance matrix (such as variational assimilation)

without the need to create an ensemble. For ensemble-based assimilation schemes, the cost function

can be used to define the probability of a perturbation x (e.g. Kalnay, 2002):

p(x) =
1

(2π)n/2‖B‖1/2
exp (−J(x)) (6)

Perturbations resulting in a large value of the cost function J , meaning that the constraints are100

violated, have thus a low probability. The perturbations satisfying the weak constraint (1) are drawn

from this pdf.

To generate an ensemble of perturbations that follows the previous pdf, the matrix B−1 is decom-

posed in eigenvectors (rows of U) and eigenvalues (diagonal elements of Λ) :

B−1 = UΛUT (7)105

The larger an eigenvalue is, the stronger the corresponding eigenvector violates the dynamical and

smoothness constraint. Indeed, if the perturbation is the eigenvector ui associated with eigenvalue

λi, the cost function takes the value 2J = uT
i

(
UΛUT

)
ui = uT

i UΛUT ui = λi

An ensemble of vectors z(k) where the subscript k is the ensemble member, is created following

a normal distribution.110

z ∼ N(0, In) (8)

An ensemble of perturbations x(k) following (6) can be obtained by:

x(k) = UΛ−1/2z(k) (9)

In practice, only the smallest eigenvalues (and their corresponding eigenvectors) need to be cal-

culated. This enables the use of efficient software packages to compute selected eigenvalues and115

eigenvectors. In this work, we use the GNU Octave interface to the ARPACK package (Lehoucq

et al., 1997). This approach for generating perturbations will be used in the subsequent experiments.
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As a variant of the previous equation, perturbations can also be obtained by 2nd order re-sampling

method used in the SEIK (Singular Evolutive Interpolated Kalman) Filter (Pham, 2001):120

x(k) = UΛ−1/2H(Ω)k fork = 1, . . . , N + 1 (10)

where N is the number of eigenvectors retained, H is a N + 1×N matrix whose column vectors

form an orthonormal basis perpendicular to the vector 1N+1×1 and (Ω)k is the kth column of a

N ×N random orthogonal matrix Ω. This ensemble will have exactly a zero mean and a covariance

equal to B reduced to its N largest eigenvalues.125

Instead of using an eigenvector decomposition, perturbations can also be created by a Cholesky

decomposition of B−1 into square root matrices (Fukumori, 2002):

B−1 = RRT (11)

The perturbations can then be obtained by:

x(k) = R−1z(k) (12)130

Since R is a triangular matrix, the product of its inverse and a vector can be efficiently calculated

by back substitution.

3 Impact of the land-sea mask and correlation length

First we will show how the effect of land boundaries such as islands and peninsulas are taken into

account to compute the perturbations. The effect induced by those barriers is difficult to include in135

methods which derive perturbations based on a given covariance matrix. For example, the method

described in Evensen (2003) is widely used to generate ensemble perturbations. The perturbations

are generated in Fourier space. Each Fourier mode is perturbed independently with an expected

amplitude proportional to a Gaussian function of the wave number, producing a smooth field in

physical space. This method is computationally very efficient since it can be implemented using140

the Fast Fourier Transform. Indeed, it can be shown that for any translation-invariant covariance

matrix, its eigenfunctions are the Fourier modes (Barth et al., 2007a). In some circumstances, the

approach might be appropriate for atmospheric fields and also for oceanographic fields far from the

coastline. But in oceanographic applications, problems can arise near the coast. This problem will

be illustrated with a narrow elongated island.145

The effect of land boundaries is included in the smoothness constraint and is independent of any

dynamic constraint. To show this we can think of the diffusion operator (on which the smoothness

constraint is based) as a way to transfer information, such as tracer concentration, from one place to

an other. The method using constraints to generate perturbations can then easily take into account150
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a land-sea mask in the same way as diffusive fluxes of tracers. In continuous form, the operator D

applied to a perturbation field φ can be written as:

