
OpenDA course and exercises

Nils van Velzen, Martin Verlaan, Stef Hummel

October 15, 2015

Setting up OpenDA

Before you can start with the exercises you must first set up OpenDA. For
the latest instructions, you are referred to $OPENDA/doc/index.html, section
”Installation”.

1 Exercise 1: Getting started

Edward Lorenz (1963) developed a very simplified model of convection called
the Lorenz model. The Lorenz model is defined by three differential equations
giving the time evolution of the variables x, y, z:

dx

dt
= σ(y − x) (1)

dy

dt
= ρx− y − xz (2)

dz

dt
= xy − βz (3)

where σ is the ratio of the kinematic viscosity divided by the thermal diffusiv-
ity, ρ the measure of stability, and β a parameter which depends on the wave
number. The implementation of the Lorenz model that is available in OpenDA
is solved numerically by using a Runge-Kutta method.

This model, although simple, is very nonlinear and has a chaotic nature. Its
solution is very sensitive to the parameters and the initial conditions: a small
difference in those values can lead to a very different solution.

The purpose of this exercise is to get you started with OpenDA. You will
learn to run a model in OpenDA, make modifications to the input files and plot
the results.

• The input for this exercise is located in directory Exercise 1. For Linux
and Mac OS X, go to this directory and start oda run.sh, the main
application of OpenDA. For Windows, start the main application with
oda run gui.bat from the $OPENDA/bin directory. The main application
allows you to view and edit the OpenDA configuration files, run your
simulations and visualize the results.

• Try to run a simulation with the Lorenz model. You can use the con-
figuration file simulation unperturbed.oda. The results are written to

1

simulation unperturbed results.m, You can make a plot using Octave
or Matlab. Load the results using the function load results:

[t,xyz,tobs,obs]=load_results(’

simulation_unperturbed_results’);

plot3(xyz(1,:),xyz(2,:),xyz(3,:));

grid on;

Listing 1: Matlab

Or with python. We are using the packages numpy and matplotlib. De-
pending on your environment you may need to import these packages.

import numpy as np

import matplotlib.pyplot as plt

Listing 2: Python initialize

and next make the plot

#load data

import simulation_unperturbed_results as sim

make 3d line plot

from mpl_toolkits.mplot3d import Axes3D

fig1 = plt.figure()

ax = fig1.add_subplot(111, projection=’3d’)

note we start counting at 0 now

Axes3D.plot(ax,sim.x[:,0],sim.x[:,1],sim.x[:,2])

Listing 3: Python

Now make a plot of only the first variable of the model (xyz(1,:)).

plot(t,xyz(1,:),’b’)

Listing 4: Matlab

plt.figure()

plt.plot(sim.model_time,sim.x[:,0],’b’)

Listing 5: Python

• Observations of the first variable are available as well. Make a plot of the
observations together with the simulation results.

[t,xyz,tobs,obs]=load_results(’

simulation_unperturbed_results’);

plot(t,xyz(1,:),’b’)

2

hold on

plot(tobs,obs,’r*’);

hold off

Listing 6: Matlab

import simulation_unperturbed_results as sim

plt.plot(sim.model_time,sim.x[:,0])

plt.plot(sim.analysis_time,sim.obs,’r*’)

Listing 7: Python

• Then you can start an alternative simulation with the lorenz model that
starts with a slightly different initial condition using the configuration
file simulation perturbed.oda that starts with slightly different initial
conditions.

• Visualize the unperturbed and perturbed results in a single plot. Make a
3d trajectory plot and a 2d plot in time of first variable. Do you see the
solutions diverging like the theory predicts?

