
common set of tools for the assimilation of data
COSTA

MEMO CTA memo200605

Date 25-09-2006

Author(s) Nils van Velzen

Subject Using the modelbuilders in COSTA

Table of contents

1 Introduction 1

2 General description of a model 1

3 SP Model builder 2
3.1 Create a new model instance . 3
3.2 Compute . 4
3.3 Covariance matrix of the noise parameters 4
3.4 Model state to observations . 5
3.5 Observation selection . 5
3.6 xml-configuration . 6
3.7 Examples . 6

1 Introduction

The COSTA environment makes a number of building blocks available for creating data
assimilation and calibration systems. Combining and building new building blocks should
be possible with a minimum of effort.

COSTA contains tools for rapidly creating a COSTA model component. These tools
are called modelbuilders. The various modelbuilders are described in this document.

2 General description of a model

COSTA deals with assimilation methods for simulation models. Simulation models can
compute the model state at different time instances.

φ (t0) = φ0,

φ (ti+1) = A [φ (ti) , u (ti) , g] (1)

with

• φ0 the initial model state,

• φ (t) the model state at time t,

• A the operator that computes one time-step of the numerical simulation model,

COSTA
Memo CTA memo200605 2

• u (t) the time dependent forcings at time t,

• g the time independent model parameters

The model as stated in Equation 1 is a general form. This means that it is not manda-
tory that all arguments exist in the model. An extreme example is the model, as specified
by Equation 2 that can be used in a calibration context where an optimal value for g is
determined using observed data.

φ = A [g] (2)

3 SP Model builder

The SP modelbuilder (Single processor) can be used to create sequential (non-parallel)
model components. The SP modelbuilder handles the storage and administration of the
model-instance specific data. By using this modelbuilder it is possible to create a full
working COSTA model component by only implementing a very small number of routines.

The routines that are supported in the current version of the SP Model builder are:

• cta model create

• cta model free (not yet supported)

• cta model compute

• cta model setstate

• cta model getstate

• cta model axpymodel

• cta model axpystate

• cta model setforc (not yet supported)

• cta model getforc (not yet supported)

• cta model axpyforc

• cta model setparam (not yet supported)

• cta model getparam (not yet supported)

• cta model axpyparam (not yet supported)

• cta model getnoisecount

• cta model getnoisecovar

COSTA
Memo CTA memo200605 3

• cta model getobsvalues

• cta model getobsselect

• cta model addnoise

Not all methods are supported in the current release of the modelbuilder. The model-
builder will support in the near future however.

Using the modelbuilder the model programmer only needs to implement a small number
of subroutines. The modelbuilder will use these subroutines for implementing all methods.
The subroutines that must be provided by the model programmer and their interface are
given in the following sections.

3.1 Create a new model instance

This routine creates and initialises a new model instance.

USR CREATE(hinput, state, sbound, sparam, nnoise,

time0, snamnoise, husrdata, ierr)
IN hinput Model configuration CTA Tree of CTA String
OUT state Model state (initialized to initial value

Note this statevector must be created
OUT sbound State-vector for the offset on the forcings.

CTA NULL if not used
Note this statevector must be created

OUT nnoise The number of noise parameters in model state
is 0 in case of a deterministic model

OUT time0 Time instance of the initial state state
The time object is already allocated

OUT snamnoise Name of the substate containing the noise parameters
The string object is already allocated

OUT husrdata Handle that can be used for storing instance specific data
OUT ierr Return flag CTA OK if successful

void usr_create(CTA_Handle *hinput, CTA_State *state, CTA_State sbound,

CTA_State *sparam, int *nnoise, CTA_Time time0,

CTA_String *snamnoise, CTA_Handle *husrdata, int *ierr)

USR_CREATE(hinput, state, sbound, sparam, nnoise, time0,

snamnoise, husrdata, ierr)

integer hinput, state, sbound, sparam, nnoise, time0

integer snamnoise, husrdata, ierr

COSTA
Memo CTA memo200605 4

3.2 Compute

This routine is computes several timesteps over a giving timespan.