Dφ = ∇ · F (13)

where the vector field F is given by:

F = ∇φ for interior points

F = 0 at land-sea boundaries
(14)155

The derivatives in (13) and (14) are approximated by centered finite differences, yielding a sparse

matrix representation of D. To facilitate the formulation of this sparse matrix, the operator is sep-

arated into sub-steps (calculating the vector field F, application of boundary conditions, calculating

the divergence of the vector field). Each of the individual steps can be easily expressed as a sparse

matrix. The matrix D is then simply the product of all matrices corresponding to the sub-steps in160

the appropriate order. The same approach will also be used to create a sparse matrix representing

the dynamical constraint.

To highlight the impact of this smoothness operator, we will not take into account a linear con-

straint in equation (2). Also, we chose the weighting matrices proportional to the identity matrix.165

2J(x) = L4(Dx)T (Dx) + xT x (15)

The vector x represents the values of the field φ on a set of grid points and the matrix D is the

discretization of the diffusion operatorD. The exponent of L has been chosen such that L represents

a length-scale. Indeed, this parameter is the horizontal correlation length of the perturbations. At

this length scale both terms of the cost function have a similar magnitude (Brasseur et al., 1996).170

In the examples that will follow, the parameter has been adjusted such that the perturbations based

on equation (15) have the same correlation length than the perturbations created using the Fourier

transform without any land points. It may be worthwhile to note here that in this case the horizontal

structure of the covariance is a Gaussian for the method using the Fourier transform; whereas the

covariance of the perturbations based on the cost function is related to a modified Bessel function of175

order 1 in the continuous case, here discretized on a regular grid (Brasseur et al., 1996).

An ensemble of 10000 perturbations has been created with a horizontal correlation length of 20

km for a square domain with a narrow island. The ensemble covariance has been computed for a

grid point near the end of the barrier (the black dot in figure 1). As expected, the structure of the en-180

semble covariance using the Fourier transform is isotropic. On the contrary, the covariance using the

cost function is deformed by the presence of land points. Only grid points which can be connected
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Fig. 1. Ensemble covariance using Fourier modes (a) and constrained perturbations based on the land-sea mask

(b).

with a short path (relative to the correlation length-scale) not crossing land points have a significant

correlation. In general, this is the expected physical behaviour.

185

This effect of land points is well known in the context of variational analysis where the covari-

ance functions are constructed with differential operators (e.g. Brasseur, 1994). Here we use this

desirable property for the generation of perturbations which can be used in sequential Kalman filters

using ensembles.

190

It should be noted here that in the context of Ensemble Kalman filtering, covariance functions

similar to panel (a) of Figure 1 are not directly used for assimilating observations. Perturbations

with these covariance functions would be applied to the initial condition for example, and the co-

variance function will be inevitably transformed by the non-linear model (e.g. advected by currents).

However, a correlation across the barrier will still remain; only the shape of the correlation function195

is modified. Thus an observation made on one side of the barrier will also impact the other side.

The method based on the cost function can be applied to any model grid where the discrete diffu-

sion operator can be formulated. This is an advantage compared to the Fourier method which can be

only applied to rectangular grids and spherical grids (using spherical harmonics). For more general200

cases, the latter method requires an intermediate grid since the symmetry requirement (translation

invariance) does not only apply to the domain but also to the model grid itself.

Another advantage of the presented method is that perturbations with a spatially varying corre-

lation length can be created. Spatial structures of baroclinic flows in the ocean are related to the205

internal radius of deformation. This length-scale is often much smaller on the weakly stratified shelf
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Fig. 2. Illustration of random field with a variable correlation length for a square domain without land points.

than in the deep ocean. A correlation length proportional to the internal radius of deformation is

thus a reasonable choice. The effect of a spatially varying correlation length can be easily taken

into account in the variational formulation (15). This is not possible with the Fourier method since

a spatially varying correlation length is not translation-invariant. Figure 2 shows a random pertur-210

bation obtained for a correlation length varying linearly from 3 to 10 km in the zonal direction. As

expected, the size of the structure gradually increases as the correlation length increases.

