
common set of tools for the assimilation of data

COSTA

MEMO CTA memo200701

Date October 6, 2008

Author(s) Erwin Loots and Nils van Velzen

Subject The COSTA ModelCombiner

Document information

Version Author Date Description Review

1.0 EL 2007-07-11 Initial version CvV

File location: <COSTA DIR>/doc/modelcombiner

Table of contents

1 Introduction 1

2 COSTA-models 2

2.1 Mathematical description of a COSTA-model . . . . . . . . . . . . . . . . 2

2.2 Interface functions of the COSTA model component . . . . . . . . . . . . . 4

2.3 Extension of the interface, necessary for the ModelCombiner . . . . . . . . 5

3 Combining COSTA models 6

3.1 Combining noise models and a deterministic model . . . . . . . . . . . . . 6

3.2 Con�guration �le for ModelCombiner . . . . . . . . . . . . . . . . . . . . . 8

3.3 The AR(1) noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 examples 10

4.1 oscillation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 heat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 Introduction

One of the building blocks that COSTA o�ers is the COSTA-model component. COSTA-

model objects have an internal state, and a number of methods to set, change or get
this state. In the COSTA project, a number of such methods has been designed. The
implementation is left to the user: existing code may be used to create the methods of



COSTA
Memo CTA memo200701 2

the COSTA-model component. COSTA also o�ers a set of building blocks to help setting
up a COSTA-model component. It is not necessary that all methods are available for a
COSTA-model component: a component lacking certain methods simply cannot be used
for certain tasks.

The COSTA ModelCombiner is a tool which can be used to create a new COSTA-model
component. It combines two or more COSTA-model componentes into one COSTA-model
component. The combined method, including its methods, of the combined model can be
con�gured using an XML input �le.

The COSTA ModelCombiner is a generic tool for the construction of larger COSTA-model
componentes, and may be used to couple all kinds of COSTA models. A speci�c type
of combination for which the ModelCombiner is especially intended, is the coupling of a
deterministic (simulation) model and a noise model into a stochastic model.

Combining a deterministic model and a noise model is an important buidling block in data
assimilation, because existing simulation models are in general deterministic, and many
data assimilation methods need a stochastic model. This means that existing models have
to be extended into a stochastic model before assimilation techniques can be applied.

This memo gives a description of this generic tool called COSTA ModelCombiner.

2 COSTA-models

2.1 Mathematical description of a COSTA-model

The COSTA ModelCombiner is a tool for the construction of COSTA model components.
Its explanation requires a clear understanding of what a COSTA-model is. This section is
intended to explain the COSTA-model component in su�cient detail.

COSTA-models are COSTA components and therefore have an state (value) and an inter-
face. COSTA-models are intended to describe stochastic models, which means that a model
is available for the uncertainties (di�erences between model results and reality). Deter-
ministic models are seen as a special case of a stochastic model, in which the uncertainties
are ignored (assumed zero).

The 'value' of a COSTA-model s = (x; u; g;Gu;W u; GA;WA; t) consists of the following
three parts:

� x = (�; pu; pA): the 'extended state' (extended solution), consisting of

{ �: 'model state' or (model solution)

{ pu: forcing-noise parameters

{ pA: operator-noise parameters



COSTA
Memo CTA memo200701 3

� u: the forcings

� g: the parameters or schematization of the model.

� W u, WA, Gu, GA: interpolation and covariance matrices used in noise models.

� t internal 'time' of the model (not very important in this memo).

In the case of a deterministic simulation, there are no noise parameters. The model state
is propagated in the following way.

� (ti+1) = A [� (ti) ; u (ti) ; g] : (1)

The new values are calculated from the old values using some (often very complicated)
function A, under the inuence of the current values for the forcings u and the values of
the parameters g, which are time-independent.

In the general case of a stochastic model, uncertainties are included in the propagation
equation. The propagation of the 'true' state �t is assumed to follow the propagation
operator A, except for an error �A:

�t (ti+1) = A
h
�t (ti) ; u

t (ti) ; g
i
+ �A (ti) : (2)

The 'true' state �t is of only found when the 'true' previous state, forcings and parameters
are entered into the propagation operator. These 'true' values are thought to be given by
the forecast values (indicated with the superscript f) and an error term:

�t(ti) = �f (ti) + �� (ti) ;

ut (ti) = uf (ti) + �u (ti) ;

gt = gf + �g (3)

The error terms �A and �u can be obtained (through interplation) from the noise parameter

vectors pA and pu with a much smaller dimension:

�u(ti) = W upu(ti) ; �A(ti) = WApA(ti): (4)

The noise parameters may be described by AR(1) processes:

�uf (ti+1) = diag(�u)�u(ti) + �u(ti);

�Af (ti+1) = diag(�A)�A(ti) + �A(ti); (5)

Where �A and �u are normally distributed stochastic variables, with their covariance ma-
trices GA and Gu given by

Gu = E(�u(ti)�
u(ti)

T ) ; GA = E(�A(ti)�
A(ti)

T ): (6)



COSTA
Memo CTA memo200701 4

The propagation of the complete system is described in the following equation:

xt(ti+1) = Ax[x
t(ti); u(ti); g] +

 
0
�

!
; (7)

where

� The propagation operator Ax is given by

Ax[(�; p
u; pA); u; g] =

0
B@ A[�; u+W upu; g] +WApA

diag(�u)pu

diag(�A)pA

1
CA (8)

� The covariance matrix G of the normally distributed vector � is given by

G =

 
Gu 0
0 GA

!
: (9)

The internal structure of the model, given in equations (5), is not essential for most data
assimilation methods. The extended state vector x may also be composed of di�erent
parts, and the extended propagation operator Ax may have a di�erent structure. The
overall propagation equation (7), however, is crucial, because it is the starting point of
most data-assimilation methods.

The interface of the COSTA model component was designed to perform all the necessary
manipulations of stochastic models of the kind described in this section. Models with a
simpler structure are obtained by leaving certain parts of the model empty.

2.2 Interface functions of the COSTA model component

The previous section discussed the structure of COSTA models. The section concluded
by stating that the interface of the COSTA model component contains all the functions
necessary to support data assimilation methods.

The COSTA ModelCombiner is a COSTA component class. This means that it is one of
the possible implementations of the COSTA model interface. Since this memo intends to
describe the usage of the COSTA ModelBuilder and the way it works, it is important to
know all the functions in the interface.

A COSTA model provides the following functions:

� DefineCLass, Create, Free: functions necessary for the construction and descruction
of COSTA models.

� Compute: carry out the time steps necessary to step through a given time span.



COSTA
Memo CTA memo200701 5

{ FOR i = istart; � � � ; iend, DO

� := A[�; u(ti) +W upu; g + �g] +WApA;

pu := diag(�u)pu + �u(ti);

pA := diag(�A)pA + �A(ti): (10)

END

� AddNoise: specify the noise which is to be added to the forcings, state and schema-
tization;

{ FOR i = istart; � � � ; iend, DO

�u(ti) := Gu randn(size(pu))

�A(ti) := GA randn(size(pA)) (11)

END

� SetState, GetState, Axpy: set, return or modify the state values � in the form of a
COSTA state vector object;

� SetForc, GetForc, AxpyForc: set, return or modify the forcing values u in the form
of a COSTA state vector object;

� SetParam, GetParam, AxpyParam: set, return or modify the model schemetization g

in the form of a COSTA state vector object;

� GetNoiseCount, GetNoiseCovar: return (dimension of) covariance matrix G of the
noise model;

� GetObsValues: interpolate the model state to the observations.

� GetObsSelect: return information which can be used to read only the observations
from a COSTA stochastic observer object for which predictions can be generated by
the model.

Using the existing COSTA models, the ModelCombiner provides all the functions of the
interface.

2.3 Extension of the interface, necessary for the ModelCombiner

In the current project, the interface of the COSTA model will be extended: when getting,
setting or updating the state, forcings or schematization, so-called meta-information will
be supplied to describe the information given or asked. This will make it possible for
the model to interpret and meaningfully process the information given, or to supply the



COSTA
Memo CTA memo200701 6

correct information. It will also make it possible to get, set or change only part of the state,
forcings or schematization, because only the information described by the meta-information
is returned, set or changed. The new interface makes it (much) easier to combine COSTA
models, beacuse it makes it possible to pass the information from one model to another.

The meta-information will have to be obtained from the COSTA models. This is similar
to the meta-information which is given about the COSTA Stochastic Observer compo-
nent by the COSTA Observer Description component. The meta-information object is be
constructed in an analogous way.

More speci�c, a metainfo structure is attached to each state. In general, it consists of some
detailed information, description and unit of the quantity. An important part is the grid
information. The vector in a state leaf lives on a grid. Up to now only linear grids are
supported.

The advantage is that in the case of an axpy-operation, the grid can be used to perform
necessary operations. In this way a coarse noise vector can be added to a dense state
vector.

Metainfo is not obligatory. States can be used without metainfo, as always was the case,
but operations are restricted somewhat. For example, an axpy operation between two
states is only possible if the states and their substates have the same length.