[t1,xyz1,tobs1,obs1]=load_results(’

simulation_unperturbed_results’);

[t2,xyz2,tobs2,obs2]=load_results(’

simulation_perturbed_results’);

figure(1)

plot3(xyz1(1,:),xyz1(2,:),xyz1(3,:),’b’);

hold on

plot3(xyz2(1,:),xyz2(2,:),xyz2(3,:),’r’);

hold off

legend(’unperturbed’,’perturbed’)

figure(2)

plot(t1,xyz1(1,:),’b’)

hold on

plot(t2,xyz2(1,:),’r’)

hold off

legend(’unperturbed’,’perturbed’)

Listing 8: Matlab

#load unperturbed and perturbed results

import simulation_unperturbed_results as sim

import simulation_perturbed_results as simp

fig3 = plt.figure()

ax = fig3.add_subplot(111, projection=’3d’)

Axes3D.plot(ax,sim.x[:,0],sim.x[:,1],sim.x[:,2],’b’)

3

Axes3D.plot(ax,simp.x[:,0],simp.x[:,1],simp.x[:,2],’r’

)

fig4 = plt.figure()

plt.plot(sim.model_time,sim.x[:,0],’b’)

plt.plot(simp.model_time,simp.x[:,0],’r’)

Listing 9: Python

• Create a modified example that uses an ensemble forecast with perturbed
initial conditions. You can do this in a number of steps:

– Create the input file simulation Ens.oda based on
simulation unperturbed.oda. Change the algorithm and the con-
figuration of the algorithm.
hint: the algorithm is called
org.openda.algorithms.kalmanFilter.SequentialEnsembleSimulation.

– Write the configuration file of the Ensemble algorithm (e.g. named
algorithm/EnsSimulation.xml) with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<sequentialAlgorithm>

<analysisTimes type="fromObservationTimes" ></

analysisTimes>

<ensembleSize>5</ensembleSize>

<ensembleModel stochParameter="false"

stochForcing="false"

stochInit="true" />

</sequentialAlgorithm>

Listing 10: XML-input for sequentialAlgorithm

• Run this ensemble simulation and read the results in Octave or Matlab
using load ensemble.m and slightly different for python

– make a plot of the first variable of the five ensemble members in a
single plot

[t,ens]=load_ensemble(’simulation_Ens_results’);

ens1=reshape(ens(1,:,:),size(ens,2),size(ens,3));

plot(t,ens1)

Listing 11: Matlab

import ensemble

import simulation_ensemble_results as res

(t,ens)=ensemble.reshape_ensemble(res)

ens1=ens[:,0,:] #note we start counting at 0

4

fig5 = plt.figure()

plt.plot(t,ens1)

Listing 12: Python

– make a plot of the mean of the first variable

plot(t,mean(ens1,2))

Listing 13: Matlab

fig6 = plt.figure()

plt.plot(t,np.mean(ens1,1))

Listing 14: Python

– run the same simulation again1 but now with an ensemble size of 10,
50, 100 and 200 and plot the mean of the first variable. What do you
see, and what does this mean?

2 Exercise 2: Some basic properties of the EnKF

In this exercise you will learn how to set up and run the EnKF method in
OpenDA.

• Prepare the input files for a run with the EnKF method. Use the input
files from exercise 1 as template. Hint: the Ensemble Kalman filter is
called org.openda.algorithms.kalmanFilter.EnKF. The algorithm configu-
ration file has the following content

<?xml version="1.0" encoding="UTF-8"?>

<EnkfConfig>

<ensembleSize>10</ensembleSize>

<ensembleModel stochParameter="false"

stochForcing="false"

stochInit="true" />

</EnkfConfig>

Listing 15: XML-input for EnKF algorithm

• Plot the ensemble mean of the first model variable and the observations.
With some luck the solution should track the observations.
Tip: use the scripts load obs.m and load ensemble.m for reading the
data into matlab (cf. Exercise1), or load ensemble.py for python.

1For large models or ensemble sizes a huge amount of output is generated. Your run will
be much faster when you disable the messages in the gui, by pressing the ’Disable Logging’
button. You can also run without the gui, by using the command oda run.sh <inputfile>

(Linux/Mac OS X) or oda run batch.bat <inputfile> (Windows)

5

• Look at the observation input file of the StochObserver. The StochOb-
server does not only describe the observations but the accuracy as well.
Can you make a new observation input file with similar observed values
but with a 10 times larger standard deviation for the observation error.
Tip: you can edit the file in OpenOffice or MS Excel or use the find and
replace function of an advanced text editor.

• Repeat the run with EnKF but now for the new observations and plot the
first variable of the ensemble means and the observations. What do you
see and what is the reason for this behavior of the algorithm?