This aspect is also useful for a system of nested grid models and for models with unstructured

grids. The length scale of the perturbations has to be properly resolved on the model grid. If only a215

unique length scale is used then it must be several times larger than the coarsest resolution. With a

spatially varying correlation scale this limitation is lifted and areas with locally refined resolution can

have smaller-scale perturbations. In a two-way nesting system, the model fields on different grids

can also be regrouped in a single perturbation vector and the nesting feedback can be introduced as

an additional constraint to ensure a coherent transition between model grids.220

4 Application to tidal boundary conditions

This method is now applied to create multivariate perturbations of sea surface height and depth-

averaged currents which have to be a harmonic solution of the shallow water equations. This example

has a practical relevance since tides are governed by those equations. For simplicity, the shallow

water equations are expressed here on a Cartesian grid, but they are implemented on a curvilinear225

grid as it will be applied to a curvilinear model grid.

∂ζ

∂t
+
∂(hu)
∂x

+
∂(hv)
∂y

= 0 (16)
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∂u

∂t
− fv = −g ∂ζ

∂x
(17)

∂v

∂t
+ fu = −g ∂ζ

∂y
(18)

where h is the depth, f is the Coriolis parameter and g is the acceleration due to gravity. For230

simplicity we consider only one tidal constituent. The tidal component M2 is chosen because it is

generally among the largest constituents. We require that the time dependency of the perturbations

has the following form:

ζ(x, y, t) = eiωtζ ′(x, y) (19)

u(x, y, t) = eiωtu′(x, y) (20)235

v(x, y, t) = eiωtv′(x, y) (21)

where ω is the angular frequency of the M2 tides. The perturbation vector x is composed by the

elevation ζ ′ and the depth-averaged currents u′ and v′. It follows that,

iωζ ′ +
∂(hu′)
∂x

+
∂(hv′)
∂y

= 0 (22)

iωu′ − fv′ + g
∂ζ ′

∂x
= 0 (23)240

iωv′ + fu′ + g
∂ζ ′

∂y
= 0 (24)

The discrete operatorM is obtained by discretizing the spatial derivatives (22)-(24) on an Arakawa

C grid (Arakawa and Lamb, 1981) using finite volumes. Only wet points are included in the state

vector x. In this sense, boundary effects are already included in M. The normal velocity at the

land-sea boundary is prescribed to be zero and is not part of the state vector x.245

Open ocean boundary values are not constrained by the shallow water equations. If no smooth-

ness constraint would be present, the resulting ensemble members would be discontinuous at the

boundary in the direction parallel to the boundary. The explicit smoothness constraint (Laplacian

with a zero gradient at the open boundary in a direction perpendicular to the boundary) is added to250

the cost-function to avoid those discontinuities at the boundary.

The method is tested using the WFS ROMS model (Barth et al., 2008c) which is nested in the

Atlantic HYCOM model (Chassignet et al., 2007). The nesting procedure is explained in Barth et al.

(2008a). The model uses a curvilinear grid with a resolution of about 3.5 km near the coast and 10255

km near the open boundary. The model is initialized on the 1st January 2005 using the elevation,

velocity, temperature and salinity from HYCOM. The boundary conditions from HYCOM mainly

impose the path of the Gulf of Mexico Loop Current generating mesoscale eddies and filaments
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inside the model domain (Barth et al., 2008b). The tidal boundary conditions produce tidal waves

propagating inside the model domain and increase their amplitude near the coast as predicted by260

linear tidal wave theory for wide continental shelves (Clarke, 1991) and by a numerical ocean model

of the WFS (He and Weisberg, 2002).