USR COMPUTE(timespan,state, saxpyforc, baddnoise, sparam, husrdata, ierr)

IN timespan Timespan to simulate
IN/OUTstate State vector
IN saxpyforc Offset on models forcings
IN baddnoise flag (CTA TRUE/CTA FALSE) whether to add noise
IN sparam Model parameters
IN/OUThusrdata Instance specific data
OUT ierr Return flag CTA OK if successful

void USR_COMPUTE(CTA_Time *timespan, CTA_State *state, CTA_State *saxpyforc,

int *baddnoise, CTA_State *sparam, CTA_HAndle *husrdata,

int *ierr)

USR_COMPUTE(timespan,state, saxpyforc, baddnoise, sparam, husrdata, ierr)

integer timespan,state, saxpyforc, baddnoise, sparam, husrdata, ierr

3.3 Covariance matrix of the noise parameters

This routine is responsible for returning the covariance matrix of the noise parameters.

USR COVAR(colsvar,nnoise, husrdata, ierr)

OUT colsvar(nnoise)covariance of noise parameters array of noise
Note the substates are already allocated

IN nnoise Number of noise parameters
IN/OUThusrdata Instance specific data
OUT ierr Return flag CTA OK if successful

void usr_covar(CTA_State *colsvar, int *nnoise, CTA_Handle *husrdata, int *ierr)

USR_COVAR(colsvar, nnoise, husrdata, ierr)

integer nnoise, husrdata, ierr

integer colsvar(nnoise)

COSTA
Memo CTA memo200605 5

3.4 Model state to observations

This routine is responsible for the transformation of the state-vector to the observations.

USR OBS(state, hdescr, vval, husrdata, ierr)

IN state state vector
IN hdescr Observation description of observations
OUT vval Model (state) values corresponding to observations in hdescr
IN/OUThusrdata Instance specific data
OUT ierr Return flag CTA OK if successful

void usr_obs(CTA_State *state, CTA_ObsDescr *hdescr, CTA_Vector *vval,

CTA_Handle *husrdata, int *ierr)

USR_OBS(state, hdescr, vval, husrdata, ierr)

integer state, hdescr, vval, husrdata, ierr

3.5 Observation selection

This routine is responsible for producing a selection criterion that will filter out all invalid
observations. Invalid observations are observations for which the model cannot produce a
corresponding value. For example observations that are outside the computational domain.

USR OBSSEL(state, ttime, hdescr, sselect, husrdata, ierr)

IN state state vector
IN ttime timespan for selection
IN hdescr observation description of all available observations
OUT sselect The select criterion to filter out all invalid observations
IN/OUThusrdata Instance specific data
OUT ierr Return flag CTA OK if successful

void usr_obssel(CTA_State *state, CTA_Time *ttime, CTA_ObsDescr *hdescr,

CTA_String *sselect, CTA_Handle *husrdata, int* ierr)

USR_OBSSEL(state, ttime, hdescr, sselect, husrdata, ierr)

integer state, ttime, hdescr, sselect, husrdata, ierr

COSTA
Memo CTA memo200605 6

3.6 xml-configuration

The modelbuilder need to be configured in order to create a new model. This configuration
specifies which functions are provided to implement the model.

The configuration has the following form (in xml)

<modelbuild_sp>

<functions>

<!-- The functions that implement the model -->

<create>my_create</create>

<covariance>my_covar</covariance>

<getobsvals>my_obs</getobsvals>

<compute>my_compute</compute>

<getobssel>my_getobssel</getobssel>

<model>

<!-- Everything overhere is passed through to the model (input argument hinput of the create routine) -->

</model>

</functions>

</modelbuild_sp>

This configuration file is read into a COSTA-tree and is used as input argument for each
instance that is created.

The names of the functions eg. my compute, correspond to the name specified when
administrating the function in COSTA using the cta func create.

Future versions of the modelbuilder will support dynamic linking to the user functions.
When this is supported it will be possible to directly link the routines from the dynamic
link library.

3.7 Examples

The modelbuilder is used for the models lorenz96, lorenz, and oscill in the COSTA model-
directory. These models are a source of information concerning the use of this modelbuilder.

