
Parallel computing in OpenDA using
Threading and Java RMI

Nils van Velzen

November 30, 2012

1 Front-end models in OpenDA

Front-end models are a special kind of models in OpenDA. A front-end model
implements the OpenDA Stochastic model interface but it does not imple-
ment any model equations. A front-end model adds additional functionality
on top of an arbitrary OpenDA Stochastic model. This model is called the
back end model. In general, all methods of the front-end model are imple-
mented by use of methods of the back-end model.

The front-end models implement generic extension to OpenDA Stochastic
models.

In this memo we will give a description of two of these kind of front-end
models. The Thread Stochastic Model adds some parallelism to arbitrary
OpenDA stochastic models using threading. The RMI Stochastic Model
allows models to be run in a different process and optionally remotely on a
remote computer.

2 Parallelism using Threading

2.1 introduction

Java has a good support for threading. Using threads, a program can make
use of all the available computational cores in a computer. Threading is
therefore in Java a simple and natural way to implement shared-memory
parallelism.

1

Many data assimilation and calibration algorithms perform a (large) num-
ber of model simulation steps

x (t + ∆t) = M (x (t) , u (t) , p) (1)

for various state vectors x (t) or parameters p. When these model simulations
are independent, we can compute them in parallel.

2.2 Thread Stochastic Model

2.2.1 Basic usage and configuration

OpenDA provides a front-end model that parallelizes the compute method of
a stochastic model using threading. This model can be used as a front-end to
any OpenDA model that implements the compute method in a thread safe
way. The maximal number of threads can be specified in order to limit the
number of simultaneous compute invocations.

The model factory of the threaded front-end model is

org.openda.models.threadModel.ThreadStochModelFactory

The configuration file of the ThreadStochModelFactory specifies

• maxTheads; the max number of simultaneous compute threads. This
is typically set to the max number of cores that are available to the
user.

• stochModelFactory; the configuration of the the back-end stochastic
model factory.

A typical example of the ThreadStochModelFactory configuration looks
like

<threadConfigstoch>

<maxThreads>8</maxThreads>

<stochModelFactory

className="org.openda.models.lorenz.LorenzStochModelFactory">

<workingDirectory>model</workingDirectory>

<configFile>LorenzStochModel.xml</configFile>

</stochModelFactory>

</threadConfigstoch>

2

NOTE1: The compute method of your model MUST be thread safe.
Java models will often be thread safe. Native models are in general not
thread safe.

NOTE2: The working directory for the back-end model is NOT relative
to the location of the ThreadStochModelFactory configuration file but to
the ”main” OpenDA configuration file.

2.2.2 advanced features

The basic usage of thread stochastic model only includes specifying the max
number of threads and the back-end model factory. There are some addi-
tional options that can improve the performance of your parallel application.
These advanced options are described in this section. The impact of these
options depend heavily on the used model and architecture.

• cashState (boolean) if set ”true”, a parallel nonblocking getState
method is invoked after a parallel compute is completed. This par-
allel getState method is invoked on a new thread and not limited by
the maxThread option. In this way, the data assimilation algorithm al-
ready receives a copy of the state while other model instances are still
computing. This can be useful when the time of the getState method is
dominated by IO (file or network). The state is stored internally until
the getState method is invoked.

• nonBlockingAxpy (boolean) if set ”true”, a invocation of the axpyState
method will be non-blocking. This option might improve performance
when the time of the axpyState method is dominated by IO (file or
network).

The XML configuration using these two options looks like:

<threadConfig>

<maxThreads>2</maxThreads>

<cashState>true</cashState>

<nonBlockingAxpy>true</nonBlockingAxpy>

<stochModelFactory

className="org.openda.models.rmiModel.RmiClientStochModelFactory">

<workingDirectory>./stochModel</workingDirectory>

<configFile>RmiStochModel2.xml</configFile>

3

</stochModelFactory>

</threadConfig>

3 Remote Method Invocation

3.1 Introduction

RMI (Remote Method Invocation) is a way in java to make a connection
between objects in various virtual machines (executables). In OpenDA we
provide a front-end model that enables us to create and use stochastic models
on various executables and computers. Note that RMI allows us to use multi-
ple processes in our application but that computations are not automatically
in parallel.

3.2 RMI Stochastic Model

The RMI provides the (parallel) computation of model simulation steps in
a different virtual machine as the data assimilation method or the model
calibration method. This serves two goals:

• multiple model time steps can be computed in parallel (in combination
with the Thread model front-end)

• the model can runs on a dedicated machine (server) where the data
assimilation method runs locally.

The OpenDA application running the data assimilation algorithm or
model calibration algorithm is called the client. This executable will make
use of one or more servers, possibly running on remote machines.

The RMI front-end model factory is

org.openda.models.rmiModel.RmiClientStochModelFactory

The configuration file of the RmiClientStochModelFactory specifies

• serverAddress; The names of the computers running the servers. There
are three ways of configuration possible:

– empty; all servers run on the local host

– single machine name; all servers run on this machine

4

– names of all computers, comma separated. Note that the number
of computer names must be the same as the number of specified
factoryIDs. The same computer name can be used multiple times
when multiple servers run on that computer.