• The number of ensemble members controls the accuracy of the ensemble
approximation. What happens if you increase the number to e.g. 100,
or decrease it to 5? Use (initially) observations with a standard devia-
tion of 5.0. Experiment as well with various standard deviations of the
observations.

3 Exercise 3: Steady-state

In this section you will learn how to create and use a steady-state Kalman filter
with OpenDA. The example model we use in this section is a 1-dimensional
wave model:

∂h

∂t
+D

∂v

∂x
= 0 (4)

∂v

∂t
+ g

∂h

∂x
+ cfv = 0 (5)

(6)

With h(x, t) the (water) level above the reference plane, v(x, t) the velocity,
D(x) the depth under the reference plane, g the gravitational acceleration cf
the friction coefficient and x ∈ [0, L] the location. For our model we have
selected the boundary values v(x = L, t) = 0 and h(x = 0, t) = 1

5sin(2πt). An
AR(1) model is defined on the left water level boundary.

• Look at the implementation of the model in WaveStochModelInstance.java,
in the directory simple wave model/java/src/org/openda/. See how
the state is defined and how the model is discretized. If you want you
can compile the model using ant build as we will explain in excercise 6.
However to make it easy for you, you will find the compiled version of this
model,simple wave model.jar in the directory simple wave model/bin.

• The model represents a ”user” model that is not part of the OpenDA
distribution. Therefore you have to copy the model jar-file to the bin
directory of your OpenDA installation. In this way OpenDA can find this
model.

• Run the model (waveSimulation.oda) and visualize the model results
(plot movie.m or plot movie.py). Do not forget to add the jar-file of
the model to the CLASSPATH variable, or to copy the jar-file into the bin
directory of your OpenDA version

6

• Adjust the input files in order to run the model with stochastic forcings.

• Generate water level observations from this stochastic run. We need ob-
servations at (approximately) x = 1

4L, x = 1
2L and x = 3

4L. You can use
the script generate obs.m for this task. We want to have observations at
t = 0.1, 0.2, ..., 10.0, (initially) select a standard deviation of 0.05.

• Run the Ensemble Kalman filter (waveEnkf.oda). This run will generate
and write gain matrices at specified times. Find where and how this is
specified in the input.

• Plot the columns of the gain matrices. (The script plot gains.m or
plot gains.py plots the water level part of the gain matrices). What
do these columns mean?

• (Re)generate the gain matrices using different numbers of ensembles. When
you compare the gain matrices, what do you notice. Note: The algorithm
will generate an enormous amount of output when you run the EnKF with
a very large number of ensembles (e.g. 500). You can suppress the output
by commenting out (or remove) the resultWriter-part of the oda-input
file.

• Use the generated steady state gain matrices for a steady state Kalman
run (waveSteadystate.oda). Compare the performance of:

– a (non-stochastic) run without filtering,

– an EnkF run with various numbers of ensembles (do not forget to
reinstate the resultWriter if you have switched it off),

– the various steady state gains.

you can use the scripts plot obs sim.m, plot obs ens.m and
plot obs steady.m and similar routines for python.

• Generate (observations) gain matrices but now for only a single observa-
tion. Make sure that the observed values are exactly the same as in the
3 observation observer. Compare the columns of the 3-observation gain
matrices to the single observation matrices. What is the main difference
and why?

4 Exercise 4: A black box model - Calibration

A simple way to connect a model to OpenDA is by letting OpenDA access the
input and output files of the model. OpenDA cannot directly understand the
input and output files of an arbitrary model. Some code has to be written
such that the black box model implementation of OpenDA can read and write
these files. In this exercise you will learn how to connect an existing model to
OpenDA assuming that all the input and output files of the model can indeed
be accessed by OpenDA. The exercise focusses on the configuration of the black
box wrapper in OpenDA.