5 Experiments

Three methods, of increasing complexity, for the generation of perturbations of the tidal motions are265

examined:

– The elevation and the two horizontal velocities are perturbed independently. Instead of per-

turbing the amplitude and phase directly, it is preferable to work here with the complex repre-

sentation of these tidal parameters. The real and imaginary parts are perturbed independently.

The horizontal correlation length of the perturbations is 300 km which is the typical length-270

scale of the tidal maps. The complex perturbations are added to the TPXO6.2 (Egbert et al.,

1994; Egbert and Erofeeva, 2002) complex tidal parameters and converted into amplitude and

phase, as tides are usually characterized. If the amplitudes would be directly perturbed then

one could not ensure that they remain positive.

– The elevation is perturbed as described in the previous experiment, but now the corresponding275

velocity perturbations are diagnosed using the momentum balance:

u = − g

f2 − ω2

(
f
∂ζ

∂y
+ iω

∂ζ

∂x

)
(25)

v =
g

f2 − ω2

(
f
∂ζ

∂x
− iω ∂ζ

∂y

)
(26)

Those equations become the geostrophic equilibrium for ω = 0. The geostrophic equilibrium

is often used to model error covariances in data assimilation (e.g. Dee, 1991; Brankart et al.,280

2003) and also to compute perturbations of the velocity based on the perturbation of the den-

sity field (Barth et al., 2007a). Equations (25)-(26) are more complete than the geostrophic

equilibrium since the former do not assume small accelerations.

– In the third method, perturbations are weakly constrained by the equations (22)-(24) following

the approach described in section 2. The weighting matrix W is defined by the energy E of285

shallow water waves:

xT Wx = E =
1
2

∫
S

gζ2 + hu2 + hv2dS (27)
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where on the right-hand side, the discretized version defines the weighting matrix (which

ensures also proper dimensional relationships). Up to a constant factor ρ0, E corresponds to

the total energy of a system governed by the shallow water equations.290

The weighting matrices for the dynamical constraint WM , the smoothness constraint WD

and the total norm WE are proportional to W. Since the perturbations are scaled afterwards,

one proportionality coefficient can be arbitrarily fixed without loss of generality. Here the

matrices are defined by:

WM = ω−2W (28)295

WD = L4W (29)

WE = αW (30)

where L (dimension of a length scale) and α (adimensional) are parameters to be chosen. The

smaller these values are, the stronger the dynamical constraint will be enforced. However, we

do not require that the constraint will be exactly satisfied since it is derived using a series of300

assumptions.

After several values of those parameters where tested, α was set to 0.001 and L to 10 km. The

preferential length-scale taking only the smoothness and total energy constraint into account

is thus α−1/4L = 56 km which is small compared to the length-scale of the tidal structures.

This indicates that the structure of the perturbations is mainly determined by the dynamical305

constraint and not by the two other constraints.

When this method for generating ensemble perturbations is applied to data assimilation, one

can use cross-validation (Wahba and Wendelberger, 1980) to estimate the parameters L and

α more objectively in a similar way than parameters are optimized in e.g. DIVA (Data-310

Interpolating Variational Analysis) Brankart and Brasseur, 1996) and DINEOF (Data Inter-

polating Empirical Orthogonal Functions; Beckers and Rixen, 2003; Alvera-Azcárate et al.,

2007): a small subset of observations are not used during the data assimilation and reserved

for the validation of the results. The ensemble run and assimilation steps are repeated for dif-

ferent values of the parameters L and α. The best set of parameters is the one that minimizes315

the root mean squared error compared to the validation data set. This approach is not used in

this present work but might be explored in further data assimilation studies.

The amplitude of the perturbations is chosen such that, in all the experiments, the expected value

of the energy norm xT Wx is a given constant. Here we use 0.01 m3s−1 times the total surface of
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the model domain. This produces perturbations of the elevation of the order of cm which is compa-320

rable to the error of tidal models of this region (He and Weisberg, 2002). All methods produce thus

perturbations which are equally energetic.

