
common set of tools for the assimilation of data

COSTA

MEMO CTA memo200604

Date October 6, 2008

Author(s) Nils van Velzen and Bas van 't Hof

Subject Combining models and creating stochastic models

Document information

Version Author Date Description Review

1.0 CvV 2006-12-11 Initial version BvtH

File location: <COSTA DIR>/doc/modelcombiner

Table of contents

I COSTA components 1

1 COSTA components and C++ classes 2

II COSTA ModelCombiner 2

2 Introduction 2

3 COSTA-models 3

3.1 Mathematical description of a COSTA-model 3

3.2 Interface functions of the COSTA model component 5

3.3 Extension of the interface, necessary for the ModelCombiner 6

4 Combining COSTA models 7

4.1 Combining noise models and a deterministic model 7

4.2 Correctness of the overall propagation equation 8

4.3 Con�guration �le for ModelCombiner . 9

5 Planned work and time estimates 12

COSTA
Memo CTA memo200604 2

Part I

COSTA components

1 COSTA components and C++ classes

COSTA is problem solving environment intended to facilitate data assimilation for large
scale simulation software. It provides a number of building blocks for data assimilation
and calibration systems. Combining and building new building blocks should be possible
with a minimum of e�ort.

COSTA provides building blocks in the form of COSTA components. COSTA components
are very similar to classes in C++, which are elaborate variable types. Variables of a C++
class or a COSTA component are called objects, or sometimes instantiations of such a
class/component.

Objects have a state, which can be seen as its value(s). For every component, COSTA
de�nes an interface, which is a set of methods. A method is something that can be done
with an object: a subroutine/function that can be called with an object as its argument.

COSTA does not prescribe the implementation of the interface and the state. This means
that two objects of the same component may store their value in di�erent ways, and that
they may perform the same tasks in di�erent ways.

COSTA provides this possibility of multiple implementations by means of COSTA com-

ponent classes. Every object is not only an object of a certain component, but also has
a certain component class, which allows COSTA to �nd the correct implementation of its
interface.

Part II

COSTA ModelCombiner

2 Introduction

One of the building blocks that COSTA o�ers is the COSTA-model component. COSTA-

model objects have an internal state, and a number of methods to set, change or get
this state. In the COSTA project, a number of such methods has been designed. The
implementation is left to the user: existing code may be used to create the methods of
the COSTA-model component. COSTA also o�ers a set of building blocks to help setting
up a COSTA-model component. It is not necessary that all methods are available for a

COSTA
Memo CTA memo200604 3

COSTA-model component: a component lacking certain methods simply cannot be used
for certain tasks.

The COSTA ModelCombiner is a tool which can be used to create a new COSTA-model
component. It combines two or more COSTA-model componentes into one COSTA-model
component. The combined method, including its methods, of the combined model can be
con�gured using an XML input �le.

The COSTA ModelCombiner is a generic tool for the construction of larger COSTA-model
componentes, and may be used to couple all kinds of COSTA models. A speci�c type
of combination for which the ModelCombiner is especially intended, is the coupling of a
deterministic (simulation) model and a noise model into a stochastic model.

Combining a deterministic model and a noise model is an important buidling block in data
assimilation, because existing simulation models are in general deterministic, and many
data assimilation methods need a stochastic model. This means that existing models have
to be extended into a stochastic model before assimilation techniques can be applied.

This memo gives a description of this generic tool called COSTA ModelCombiner. This
description consists of two parts. Section 4.3 describes how the ModelCombiner can be
used by a user. Section 4.3 describes the way in which the ModelCombiner carries out all
of its tasks. The description of the ModelCombiner requires detailed information about
the COSTA model component. This information is given in Sections 3.

3 COSTA-models

3.1 Mathematical description of a COSTA-model

The COSTA ModelCombiner is a tool for the construction of COSTA model components.
Its explanation requires a clear understanding of what a COSTA-model is. This section is
intended to explain the COSTA-model component in su�cient detail.

COSTA-models are COSTA components and therefore have an state (value) and an inter-
face. COSTA-models are intended to describe stochastic models, which means that a model
is available for the uncertainties (di�erences between model results and reality). Deter-
ministic models are seen as a special case of a stochastic model, in which the uncertainties
are ignored (assumed zero).

The 'value' of a COSTA-model s = (x; u; g;Gu;W u; GA;WA; t) consists of the following
three parts:

� x = (�; pu; pA): the 'extended state' (extended solution), consisting of

{ �: 'model state' or (model solution)

{ pu: forcing-noise parameters

COSTA
Memo CTA memo200604 4

{ pA: operator-noise parameters

� u: the forcings

� g: the parameters or schematization of the model.

