
Performance monitoring and tuning in
OpenDA

Nils van Velzen

November 30, 2012

1 Introduction

Data assimilation and model calibration techniques can be very computa-
tionally intensive. A good performance of your OpenDA configuration is
therefore often important. OpenDA contains a number of options that can
help you to monitor and tune/improve the performance of your configuration.
The currently available tools will be presented in this document.

2 monitoring

A popular Dutch (scientific) saying is ”meten = weten”, which can be trans-
lated into ”to measure = to know”. The idea is simple, if you measure you
will know what is going on and that allows you to improve/change a process
when needed. For improving and tuning the performance this counts. Before
you can start to improve the performance in a sensible way you need to know
the performance of the individual parts.

There are many (Java) profiling tools available to measure the perfor-
mance of your code. Unfortunately these tools will give you information on
the time spend in various routines. These timings are useful for programmers
with detailed knowledge of the implementation but it is not practical for a
general user. If you profile your configuration you want to have information
like the time spend in model steps, getting the state vector, interpolating the
observations, multiplication with the gain matrix etc. To provide this type
of timing information we have introduced the OdaTiming class in OpenDa.

1



Programmers can put these timers in the code to time interesting well de-
fined steps in the algorithm. The timers from OdaTiming have labels and
there is a way to define sub timers, all to present the result in a human
understandable form.

The internal timing mechanism of OpenDA can be switched on and off
in the main configuration file of your OpenDA configuration.

<timingSettings doTiming="true"></timingSettings>

A timing report file will be created at the end of your run when timing
in switched on.

The timers are introduced by the programmers. Therefore not all parts
of OpenDA are currently timed. At this moment timers are present in:

• Ensemble Kalman Filter.

• Blackbox model.

• rmiModel and threadModel.

At some points programmers should/can extend the timing for other al-
gorithms and parts of OpenDA as well.

3 Precision

The choice of the precision of your computations is an important issue. The
most used precisions in scientific computing are double precision (double)
and single precision (float). Double precision is sometimes necessary for
sufficient accuracy or numerical stability. From the point of performance,
single precision is preferable when possible because it halves the storage and
communication volume and computations are faster as well.

We have introduced some control over precision in OpenDA. Note the
word ”some” since OpenDA cannot force the precision of values stored in
the user provided classes since it is an object oriented system. In the central
input file you can specify

<optimizationSettings productionRun="false" VectorPrecisionIsFloat="true">

</optimizationSettings>

The option VectorPrecisionIsFloat=”true” will mark the wish of the user
to use single precision. Programmers of OpenDA classes can introduce dual

2



precision support by checking the user selected precision in the global static
class OdaGlobSettings.

Currently the standard (java) vector implementation in OpenDA (Vector)
is implemented in dual precision. Since many classes like the black box model
make use of the standard Vector implementation it already works in many
configurations.

Note: you can always use the available timing in OpenDA to spot the
impact of the ”VectorPrecisionIsFloat” option. If you do not see any im-
provement in linear algebra computations it is likely that the class used in
your implementation ignores the user precision preference. In that case you
can introduce it yourself or try to convince the programmer of that class to
do it for you.

4 Production runs

Data assimilation methods sometimes produce some diagnostics. The amount
of time to compute these diagnostics can be quite large. At this moment an
algorithms cannot ask a result writer in advance whether data will be written
or not. As a result all diagnostics will always be computed whether the user
wants them or not. The user can set the options ”productionRun” in the
global class OdaGlobSettings by specifying it in the central input file.

<optimizationSettings productionRun="true" VectorPrecisionIsFloat="true">

</optimizationSettings>

Programmers of the assimilation methods can use this user provided op-
tion to skip some diagnostics part of the computations.

Note: Currently, this option only impacts the behaviour of the Ensemble
based methods in OpenDA.

3