Description of the current metainfo structure:

� tag: a short unique description for identi�cation purposes like 'sep' or 'u'. This is
used for binary operations like axpy: the function, when called with two large states
as input, knowns that it performs the operation on substates with the same tag.
Substates which do not have a matching metainfo-tag in any of the substates of the
other state, are ignored. it can

� belongs to: a second tag, also for binary operations. The user can in this way specify
that 'sep' and 'noise of sep' belong to each other.

� unit: the unit of the quantity described.

� grid This is a separate structure attached on the metainfo.

{ type: 2D or 3D

{ name

{ x origin, y origin

{ nx,ny,nz: dimension in each direction

{ dx,dy,dz: distance between two grid points in each direction

description of metainfo operations:

CTAMetainfo Create(CTA Metainfo *minfo);



COSTA
Memo CTA memo200701 7

CTAMetainfo Copy(CTA Metainfo minfo1, CTA Metainfo minfo2 );

CTAMetainfo SetUnit(CTA Metainfo minfo, char* unit );

CTAMetainfo GetUnit(CTA Metainfo minfo, char* unit );

CTAMetainfo SetTag(CTA Metainfo minfo, char* tag );

CTAMetainfo GetTag(CTA Metainfo minfo, char* tag );

CTAMetainfo SetBelongsTo(CTA Metainfo minfo, char* tag );

CTAMetainfo GetBelongsTo(CTA Metainfo minfo, char* tag );

CTA Metainfo GetGrid(CTA Metainfo minfo, CTAI Gridm *hgrid);

CTA Metainfo SetGrid(CTA Metainfo minfo, CTAI Gridm *hgrid);

3 Combining COSTA models

3.1 Combining noise models and a deterministic model

A very important example of a combined model is the combination of a deterministic model
and a noise model.

� The deterministic model has the state sd = (�; u; g). There are no noise parame-
ters. The propagation rule is:

�(ti+1) := A[�(ti); u(ti); g] (12)

� The noise model for the forcings has the state su = (pu). The propagation rule
is:

pu := diag(�u) pu + �u(ti);

�u(ti) � N(0; 1): (13)

� The noise model for the solution has the state sA = (pA). The propagation rule
is:

pA := diag(�A) pu + �A(ti):

�A(ti) � N(0; 1): (14)

These three submodels are each considerably simpler than the stochastic model described
in Section 2.1.

The state � of the combined model is the concatenation of the states of the three submodels;
so are the other . The COSTA state vector component has the functionality to handle
concatenated vectors.



COSTA
Memo CTA memo200701 8

The same thing can be said for the forcings, schematization and noise parameters. The
combined covariance matrix has a block diagonal structure.

The propagation of the combined model consists of the following steps:

1. Interpolate the forcings-parameters and add the forcings-noise to the forcings

u(ti) := u(ti) +W upu (15)

2. Propagate the deterministic model

� := A[�; u(ti); g] (16)

3. Interpolate the model-noise and add the model-noise to the solution

� := �+WApA: (17)

4. Propagate forcings-noise

pu := diag(�u) pu + �u(ti) (18)

5. Propagate model-noise

pA := diag(�A) pA + �A(ti) (19)

In this example, it is clear how the submodels should be combined into a combined model,
using the functions in the interface of the COSTA model component, and interpolations
needed for the commnunication between the submodels.

3.2 Con�guration �le for ModelCombiner

The previous sections provide some insight into the way a combined model will work and the
things that must be speci�ed to the ModelCombiner. In this Section, it will be explained
how the COSTA user (i.e. the model programmer) can describe the coupled model to the
ModelCombiner.

The information is presented to the ModelCombiner in the form of a con�guration �le,
written in XML.

The overall structure of an input �le for the ModelCombiner is given in Table 1. It consists
of two parts: the de�nitions of the submodels and the speci�cation of the propagation step
of the combined model.

An example of the de�nitions of the submodels is given in Table 2. Every submodel is
given a name. Some additional information is necessary since the combined model creates
its own submodels.