� W u, WA, Gu, GA: interpolation and covariance matrices used in noise models.

� t internal 'time' of the model (not very important in this memo).

In the case of a deterministic simulation, there are no noise parameters. The model state
is propagated in the following way.

� (ti+1) = A [� (ti) ; u (ti) ; g] : (1)

The new values are calculated from the old values using some (often very complicated)
function A, under the inuence of the current values for the forcings u and the values of
the parameters g, which are time-independent.

In the general case of a stochastic model, uncertainties are included in the propagation
equation. The propagation of the 'true' state �t is assumed to follow the propagation
operator A, except for an error �A:

�t (ti+1) = A
h
�t (ti) ; u

t (ti) ; g
i
+ �A (ti) : (2)

The 'true' state �t is of only found when the 'true' previous state, forcings and parameters
are entered into the propagation operator. These 'true' values are thought to be given by
the forecast values (indicated with the superscript f) and an error term:

�t(ti) = �f (ti) + �� (ti) ;

ut (ti) = uf (ti) + �u (ti) ;

gt = gf + �g (3)

The error terms �A and �u can be obtained (through interplation) from the noise parameter

vectors pA and pu with a much smaller dimension:

�u(ti) = W upu(ti) ; �A(ti) = WApA(ti): (4)

The noise parameters may be described by AR(1) processes:

�uf (ti+1) = diag(�u)�u(ti) + �u(ti);

�Af (ti+1) = diag(�A)�A(ti) + �A(ti); (5)

Where �A and �u are normally distributed stochastic variables, with their covariance ma-
trices GA and Gu given by

Gu = E(�u(ti)�
u(ti)

T) ; GA = E(�A(ti)�
A(ti)

T): (6)

COSTA
Memo CTA memo200604 5

The propagation of the complete system is described in the following equation:

xt(ti+1) = Ax[x
t(ti); u(ti); g] +

0
�

!
; (7)

where

� The propagation operator Ax is given by

Ax[(�; p
u; pA); u; g] =

0
B@ A[�; u+W upu; g] +WApA

diag(�u)pu

diag(�A)pA

1
CA (8)

� The covariance matrix G of the normally distributed vector � is given by

G =

Gu 0
0 GA

!
: (9)

The internal structure of the model, given in equations (5), is not essential for most data
assimilation methods. The extended state vector x may also be composed of di�erent
parts, and the extended propagation operator Ax may have a di�erent structure. The
overall propagation equation (7), however, is crucial, because it is the starting point of
most data-assimilation methods.

The interface of the COSTA model component was designed to perform all the necessary
manipulations of stochastic models of the kind described in this section. Models with a
simpler structure are obtained by leaving certain parts of the model empty.

3.2 Interface functions of the COSTA model component

The previous section discussed the structure of COSTA models. The section concluded
by stating that the interface of the COSTA model component contains all the functions
necessary to support data assimilation methods.

The COSTA ModelCombiner is a COSTA component class. This means that it is one of
the possible implementations of the COSTA model interface. Since this memo intends to
describe the usage of the COSTA ModelBuilder and the way it works, it is important to
know all the functions in the interface.

A COSTA model provides the following functions:

� DefineCLass, Create, Free: functions necessary for the construction and descruction
of COSTA models.

� Compute: carry out the time steps necessary to step through a given time span.

COSTA
Memo CTA memo200604 6

{ FOR i = istart; � � � ; iend, DO

� := A[�; u(ti) +W upu; g + �g] +WApA;

pu := diag(�u)pu + �u(ti);

pA := diag(�A)pA + �A(ti): (10)

END

� AddNoise: specify the noise which is to be added to the forcings, state and schema-
tization;

{ FOR i = istart; � � � ; iend, DO

�u(ti) := Gu randn(size(pu))

�A(ti) := GA randn(size(pA)) (11)

END

� SetState, GetState, Axpy: set, return or modify the state values � in the form of a
COSTA state vector object;

� SetForc, GetForc, AxpyForc: set, return or modify the forcing values u in the form
of a COSTA state vector object;

� SetParam, GetParam, AxpyParam: set, return or modify the model schemetization g

in the form of a COSTA state vector object;

� GetNoiseCount, GetNoiseCovar: return (dimension of) covariance matrix G of the
noise model;

� GetObsValues: interpolate the model state to the observations.

� GetObsSelect: return information which can be used to read only the observations
from a COSTA stochastic observer object for which predictions can be generated by
the model.

Using the existing COSTA models, the ModelCombiner has to provide all the functions of
the interface.