The M2 tidal parameters for the elevation and the depth-averaged velocity are obtained from the

TPXO6.2 global inverse tide model. Those tidal parameters are perturbed using the three different325

methods. For each method, an ensemble of 32 members has been created. The tidal surface eleva-

tion and depth-averaged velocity are added to the initial conditions and to the HYCOM boundary

conditions. All ensemble members are integrated for 10 days with the full, non-linear ROMS model.

The first method produces isotropic covariances, but this is not the case for the constrained per-330

turbations since they have to satisfy (approximately) the shallow water equations. The horizontal

covariance of the constrained perturbations for a point near the open boundary is shown in Figure

3. This covariance represents how a hypothetical error (or an observation if this covariance is used

for data assimilation) near the boundary would affect the solution within the model domain. In the

vicinity of this point the covariance decreases monotonically with a preferred direction to the North-335

East inward to the model domain. However the covariance increases in Florida’s Big Bend and near

the Mississippi Delta. Thus the impact of an error in the boundary is not only local but it can be seen

remotely due to the propagation of tidal waves. To include such aspects in error covariance models,

dynamical constraints have to be taken into account.

6 Results340

To compare the three different examined methods, it is necessary to quantify the amount of transient

motions created due to the perturbations. The surface elevation of an unperturbed (central) run was

subtracted from each ensemble member to isolate the impact of the initial and boundary perturba-

tions. A tidal analysis was performed to subtract the tidal variations. This residual is then averaged

over the 10-day time period which is shown in figure 4. To compute the total amount of transient345

motions those maps are averaged in space and the results are given in table 1. If this residual would

be zero, then the perturbations would have only created tidal waves at the M2 frequency (unless the

amplitude of the perturbations is so large that it creates harmonics).

The largest transient motions are created by perturbing elevation and velocity independently350

(panel (a) on Figure 4). The structure of the standard deviation of the elevation residual is quite

similar to the amplitude of the M2 tide in the WFS. In cases 1 and 2, the highest values are observed

in Florida’s Big Bend and in the southern part of the domain. This suggest that the amplitude of the

transient motions increases near the coast in the same way as the barotropic tidal waves increase its
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Fig. 3. Horizontal covariance of the constrained perturbations between the point near the open boundary marked

by a black dot and all other grid points.

amplitude when the depth decreases and when the wave is reflected from the coastline. The fact that355

the transient motions are amplified near the coast is particularly problematic since this is often the

region of interest for regional models.

To quantify the overall magnitude of the transient motions, the variance of the residual is averaged

over the model domain. The square root of the averaged variance (or average standard deviation) of360

all three experiments is shown in table 1. The experiment with independent perturbations has indeed

the largest average variance of transient motions.

Using the momentum equation to compute the velocity perturbation based on the elevation pertur-

bation does not significantly improve the dynamical balance of the perturbed model simulation since365

the average standard deviation is only slightly reduced. This result is surprising since the geostrophic

equilibrium, which is related to equations (25) - (26), is used successfully in data assimilation. The

difference here is that the (pure) geostrophic equilibrium does satisfy the horizontal continuity equa-

tion (on an f-plane) and does not require vertical motions. But this is not the case for equations (25)

- (26) which can thus entrain a movement of the free surface generating spurious gravity waves.370

The smallest transient motions are obtained by using the constrained perturbations. The variance
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Fig. 4. Standard deviation of the elevation residual. (a) using independent perturbations, (b) using the momen-

tum equation and (c) using constrained perturbations.

Experiment description average standard deviation

1 independent perturbations 0.00763

2 perturbations using the momentum balance 0.00753

3 dynamically constrained perturbations 0.00480

2bis same as 2 but with bottom drag 0.00707

3bis same as 3 but with bottom drag 0.00430

Table 1. The average standard deviation (in m) of the elevation residual. This quantity indicates the magnitude

of the transient motions created by different perturbations.

of the residual is reduced by 60% compared to the previous two approaches. While the standard

deviation of the residual is still the largest near the coast compared to the open ocean, it is now

significantly reduced. This shows that although the perturbations are derived using several assump-375

tions (in particular, no bottom drag, purely barotropic and linear dynamics), they are applicable to

an implementation of a baroclinic and non-linear model with realistic friction.