7

In the directory exercise 4/ you will find a model written in python
reactive pollution model.py and a compiled version of this code for win-
dows. There is also an input file (reactive pollution model.input) and the
output file you should get when you run the model. The model describes the
advection of two chemical substances. The first substance c1 is emitted as a
pollutant by a number sources. However, in this case this substance reacts with
the oxygen in the air to form a more toxic substance c2. The model implements
the following equations:

∂c1
∂t

+ u
∂c1
∂x

= −1/Tc1 (7)

∂c2
∂t

+ u
∂c2
∂x

= 1/Tc1 (8)

• Run the model from the command line, not using OpenDA. The model
generates the output files: reactive pollution model.output , reactive pollution model output.m

and
reactive pollution model output.m. Use the m-file to make plots of
the output in order to study the behavior of the model. In order to check
the model (plotted) results you can look at the input file as well.

For this exercise, the Java-routines for reading and writing the input and
output files are already programmed. However, it is not necessary to program
this in Java. It is also possible to write your own conversion program (in any
programming language) to convert the input and output files of your model to
a format that OpenDA is able to handle.

In case you want to see how the code looks like you can find it in the directory
$OPENDA/model reactive advection.

A black box wrapper configuration usually consists of three xml files. For
our pollution model these files are:

1. polluteWrapper.xml: This file specifies the actions to performed when
the model has to be run, and the files and related reader and writers that
can be used to let OpenDA interact with the model.
This file consists of the parts:

• aliasDefinitions: This is a list of strings that can be aliased in
the other xml files. This helps to make the wrapperxml-file more
generic. E.g. the alias definition %outputFile% can be used to refer
to the output file of the model, without having to know the actual
name of that output file.
Note the special alias definition %instanceNumber%. This will be re-
placed internally at runtime with the member number of each created
model instance.

• run: the specification of what commands need to be executed when
the model is run.

• inputOutput: the list of ’input/output objects’, usually files, that
are used to access the model, i.e. to adjust the model’s input, and to
retrieve the model’s results. For each ’ioObject’ one must specify:

8

– the java class that handles the reading from and/or writing to
the file

– the identifier of the ioObject, so that the model configuration file
can refer to it when specifying the model variables that can be
accessed by OpenDA, the so called ’exchange items’ (see below)

– optionally, the arguments that are needed to initialize the ioOb-
ject, i.e. to open the file.

2. polluteModel.xml: This is the main specification of the (deterministic)
model. It contains the following elements:

• wrapperConfig: A reference to the wrapper config file mentioned
above.

• aliasValues: The actual values to be used for the aliases defined in
the wrapper config file. For instance the %outputFile% alias is set
to the value ”reactive pollution model.output”.

• timeInfoExchangeItems: The name of the model variables (the ’ex-
change items’) that can be accessed to modify the start and end time
of the period to that the model should compute to propagate itself
to the next analysis time.

• exchangeItems: The model variables that are allowed to be accessed
by OpenDA, for instance parameters, boundary conditions, and com-
puted values at certain locations. Each variable exchange item con-
sists of its id, the ioObject that contains the item, and the ’element
name’, the name of the exchange item in the ioObject.

3. polluteStochModel.xml: This is the specification of the stochastic model.
It contains of two parts:

• modelConfig: A reference to the deterministic model configuration
file mentioned above polluteModel.xml.

• vectorSpecification: The specification of the vectors that will be
accessed by the OpenDA algorithm. These vectors are grouped in
two parts:

– The state that is manipulated by an OpenDA filtering algorithm,
i.e. the state of the model combined with the noise model(s).

– The so called predictions, i.e. the values on observation locations
as computed by the model.

Start with a single OpenDA-run to understand where the model results
appear for this configuration:

• Have a look at the files polluteWrapper.xml, polluteModel.xml and
polluteStochModel.xml, and recognize the various items mentioned above.
Start the OpenDA GUI from the public/bin directory and run the model
by using the Simulation.oda configuration. Note that the actual model
results are available in the directory where the black box wrapper has let
the model perform its computation: stochModel/output/work0.

9

In this exercise, we will calibrate the value of the reaction-rate constant.
The algorithm used in this example is the Dud (which stands for Doesn’t Use
Derivative).

• Have a look at the Dud.oda and the configuration files it refers to. Run it
from the OpenDA GUI and have a look at the results. What could you
do to improve the results?

• Figure out where to change the control parameters for the calibration
procedure and play around with the settings to improve your results.

Calibration runs normally take longer than a few minutes. In that case, it
becomes convenient to be able to restart from a previous run.

