
SOLVEr Suite for Alkalinity-PH Equations
SOLVESAPHE, Version 1.0.1

—
User Manual

G. Munhoven

Dépt. d’Astrophysique, Géophysique et Océanographie,
Université de Liège,

B–4000 Liège, Belgium,
eMail: Guy.Munhoven@ulg.ac.be

Manual Version 1.0.1 (9th July 2013)

Abstract

This manual describes the usage and the main technical aspects of the
SOLVEr Suite for Alkalinity-PH Equations (SOLVESAPHE), Version 1.0.1).
The codes provide a self-contained Fortan 90 implementation of the uni-
versal and robust algorithms for solving the total alkalinity-pH equation
presented in Munhoven (2013), along with new implementations of a few
other, previously published solvers, as well as some auxiliary functions
and subroutines. Also included are the original driver programs that were
used to produce the results reported in Munhoven (2013). The codes of
SOLVESAPHE are free software and they are released under the GNU
Lesser General Public Licence Version 3. Bug reports, reports about suc-
cessful builds on other platforms or with other compilers than those listed
below, as well as contributions are welcome!

1

Contents

1 Requirements 2
1.1 Compiler and Preprocessor . 2
1.2 Contents and summary description of solvesaphe.tar.gz . . . 3

2 Building the test cases 4

3 Description and usage of the core modules 5
3.1 Module MOD_CHEMCONSTS . 5
3.2 Module MOD_PHSOLVERS . 7
3.3 Module MOD_ACBW_PHSOLVERS . 9
3.4 Module MOD_ACB_PHSOLVERS . 10
3.5 Debugging output . 10
3.6 Practical usage: typical sequence 10
3.7 Streamlining, extensions, . 11

History of the codes 13

History of this document 13

1 Requirements

1.1 Compiler and Preprocessor

A standard compliant Fortran 90 compiler and a C-preprocessor or a compati-
ble preprocessor (such as, e.g., fpp) are required to compile the codes. Prepro-
cessor directives are included for enabling or disabling specific parts (debug-
ging messages, optional code parts and variants, . . .) in the solver modules. In
the main driver programs, they are used to select among the cases treated in
the paper.

After pre-processing, the modules’ source files are strictly standard con-
forming Fortran 90. The codes take advantage of the configurable precision fa-
cilities offered by Fortran 90. A single change in the module mod_precision.f90
is thus sufficient to consistently use the codes in single or double precision, as
required by the user.

SOLVESAPHE is self-contained and does not require any external libraries.
The codes were tested with

• GNU Fortran (GCC) 4.1.2 on Red Hat 4.1.2 (x86_64)

• GNU Fortran (GCC) 4.4.5 on Debian 6.0.6 (i686)

• GNU Fortran (GCC) 4.6.2 on openSUSE 12.1 (x86_64)

• Intel Fortran 11.0 (32 bit and 64 bit versions) on Red Hat 4.1.2 (x86_64)

• Intel Fortran 12.1.3 on openSUSE 12.1 (x86_64)

• PGI Fortran compiler 8.0.2 (64 bit) on Red Hat 4.1.2 (x86_64)

2

1.2 Contents and summary description of solvesaphe.tar.gz

Core modules

mod_phsolvers.F90
module containing the solvers for the total alkalinity-pH equations; also
contains the functions and subroutines for the equation and its derivative

mod_chemconst.f90
module with the parametrizations for the stoichiometric constants; also
holds the products of the constants (the Πj factors in the main paper) for
the considered acid systems and the pH scale conversion factor (denoted
s in the main paper)

mod_acb_phsolvers.F90
module containing special solvers for the carbonate+borate alkalinity-pH
equation

mod_acbw_phsolvers.F90
module containing special solvers for the carbonate+borate+water self-
ionization alkalinity-pH equation

mod_phsolvers_logging.F90
extended version of mod_phsolvers.F90 that does extra bookkeeping re-
garding the number of iterations, types of limiting events, etc.

