
OpenDA black box wrapper cookbook

Nils van Velzen

October 16, 2013

1 What not to expect from this document

This document is not a thorough reference manual on configuring and using
the black box wrapper of OpenDA. The purpose of this document is to give
you some overview information to get you started making your own black
box wrapper for your model. There are many example implementations
available and at some point we hope that there will be an user guide available
for the black box wrapper explaining all the details on configuration and
implementation. This kind of detailed information is not to be found in
this document. This document should be used in combination with the
existing examples and the OpenDA course1 where you already can find a
lot of information on the black box wrapper.

2 The design of the black box wrapper

Using models in black box form in OpenDA means that data assimilation and
model calibration techniques are applied to a model without changing the
existing model code. OpenDA and the black box wrapper have no knowledge
of the model internals (black box) and only uses the input and output files
of the model. The black box implementation of OpenDA can also be used
in a slightly different way as well like we do for C# models and EFDC, but
this is beyond the scope of this document.

The black box wrapper is an implementation of a stochastic model in
OpenDA. The difference with a normal model is that the black box wrapper

1The OpenDA course is available as a separate download from the OpenDA website.

1



does not contain any model equations. It is a layer that helps you to link
and configure a model to OpenDA using the black box approach. The black
box wrapper is illustrated in Figure ??, the elements of this figure will be
explained in some more detail in the following sections.

Figure 1: Overview of a black box configuration in OpenDA. The model
interacts with the generic black box wrapper of OpenDA implementing an
OpenDA stochastic model. The black box wrapper builds its state, parame-
ters and predictions using exchangeItems. The exchangeItems contain values
that are read from model output files or need to be written to model input
files. The creation of the exchangeItems and reading from/writing to files is
implemented by one or more ioObjects. The black box wrapper will run the
model executable when all input files are prepared.

2



3 ExchangeItems

Values from the input and output files are represented in the OpenDA black
box wrapper in the form of exchangeItems. An exchangeItem is a container
of values with optionally some meta information. In the most simple form an
exchangeItem contains a single value or array and has en ID. ExchangeItems
can have three different roles:

• input: the values have been read from one of the output files of the
model. These values are used by the algorithm but (updated) values
will not be written back to the file.

• output: the values will be computed by the algorithm and will be
written to the input file of the model.

• inout: the values are both read and written to a file of the model that
is both input as output (typically restart files).

There is one special kind of exchangeItem that is now worth mentioning
and that is the timeSeriesExchangeItem. This kind of exchangeItem contains
a sequence of values that are all associated to a timestamp (meta informa-
tion). This kind of exchangeItem is typically used for storing model results
that need to be matched to observations.

4 Model wrappers

The model uses files for input and output and the black box wrapper uses
exchangeItems. Therefore we need to write some code that creates all the
exchangeItems and handles the reading and writing of the values in the ex-
changeItems from and to the model input and output files.

For each file format we need to handle we have to implement a java class
that implements the IoObjectInterface interface. This interface only contains
three public methods:

• initialize: creates all exchangeItems. The values of the input and inout
exchangeItems are read from file.

• getExchangeItems: Returns an array containing all the exchangeItems
of this file.

3



• finish: Write the values of output and inout exchangeItems to file.

OpenDA already contains quite a number of implementations of exchangeIt-
ems. In almost all cases you can use one of the existing implementations as
container of the values for your model. Useful existing implementations in-
clude:

• org.openda.exchange.DoubleExchangeItem: ExchangeItem for a single
double

• org.openda.exchange.DoublesExchangeItem: ExchangeItem for an ar-
ray of doubles

• org.openda.exchange.timeseries.TimeSeries: Timeseries of double val-
ues each having a time associated.

Your implementation only needs to create those exchangeItems that you
think you will need. In an first implementation you do not need to bother
about all possible data in the files. Additional exchangeItems can always be
added later when needed.

5 Recipe

• Identify the input and output files that contain values you need and
determine how these values are stored

• Write an IoObjectInterface class for each file format you need such
that you have exchangeItems for all the data you are going to use in
OpenDA. Try to use existing implementations of exchangeItems when
possible. For inspiration look at available example implementations.
Note: Use a ”simple” wrapper like reactive advection pollution wrapper
from the OpenDA course or model nemo as inspiration and not one of
the very complex wrappers with a lot of support and functionality.

• set up a black box configuration environment (model input and con-
figuration files). Best way is to copy an existing example and replace
model input files and change the black box configuration files. The ba-
sic ideas of the black box configuration are explained in the OpenDA
course.

• Done

4