3.3 Extension of the interface, necessary for the ModelCombiner

In the current project, the interface of the COSTA model will be extended: when getting,
setting or updating the state, forcings or schematization, so-called meta-information will
be supplied to describe the information given or asked. This will make it possible for
the model to interpret and meaningfully process the information given, or to supply the

COSTA
Memo CTA memo200604 7

correct information. It will also make it possible to get, set or change only part of the
state, forcings or schematization, because only the information described by the meta-
information is returned, set or changed. The new interface will make it (much) easier to
combine COSTA models, beacuse it makes it possible to pass the information from one
model to another.

The meta-information will have to be obtained from the COSTA models. This is similar
to the meta-information which is given about the COSTA Stochastic Observer component
by the COSTA Observer Description component. The meta-information object will be
constructed in an analogous way.

4 Combining COSTA models

4.1 Combining noise models and a deterministic model

A very important example of a combined model is the combination of a deterministic model
and a noise model.

� The deterministic model has the state sd = (�; u; g). There are no noise parame-
ters. The propagation rule is:

�(ti+1) := A[�(ti); u(ti); g] (12)

� The noise model for the forcings has the state su = (pu). The propagation rule
is:

pu := diag(�u) pu + �u(ti);

�u(ti) � N(0; 1): (13)

� The noise model for the solution has the state sA = (pA). The propagation rule
is:

pA := diag(�A) pu + �A(ti):

�A(ti) � N(0; 1): (14)

These three submodels are each considerably simpler than the stochastic model described
in Section 3.1.

The state � of the combined model is the concatenation of the states of the three submodels;
so are the other . The COSTA state vector component has the functionality to handle
concatenated vectors.

The same thing can be said for the forcings, schematization and noise parameters. The
combined covariance matrix has a block diagonal structure.

The propagation of the combined model consists of the following steps:

COSTA
Memo CTA memo200604 8

1. Interpolate the forcings-parameters and add the forcings-noise to the forcings

u(ti) := u(ti) +W upu (15)

2. Propagate the deterministic model

� := A[�; u(ti); g] (16)

3. Interpolate the model-noise and add the model-noise to the solution

� := �+WApA: (17)

4. Propagate forcings-noise

pu := diag(�u) pu + �u(ti) (18)

5. Propagate model-noise

pA := diag(�A) pA + �A(ti) (19)

In this example, it is clear how the submodels should be combined into a combined model,
using the functions in the interface of the COSTA model component, and interpolations
needed for the commnunication between the submodels.

4.2 Correctness of the overall propagation equation

The previous section was a simple but important example of a combined model. A wide
variety of coupled models may be imagined, in which not only one deterministic model and
a (possibly large) number of noise models, but also multiple deterministic models as well
as complete stochastic models.

There are certain restrictions to the things which may be coupled. The reason is the
equation (7), in which the propagation of the complete state is described. This equation is
crucial because it is the starting point of almost every data assimilation method. Complex
coupled models may have a propagation equation which does not �t this form. The reason
is that the random vector � is not only added to the 'combined extended state', but also
used in non-linear calculations. This section gives an example of such an illegal coupled
model.

The illegal model consists of a deterministic models and a noise model. The noise model
(pu) for the ow calculations is coupled to the deterministic model (�; u; g) in the following
way:

pu := diag(�u)pu + �u;

� := A�[�; u(ti) +W u pu; g]: (20)

COSTA
Memo CTA memo200604 9

The random vector �u is used in the propagation operator A�. A very simple remedy to
this problem is to change the order of the calculations, and obtain

� := A�[�; u(ti) +W u ~pu; g]:

~pu := diag(�u)~pu + ~�u; (21)

This reordered system is equivalent to the previous system, with

~pu(ti) = pu(ti�1) ; ~�u(ti) = �u(ti�1): (22)

The ModelCombiner will have to be able to check that the propagation equation corre-
sponds to equation (7). A su�cient (but perhaps not necessary) condition is that the
propagation steps for models whose covariance matrix is nonempty must be the very last
actions: after the �rst such model is propagated, the only calculations allowed are propa-
gations of other models, and no more values may be exchanged.

If the combined model does not conform to this condition, the user may be able to make
it that way by reordering the calculations.

4.3 Con�guration �le for ModelCombiner

The previous sections provide some insight into the way a combined model will work and the
things that must be speci�ed to the ModelCombiner. In this Section, it will be explained
how the COSTA user (i.e. the model programmer) can describe the coupled model to the
ModelCombiner.

The information is presented to the ModelCombiner in the form of a con�guration �le,
written in XML.

The overall structure of an input �le for the ModelCombiner is given in Table 1. It consists
of two parts: the de�nitions of the submodels and the speci�cation of the propagation step
of the combined model.

An example of the de�nitions of the submodels is given in Table 2. Every submodel is
given a name. Some additional information is necessary since the combined model creates
its own submodels.