14



6.1 Impact of bottom drag

In the previous section, only linear terms were examined for methods 2 and 3. The bottom drag was

thus ignored. However, it is well known that it plays an important role for modelling tides in shelf380

seas. Including the bottom friction, the governing equations are:

∂ζ

∂t
+
∂(hu)
∂x

+
∂(hv)
∂y

= 0 (31)

∂

∂t
u− fv = −g ∂ζ

∂x
− τx
h

(32)

∂

∂t
v + fu = −g ∂ζ

∂y
− τy
h

(33)

The WFS ROMS uses a quadratic parametrization for the bottom drag τ :385

τ = r|u|u (34)

where the drag coefficient r is 10−3. This bottom drag is linearized around the velocity vector

(ū, v̄):

τx =
(
r

2ū2 + v̄2

√
ū2 + v̄2

)
u (35)

τy =
(
r
ū2 + 2v̄2

√
ū2 + v̄2

)
v (36)390

The velocities ū and v̄ are set to the half of the maximum tidal velocity in the x and y directions

respectively as this corresponds to the average of the tidal velocity squared. The dynamical constraint

with bottom drag becomes:

iωζ ′ +
∂(hu′)
∂x

+
∂(hv′)
∂y

= 0 (37)

iωu′ − fv′ + g
∂ζ ′

∂x
+ cuu

′ = 0 (38)395

iωv′ + fu′ + g
∂ζ ′

∂y
+ cvv

′ = 0 (39)

where cu and cv are given by:

cu =
(
r

2ū2 + v̄2

√
ū2 + v̄2

)
/h (40)

cv =
(
r
ū2 + 2v̄2

√
ū2 + v̄2

)
/h (41)

Methods 2 and 3 are repeated by including a linearized drag term. With the drag term, the equa-400

tions (25) and (26) become:
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u = −A
(
f
∂ζ

∂y
+ (iω + cv)

∂ζ

∂x

)
(42)

v = A

(
f
∂ζ

∂x
− (iω + cu)

∂ζ

∂y

)
(43)

where A is given by,

A =
g

f2 − ω2 + cucv + iω(cu + cv)
. (44)405

From this denominator, it is evident that the drag reduces in average the size of the velocity per-

turbations (for a given perturbation of the elevation) and alters also the phase.

Figure 5 shows the standard deviation of the residual using perturbations taking the bottom drag

into account. In panel (a), the perturbations we created similar to experiment 2 but using the equa-410

tions (42) and (43). The results in panel (b) are obtained by perturbations constrained by the spatial

discretization equations (37)-(39) similar to experiment 3.

The spatial structure of the residual is comparable to the residual in the previous experiments with

an increase of the amplitude of transient motions near the coast. However, the amplitude is indeed re-415

duced in both cases, which confirms our expectation that the more complete our dynamical constraint

is, the more balanced our perturbations are. The amplitude is actually reduced by approximately the

amount relative to the corresponding experiment without bottom drag. The smallest transient mo-

tions are generated by using the perturbations constrained by the shallow water equations including

the bottom drag.420

6.2 Motion induced by the constrained perturbations

The main purpose of the proposed procedure is the generation of balanced perturbations. In the

previous section the magnitude of the transition motions were used to quantify how close the model

state is to an equilibrium state. To further study the tidal perturbations we can compare the amplitude

and phase of the perturbations with the corresponding parameters diagnosed from a perturbed run.425

Since the model is derived from the non-linear baroclinic equations, we will examine how relevant

the simplified shallow water equations are compared to a realistic model. Also, the constraints still

use continuous time while the model is discretized in time.