COSTA
Memo CTA memo200701 9

<modelbuilder model="stochastic model" tagstate="a"

tagforc="b" tagparam="c">

<submodels>

submodel de�nitions, between <submodel>

</submodels>

<propagation>

<deterministic>

things to be done for the propagation of the combined, extended

solution, between <action type=*>, except the propagation of

stochastic models

</deterministic>

<stochastic>

<action type=propagate> boundary noise model </action>

<action type=propagate> wind noise model </action>

<action type=propagate> viscosity noise model </action>

<action type=propagate> velocity noise model </action>

</stochastic>

</propagation>

</modelbuilder>

Table 1: Overall structure of the input �le for the ModelCombiner



COSTA
Memo CTA memo200701 10

<submodel>

<name> deterministic model </name>

<model_class> CTA_WAQUA_MODEL </model_class>

<create_input> control_simona.txt </create_input>

</submodel>

<submodel>

<name> boundary noise model </name>

<model_class> CTA_MODEL_BUILDER </model_class>

<create_input> boundary_noise_model.xml </create_input>

</submodel>

submodel de�nitions for wind noise model, viscosity noise model and velocity

noise model, similar to that of boundary noise model

Table 2: Example of the submodel de�nitions in the input �le

Table 3 gives an example of the 'actions' which constitute the propagation of the extended
solution in the combined model. The example is very similar to (but a little more extended
than) the steps given in Section 3.1. Every step in the propagation is called an 'action'.
Several kinds of actions are distiguished:

� set, get, axpy:

Set , get or adjust a part of the submodel state, forcings or parameters, using the val-
ues and meta-information of the state, forcings or parameters of an other submodel.

� propagate:

Carry out time step calculation(s) until the desired simulated time level.

3.3 The AR(1) noise model

Most users start with their own deterministic model. To make things easier, this model can
be combined with a standard AR(1) noise model provided by COSTA. The AR(1) model
can be created using a special variant of the Model Builder. That means that the functions
that normally have to be provided by the user, are now already given by COSTA. The only
aspects that the user has to specify are the characteristic parameters and the grid. An
example of the speci�cation in XML is shown in Table 4. The XML-code represents the
<create_input>}entry in the submodel de�nition.

The necessary parameters are the standard deviation std dev, the characteristic time kar t

and the characteristic length kar l.

xn+1 = � � xn +
p
1� �2 � �



COSTA
Memo CTA memo200701 11

<action type="x=axpy">

<var_y var="state"> boundary noise model </var_y>

<const_a> 1.0 </const_a>

<var_x var="forcings"> deterministic model </var_x>

</action>

forcing adaptations for wind noise model and viscosity noise model, similar to that

of boundary noise model

<action type="propagate"> deterministic model </action>

<action type="y=axpy">

<var_x var="state"> velocity noise model </var_x>

<const_a> 1.0 </const_a>

<var_y var="state"> deterministic model </var_y>

</action>

Table 3: Example of the speci�cation of all the steps in the propagation of the combined

model, except propagation of stochastic models.

where � = exp (��tkart) and � the covariance matrix computed from the grid and the
characteristic length kar l.

4 examples

4.1 oscillation model

As a �rst example, the oscillation model (without noise) has been combined with an AR(1)
process. Note that the grid speci�cation is in this case not entirely logical since the �rst
element of the state describes the (non-constant) position. However, this example will
provide some insight in the working of the ModelCombiner.

Files:

models/oscill/oscill.f90

models/oscill/c oscill.c

applications/da tools/ens proto/ens combine oscill ar1.f90

applications/da tools/ens proto/ens combine oscill ar1.xml

applications/da tools/ens proto/sm oscill model.xml



COSTA
Memo CTA memo200701 12

<modelbuild_sp>

<special_ar1>

<tag>noise-bc-n</tag>

<parameters std_dev="1.0" kar_t="105.90" kar_l="0.5">

</parameters>

<grid>

<type_id>2D</type_id>

<gridsize nx="4" ny="1"> </gridsize>

<gridparams x_origin="0.0" y_origin="2.5"

dx="0.5" dy="0.0">

</gridparams>

</grid>

</special_ar1>

</modelbuild_sp>

submodel de�nition: an AR(1) noise model

Table 4: Example of the AR(1) submodel in the input �le



COSTA
Memo CTA memo200701 13

applications/da tools/ens proto/sm ar1 model.xml

4.2 heat model

As a second example, a second instance of the heat model has been made. The model
consists now of the single temperature state, and �ve forcings: the heat and four boundary
condition states. The idea is that the forcings are adjusted using the axpy operation with
the corresponding �ve ar(1) models. In this case, the grids of the ar(1) models are twice
as coarse as the grids where the forcings live.

Files:

models/heat modelcombiner/heat model.f

models/heat modelcombiner/c heatmodel.c

applications/da tools/ens proto/ens combine heat ar1.f90

applications/da tools/ens proto/ens combine heat ar1.xml

applications/da tools/ens proto/sm ar1 model nheat n.xml

applications/da tools/ens proto/sm ar1 model nbc n.xml

applications/da tools/ens proto/sm ar1 model nbc e.xml

applications/da tools/ens proto/sm ar1 model nbc w.xml

applications/da tools/ens proto/sm ar1 model nbc s.xml