• Adapt the configuration in such a way that you are able to restart the
Dud.oda from the result of a previous run.

5 Exercise 5: A black box model - Filtering

This exercise uses the same model as exercise 4: a model written in python
that describes the advection of two chemical species. Please read the start of
exercise 4 if you are not familiar with this model yet. A description of the
black box wrapper configuration, usually consisting of three xml files, can also
be found in exercise 4.

• Run the model from the command line, not using OpenDA. The model
generates the output files: reactive pollution model.output and
reactive pollution model output.m. Use the m-file to make plots of
the output in order to study the behavior of the model. In order to check
the model (plotted) results you can look at the input file as well.

The Java-routines needed to access the model input and output files are the
same as in exercise 4. Make sure that the jar-file is added to OpenDA, either
by using the CLASSPATH environment variable or by copying the jar-file into
the bin directory of your OpenDA version.

We start with some single and ensemble runs to understand where for our
black box wrapper configuration the model results appear:

• Have a look at the files polluteWrapper.xml, polluteModel.xml and
polluteStochModel.xml, and recognize the various items mentioned above
(in exercise 5). Run the model within OpenDA by using the
SequentialSimulation.oda configuration. Use the script plot movie.m

(or plot movie.py for python) to visualize the model results. Com-
pare the results with those from the run you executed without using
OpenDA. Note that the actual model results are available in the directory
where the black box wrapper has let the model perform its computation:
stochModel/output/work0.

• Run an ensemble forecast model by using the
SequentialEnsembleSimulation.oda configuration. On which variable
does the algorithm impose stochastic forcing?

10

Have a look at the stochModel/output directory, and note that the black
box wrapper created the required ensemble members by repeatedly copy-
ing the template directory stochModel/input to
stochModel/output/work<N>.

• A special model instance is stochModel/output/work0. It is the so called
’main’ model, and is computed with the average of the perturbations of the
ensemble members. Compare the results of stochModel/output/work0

with the results of SequentialSimulation.oda. Note the relatively large
differences. Check if these differences are reduced by increasing the en-
semble size for the sequential ensemble simulation to 20 and rerunning
SequentialEnsembleSimulation..oda (this run may take a few min-
utes).

Now let us have a look at the configuration for performing OpenDA’s En-
semble Kalman Filtering on our black box model, using a twin experiment as
an example. The model has been run with the ’real’ values (time dependent)for
the concentrations for substance 1 as disposed by factory 1 and factory 2. This
’truth’ stored in the directory truthmodel, and the results of that run have been
used to generate observation time series at the output locations. These time
series have been copied to the stochObserver directory to serve as observations
for the filtering run.

The filter run takes the original model as input, which actually is a perturbed
version of the ’truth’ model: the concentrations for substance 1 as disposed by
factories have been flattened out to a constant value. The filter process should
modify these values in such a way that the results resemble the truth as much
as possible.

To do this the filter modifies the concentration at factory 2, and uses the
observations downstream of factory 2 to optimize the forecast.

• Note that the same black box configuration is used for the sequential run,
the sequential ensemble run, and for the EnKF run. Identify the part of
the polluteStochModel.xml configuration that is used only by the EnKF
run, and not by the others.

• Execute the Ensemble Kalman Filtering run by using the EnKF.oda con-
figuration.
Check how good the run is performing, by analyzing to what extent the
filter has adjusted the predictions towards the observation.
Note that the Matlab result file in stochModel/output/work0 only con-
tains a few time steps. Can you explain why?
So to compare the observations with the predictions you have to use the
result file produced by the EnKF algorithm.

Now let us extend the filtering process by incorporating also the concentra-
tion disposed by factory 1, and by including the observation locations down-
stream of factory 1.

• Make a copy of the involved config files, EnKF.oda and
polluteStochModel.xml (you could call them EnKF2.oda and
polluteStochModel2.xml.

11

Adjust EnKF2.oda so that it refers to the right stochastic model con-
fig file and produces a matlab result file with a recognizable name, e.g.
enkf results2.m.

• Now adjust polluteStochModel2.xml in such a way that the filtering
process is extended as described above.

• Run the filtering process by using the EnKF2.oda configuration, and com-
pare the results with the previous version of the filtering process.