Panel (a) of figure 6 shows the elevation of a realization of the constrained perturbations. The col-430

ors represent the amplitude and the isolines are the phase. This perturbation shares indeed common

characteristics known from tidal propagation. The tidal amplitude is amplified in some regions on

the shelf. It also contains an amphidromic point in the south eastern part of the model domain.
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Fig. 5. Standard deviation of the elevation residual (a) using the momentum equation and (b) using constrained

perturbations. Bottom drag is taken into account.

This perturbation (and the corresponding velocity perturbation) is applied to initial conditions and435

boundary conditions of the WFS ROMS model. The model is then integrated for 10 days using

realistic forcings. The amplitude and phase of the difference between the elevation of the perturbed

run and the unperturbed run is computed and shown in panel (b) of figure 6.

The location and value of the amplitude maxima in the perturbed model run are comparable to the440

applied perturbation. The model results contain also the amphidromic point as it can be seen from

the phase. However, some differences in phase can be seen especially in Florida’s Big Bend, where

the phase difference is about 40◦. The agreement between both fields is reasonable given the number

of assumptions that were necessary for the shallow water equations that were not made in the WFS

ROMS.445

In the context of an ensemble forecast, if one ensemble member is particularly close to the obser-

vations (closer for example than the central, unperturbed simulation), we can therefore assume that

the perturbations produce indeed initial and boundary conditions which are more realistic than the

unperturbed initial and boundary conditions. Formally, this can be done by including the perturba-450

tion in the data assimilation state vector. The analysis will then provide an improved estimation of

those boundary conditions.
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Fig. 6. Left panel: a realization of a constrained perturbation. Only the elevation amplitude and phase are

shown. Right panel: tidal analysis of the difference between the elevation of the perturbed and the unperturbed

simulation.

7 Numerical cost

To assess the numerical cost of this scheme and to test its feasibility with a high resolution ocean

model, the method was applied to a square domain of 200 km length with different resolutions. In a455

first series of experiments only 50 eigenvectors are retained during the eigenvector decomposition.

All other parameters where the same than in the perturbation for the WFS case.

The code is tested on a single core of an Intel Xeon E5420 CPU. The code is run in Octave 3.0.5

compiled among others with SuiteSparse 3.4.0 (Davis, 2004a,b), GotoBLAS 1.26 and ARPACK 96460

(Lehoucq et al., 1997). Those libraries are used in the eigenvector decomposition. The time in sec-

onds of different steps in the algorithm are shown in table 2 for different grid sizes. A domain size of

512x512 was tested but the method required more than the available 16 GB of RAM. As expected,

the creation of the matrix B−1, and the ensemble creation increases essentially linearly with the

number of grid points while the eigenvector decomposition increases faster than linearly with the465

number of grid points. The slope of a linear regression in log-log space is 1.3. This progression is

still quite similar to a linear increase because the matrix B−1 is sparse and because a fixed number

of eigenvectors are retained.

In a second series of tests, the domain size is fixed (128x128 grid points) and the number of eigen-470

vectors are increased from 50 to 200 (table 3). The numerical cost of the eigenvector decomposition

shows a linear progression relative to the number of eigenvectors. The numerical cost of the ensem-

ble creation increases only slowly and is marginal in the overall cost.
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Size of domain Creation of matrix B−1 Eigenvector decomposition Ensemble

32x32 0.28 1.31 0.09

64x64 0.38 8.77 0.39

128x128 1.36 51.23 1.69

256x256 5.67 296.28 7.07

300x300 7.96 451.66 9.79

400x400 14.77 983.77 18.36

Table 2. Time in seconds as a function of the number of grid points of the different steps involved in the creation

of the perturbations.

Number of eigenvectors Eigenvector decomposition Ensemble

50 51.23 1.69

100 112.87 2.47

150 151.90 3.42

200 227.19 4.60

Table 3. Time in seconds as a function of number of eigenvector retained for a domain of 128x128 grid points.