• factoryID; The unique IDs of all the servers, comma separated, imple-
menting the remote models and model factories.

• stochModelFactory; the configuration of the the back-end stochastic
model factory. Important note: The workingDirectory and configFile

are communicated to the server processes. The use of relative paths is
only possible when the servers are started from an appropriate location.
Full paths are therefore often a better choice.

A typical example of a RmiClientStochModelFactory configuration file
is

<rmiConfig>

<serverAddress></serverAddress>

<factoryID>IRmiIStochModel_1,IRmiIStochModel_2</factoryID>

<stochModelFactory

className="org.openda.models.lorenz.LorenzStochModelFactory">

<workingDirectory>./model</workingDirectory>

<configFile>LorenzStochModel.xml</configFile>

</stochModelFactory>

</rmiConfig>

3.3 RMI Stochastic Model Server

In the previous section we have explained how to use the RMI front-end
model from the client side. The other side are the server processes. The java
class that implements the server is org.openda.models.rmiModel.Server.

Before the servers can be started a special daemon process must be started
rmiregistry on each host computer. This daemon process allows RMI
clients and servers to connect. The following example shows a shell script
that starts and initialises two servers on local host.

#!/bin/sh

append all jars in opendabindir to java classpath

for file in $OPENDADIR/*.jar ; do

5

if [-f "$file"] ; then

export CLASSPATH=$CLASSPATH:$file

fi

done

rmiregistry &

echo wait 5 seconds for rmiregistry to start and initialize

sleep 5

start the server with a non-default factory ID

echo starting server

java -Djava.rmi.server.codebase=file:///$OPENDADIR/ \

org.openda.models.rmiModel.Server IRmiIStochModel_1 0 2&

java -Djava.rmi.server.codebase=file:///$OPENDADIR/ \

org.openda.models.rmiModel.Server IRmiIStochModel_2 1 2&

Note the -Djava.rmi.server.codebase=file:$OPENDADIR option. This
specifies the starting point to the classes that are loaded by the server. The
two arguments have the following meaning:

1. (string) ID of this server

2. (int) the sequence number of this server (0,...,number of servers -1)

3. (int) total number of servers

The last two numbers are used to configure the DistributedCounter as will
be explained in the following section.

3.4 InfiniBand and multiple network cards

Some nodes have multiple network connections. On supercomputers you will
typically see that nodes both have an ethernet and an InfiniBand connection.
In this case the computer will have two ip addresses and probably two names.
The RMI server will use the network connection that corresponds to the
$HOSTNAME of the node. This is typically the ethernet connection and
not the fast InfiniBand we would like to use. The java option

-Djava.rmi.server.hostname="InfiniBandHostname"

can be passed to Java when starting the servers. In this way, the servers will
use the InfiniBand connection for communication to the algorithm process.

6

3.5 Random numbers and DistributedCounter

When running in parallel you sometimes need to generate ”unique” numbers
in the model instances. E.g. when each model instance generates (or reads)
its own input and output files and when you want to use some number-
ing to distinguish them. In order to globally define unique counters we have
introduced the DistributedCounter class in OpenDa. When used in a sequen-
tial run, a DistributedCounter instance is just a integer counter 0,1,2,3,etc.
In parallel runs, the DistributedCounter instance will generate a sequence
ip + jnp for j=0, 1, where ip denotes the process number and np the total
number of processes.

A similar issue is the generation of pseudo random numbers. We must be
very careful when we generate random numbers in a parallel environment. If
the random generators in various threads of processes are all initialised with
the same initial seed, we will get wrong results since the same pseudo random
numbers will be drawn on the various processes. The DistributedCounter can
be used to initialise pseudo random generators. When the user uses one of
the noise models from OpenDA this should work correct in parallel since
these random generators make use of the DistributedCounter.

3.6 Serialization

All arguments (classes) that are passed between the remote model instances
need to ”extends Serializable”. If this is not the case Java cannot pack
the content and send the object to an other processes. Many of the relevant
classes in OpenDA are already Serializable but user provided classes are often
not. When a class is not Serializable you will get a run-time error when you
try to run in parallel. Fortunately, this is often easy to fix by adding ”extends
Serializable” to these classes (and subclasses).

3.7 Limitations

The RMI front-end model is work in progress. There are therefore some
limitations including

• Only java implementations of (Tree-)Vectors can be used because the
serialization of native objects is not yet implemented

7

• We have not done any work/testing on client/server security issues but
we did not encounter any problems on the HPC computer systems we
have used. There might be some more work to be done for using these
tools in more secured environments.

4 Parallel computing with multiple executa-

bles

The Thread Stochastic model allows parallel computation of model time
steps. This parallelism is limited to a single executable and maximized by
the amount of cores of a single computer. The RMI Stochastic model allows
multiple executables to be used for the model computations. But The RMI
model does not by itself support parallelism. However when both front-end
models are combined we are able to compute model time steps in parallel
using multiple processes and multiple computers. The Thread model is then
used as a frond-end to the RMI model which is the front-end of the physical
model.

Models that are not thread safe can be parallelized by combining both
front end models because at the server side no time steps are computed in
parallel.

8