6 Exercise 6: Writing your own toy model

Before you start:
In order to be able to compile your model you need to have a (current) version
installed on your computer of:

• The Java Development Kit (JDK). You can download this from
www.oracle.com2

• Apache Ant, this is a command line tool we use for building your java
code. You can download Ant from ant.apache.org.

In this exercise you will learn how to code your own model and use it in
OpenDA. The directory exercise 6 contains a template of the code for the 1-D
advection model we will create in this exercise. The content of this directory is
similar to the OpenDA directories you have seen in the previous exercises. The
difference is that we will not use a model that is already part of the OpenDA
distribution but instead our own model. The model code can be found in the
directory simple advection model.

The model you will create is build as an extension of the OpenDA
simpleStochModelInstance. This will simplify and reduce the amount of pro-
gramming because a significant part of the implementation is already available.
For more complex models you might need to implement all methods of the
IStochModelInstance class.

In the directory
exercise 6/simple advection model/java/src/org/openda you will find the
two java source files AdvectionStochModelFactory.java and
AdvectionStochModelInstance.java. The first file implements the ModelFac-
tory class. The model factory is a class in OpenDA that is responsible for cre-
ating model instances (e.g. the members of an ensemble Kalman filter). The
second file implements the model. This is the file you have to edit in this
exercise.

• Consider the 1-dimensional advection model:

∂c

∂t
= v

∂c

∂x
(9)

where c typically describes the density of the particle being studied and u
is the velocity. On the left boundary c is specified as cb(t) = 1+ 1

2sin(5πt).

2Java Runtime Environment (JRE), which is installed on most computers is not sufficient
since this will allow you to run java programs but it does not include the java compiler javac

that is needed to create you own (parts of) programs

12

Discretize this model on the interval x = [0..1] with velocity v = 1 using a
1st order upwind scheme on a grid of 51 points. The time step is chosen
such that the courant number v∆t

∆x is approximately 1.

• The deterministic model is extended into a stochastic model by adding
a noise parameter ω on the left boundary. We use an AR(1) model to
describe the noise.

• Code your model in AdvectionStochModelInstance.java. For inspira-
tion, you will find in the same directory an implementation of the Lorenz
model.

• You can compile your model by typing ”ant build” in the directory
exercise 6/simple advection model. This will create the file
bin/simple advection model.jar.

• Run the model. You can use file advectionSimulation.oda. In or-
der to be able to run your model, java must be able to find the file
simple advection model.jar. To accomplish this, you can copy your
advection model jar-file to the bin-directory of your OpenDA installation
or add the full path of your jar-file (simple advection model.jar) to the
java class path variable CLASSPATH.
By default, the Windows scripts oda run gui.bat and oda run batch.bat

use the JRE environment that is provided with OpenDA. If this JRE is in-
compatible with your JDK installation (Error: Unsupported major.minor
version 51.0), use oda run batch.bat <inputfile> -jre "location of

your JDK" to overrule the default JRE.

• Use the script plot movie.m to visualize the model results. You will see
that the model suffers from numerical diffusion. You can solve this by
using a second order upwind method but this is not necessary for this
exercise.

• Create an ensemble of model simulations and study the model uncertainty
in space and time.

• The provided observation file observations.cvs does not contain obser-
vations that correspond to the advection model. Create your own obser-
vation file for the locations x = 0.2, x = 0.5 and x = 0.7. Use the model
to create the values. Run the model with noise on the left boundary.
Optionally generate some additional noise and add it to the generated ob-
servations. You can use the script generate obs to simplify the creation
of the observations file.

• Using your generated observations, setup an ensemble Kalman filter run.
Experiment with various numbers of ensembles, different settings of the
AR(1) model.

• Experiment with different intervals between the available observations.
What do you observe. Is this behavior different from the Lorenz model?
Evaluate the uncertainty of the estimates.

13

• Experiment with only assimilating the data from one of the three locations
and use the other locations as validation. What do you observe. Do all
the locations have the same impact? Explain the behavior you observe.

• Use the same data as generated before and use the Kalman filter now
with different values of the system noise covariance and measurement noise
covariance. Explain the behaviour that you observe.

14