By increasing the resolution of a domain, one can argue that the number of eigenvectors and en-475

semble members should also increase proportional to the number of grid points. In this case, the

progression rate of both series have to be combined and the numerical cost scales approximately by

the number of grid points elevated to 2.3.

The program code has been written such that it can run unmodified also on MATLAB. The bench-480

mark was repeated on the same machine with MATLAB R2008a (64-bit version). The numerical

cost in function of the number of grid points and the number of eigenvectors retained varied in a

similar way than with Octave. Overall, Octave was 13% faster than MATLAB in completing the

two series of tests. In summary, the CPU time of this method is acceptable since it is very small

compared to the CPU time needed for the ensemble run. More limiting than the CPU time, can be485

the required amount of RAM memory for large model configurations.

8 Conclusions

A new method to produce ensemble perturbations is presented. It allows to take linear constraints

into account. The formalism similar to weak constraints in variational analysis can be used in an

ensemble scheme for generating ensemble perturbations. The constraints can be chosen such that490

the perturbations are dynamically balanced. This is useful for ensemble forecasts and in particular

for data assimilation where the ensemble spread is supposed to reflect the uncertainty in the model

forecast and should not include the variability of transient motions generated by an unbalanced state.
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The method has been tested to create elevation and velocity perturbations of tidal motions. The495

shallow water equations constitute a constraint that relate elevation and velocity. In a first test, those

variables are perturbed independently. In a second simulation of intermediate complexity, only the

momentum equation is enforced. This procedure allows to derive the velocity perturbation from an

elevation perturbation. The third tests uses the linear shallow water equations (momentum equations

and continuity equations) to create the perturbations. For each of those simulations, the amount of500

transient motions created by the tidal analysis is computed by applying a tidal analysis. In all cases

the amplitude of the transient motions were highest near the coast. The transient motions created us-

ing the linear shallow water equations were significantly smaller than those generated with the two

other methods showing that the constrained ensemble was dynamically more balanced. A further

reduction of the transient motions could be obtained by including the effect of bottom drag into the505

dynamic constraint. The importance of drag on tidal dynamics is well known, but in this context it

highlights the fact that important non-linear terms cannot be simply neglected but must be linearized

around an appropriate mean-state.

The challenge of this approach will be to formalize an appropriate dynamical constraint to quan-510

tify if a perturbation is realistic or not. It will require a good knowledge of the dynamical behavior

of the studied system and of its error sources. Some constraints (involving for example density) are

non-linear. But for small errors, a useful local linearization can be generally obtained.

Even if no linear constraint or balance can be formulated, the presented procedure can still be use-515

ful to create perturbations that are aware of the land-sea boundary. Spurious correlation across land

points are thus avoided. Also, a spatially varying correlation length can be used with this method.

For example, one can specify the correlation length as a multiple of the radius of deformation. Those

two aspects are not possible in the Fourier-based method to generate perturbations. Despite the nu-

merical cost is higher than for the Fourier-based method, its cost is still acceptable for most model520

setups.

Altought only two-dimensional perturbations have been shown, the ensemble generation code is

written in a way that it can generate n-dimensional perturbations given a user-specified dynami-

cal constraint. The source code which runs on MATLAB and GNU Octave is freely available at525

http://modb.oce.ulg.ac.be/mediawiki/index.php/WCE.

In future works, the method will be used for assimilating surface current observations. By in-

cluding the boundary perturbations into the model state vector, the assimilation can provide also an

improved estimation of the boundary values.530
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Alvera Azcárate. The Center for Prediction of Red Tides is acknowledged for granting computer time used

in this study. We thank also the US Naval Research Laboratory for providing HYCOM model results used as

initial and boundary conditions. G.D Egbert and S.Y. Erofeeva are acknowledged for providing the TPXO6.2

global inverse tide model solution. This is MARE publication 174.540

21



References
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