Table 3 gives an example of the 'actions' which constitute the propagation of the extended
solution in the combined model. The example is very similar to (but a little more extended
than) the steps given in Section 4.1. Every step in the propagation is called an 'action'.
Several kinds of actions are distiguished:

� set, get, axpy:

Set , get or adjust a part of the submodel state, forcings or parameters, using the val-
ues and meta-information of the state, forcings or parameters of an other submodel.

COSTA
Memo CTA memo200604 10

<modelbuilder model="stochastic model">

<submodels>

submodel de�nitions, between <submodel>

</submodels>

<propagation>

<deterministic>

things to be done for the propagation of the combined, extended

solution, between <action type=*>, except the propagation of

stochastic models

</deterministic>

<stochastic>

<action type=propagate> boundary noise model </action>

<action type=propagate> wind noise model </action>

<action type=propagate> viscosity noise model </action>

<action type=propagate> velocity noise model </action>

</stochastic>

</propagation>

</modelbuilder>

Table 1: Overall structure of the input �le for the ModelCombiner

<submodel>

<name> deterministic model </name>

<model_class> CTA_WAQUA_MODEL </model_class>

<create_input> control_simona.txt </create_input>

</submodel>

<submodel>

<name> boundary noise model </name>

<model_class> CTA_MODEL_BUILDER </model_class>

<create_input> boundary_noise_model.xml </create_input>

</submodel>

submodel de�nitions for wind noise model, viscosity noise model and velocity

noise model, similar to that of boundary noise model

Table 2: Example of the submodel de�nitions in the input �le

COSTA
Memo CTA memo200604 11

<action type=axpy>

<input_y var=state> boundary noise model </input_y>

<const_a> 1.0 </const_a>

<output_x var=forcings> deterministic model </output_x>

</action>

forcing adaptations for wind noise model and viscosity noise model, similar to that

of boundary noise model

<action type=propagate> deterministic model </action>

<action type=axpy>

<input_x var=state> velocity noise model </input_x>

<const_a> 1.0 </const_a>

<output_y var=state> deterministic model </output_y>

</action>

Table 3: Example of the speci�cation of the all the steps in the propagation of the combined

model, except propagation of stochastic models.

� propagate:

Carry out time step calculation(s) until the desired simulated time level.

COSTA
Memo CTA memo200604 12

5 Planned work and time estimates

Getting the ModelCombiner up and running requires the following extensions to the
COSTA environment:

1 Extensions to the COSTA model component.

1a State, forcings and schematization description component

1b Set, get and axpy-operations using description component

2 Extending the ModelBuilder so that AR(x) noise models may be set up quickly and
easily.

3 Creating a new COSTA model-class, called CTA MODEL COMBINER.

4 Making the interface functions:

4a A 'create' function, using an XML tree as input, which creates the substates
and administrates the structure of the combined model.

The COSTA ModelBuilder will be extended so that generic noise models can be
supported, consisting of a parameter vector, a propagation matrix (which may
be full, diagonal, or a scalar times unity), and a covariance matrix G.

4b A 'free' function, which frees the submodels and the internal administration of
the combined model.

4c The get/set/axpy functions for state, forcings, schematization (parameters) and
covariance matrices, which work on the concatenated states, forcings, schema-
tizations and covariance matrices of the submodels.

4d The observation functions.

4e The propagation function.

6 Using the ModelCombiner, for validation:

6a For the heat-model example

6b For WAQUA.

7 Unit tests for the ModelCombiner, stochastic model builder facilities and interpola-
tion function-facilities in COSTA

8 Documentation (Programmers'/users' guide)

COSTA
Memo CTA memo200604 13

Description Hours

1 COSTA model component
a Description component 6
b AXPY using description component 6
c Extension to COSTA state componenent

for partly matching states 8
TOTAL 20

2 Extension of COSTA ModelBuilder for generic noise models 12

3 Setting up new COSTA model class 4

4 Creating interface for ModelBuilder COSTA models
a Create-function (calling Create for submodels) 12
b Free-function (calling Free for submodels) 4
c Get/set/axpy for state 4

Get/set/axpy for forcings 4
Get/set/axpy for parameters 4

d function GetObsValues 12
function GetObsSelect 8

e Propagation 32
TOTAL 80

5 Interpolation function facilities
Generic identity function 4
Substate selection function 4
(m,n) interpolation 8
TOTAL 16

6 Using the ModelCombiner
a In heat model 12
b In WAQUA (without smoothing functionality) 24

TOTAL 36

7 Unit tests
State functions 4
ModelCombiner 8
TOTAL 14

8 Documentation 8

Unexpected (20%) 37
TOTAL 223