Configuration Modules

mod_precision.f90
module to select the working precision (REAL data type) to be used in all
the source codes

Drivers and main programs

main_check.f90
program to carry out the constants’ value checks provided by the sub-
routine checkconstants in mod_chemconsts.f90

driver_at_general.F90
driver for realising the timings of the seawater test cases SW1, SW2 and
SW3, and of the Random Time Step (RTS) tests; uses mod_phsolvers

driver_at_logging.F90
driver for determining the numbers of iterations for test case SW1, SW2
and SW3; uses mod_phsolvers_logging

driver_at_random.F90
driver for the Random Total Concentration (RTC) test series; based upon
mod_phsolvers_logging

3

Other files

mod_random.f90
module providing two simple random number generating subroutines,
one for normally and one for uniformly distributed variates, each one
with zero mean and unit variance

mod_chemspeciation.f90
module providing a collection of subroutines to calculate the speciation
of the different acid systems considered, as a function of pH (not used in
Munhoven (2013))

makefile
makefile for building the test case programs and the stoichiometric con-
stants’ checking utility

COPYING.LESSER
text of the GNU Lesser General Public Licence version 3

COPYING
text of the GNU General Public Licence version 3 (underlying the GNU
Lesser General Public Licence version 3)

manual.pdf
this manual.

2 Building the test cases

After uncompressing and extracting the contents of the archive, e.g., with

$ tar xvfz solvesaphe.tar.gz

the various provided programs can be build with

$ make target

where target may be one of

checkconsts — for compiling main_check.f90 and its dependencies;

at_general — for compiling driver_at_general.F90 and its dependencies;

at_logging — for compiling driver_at_logging.F90 and its dependencies;

at_random — for compiling driver_at_random.F90 and its dependencies.

The generated executables have the same name as the target in each instance.
Please notice that it may be necessary to proceed to a clean build (i.e., first make
clean) to consistently rebuild a program after changes in a module. This is due
to complications arising from the compilation of Fortran 90 modules, during
which two files (the *.o and the *.mod files are generated, whereas make can
only control one of them (here the *.o).

4

checkconsts writes its output to the file named checkconst.log
Specific test cases and other boundary conditions (temperature, pressure,

salinity) and variants (type of initialisation, etc.) are selected by adapting the
precompiler directives that can be found right after the copyright and licenc-
ing statements at the beginning of each one of the driver files. In addition, to
select which one of the first or third iterates should be monitored for the Ran-
dom Time Step test (RTS) with driver_at_logging.F90, the integer parameter
jp_lognth in mod_at_logging.F90 should be set to 1 or 3, respectively.

The optionally generated result files (when #define CREATEFILES is used,
these are created) are Fortran unformatted (binary) files which can be directly
read in by some post-processing applications (e.g., IDL).

3 Description and usage of the core modules

All of the solvers are implemented as FUNCTION sub-programs. The arguments
to provide include the relevant alkalinity and total dissolved acid concentra-
tions, and optionally, one argument (p_hini) to provide an initial value to
start the iterations and a second one (p_val) to retrieve the equation resid-
ual if wanted. For floating-point calculations, all of the codes consistently
use a configurable REAL data type that must be selected in MOD_PRECISION
(source file mod_precision.f90). The identifier of that data type is stored
in the INTEGER parameter wp. The default type is set to DOUBLE PRECISION
(wp=KIND(1D0)). The solver FUNCTION sub-programs are accordingly declared
to be of type REAL(KIND=wp) throughout.

If the optional initialisation argument is left out, the solver calls the cubic
polynomial initialisation scheme described in Munhoven (2013). Each mod-
ule contains an version of that initialisation routine suitable for the respective
solvers. Upon completion, the solver functions either return the calculated
[H+], or −1 if no such root could be found. In the latter case, p_val is set to
HUGE(1._wp).

All of the solvers use the thermodynamic constants’ products (Πj’s) stored
in the module MOD_CHEMCONSTS at the time of the call. These have to be ini-
tialised before calling the solver.

The convergence criterion used with all of the solvers requires that the rela-
tive variation of two subsequent iterates (in absolute value) falls below a given
threshold. The threshold value is set by the parameter pp_rdel_ah_target
that can be found in each module. Its value is set to 10−8 by default.

3.1 Module MOD_CHEMCONSTS

The source code of this module is in mod_chemconsts.f90.
It provides a basic, but comprehensive set of FUNCTION sub-programs (type

REAL(KIND=wp)) to calculate the stoechiometric constants for

• the self-ionization of water (id.: wat)

• the dissociation series of carbonic acid (id.: dic)

5

• the dissociation of boric acid (id.: bor)

• the dissociation of silicic acid (id.: sil)

• the dissociation series of phosphoric acid (id.: po4)

• the dissociation of ammonium (id.: nh4)

• the dissociation of hydrogen sulphide (id.: h2s)

• the dissociation of bisulphate (id.: so4)

• the dissociation of hydrogen fluoride (id.: flu)

as a function of temperature (in Kelvin), salinity (no units) and applied pres-
sure (in bar). All of the concentrations are supposed to be expressed in mol/kg-
solution. For some acids, several parameterizations may be given. Calculations
in the respective FUNCTION subprograms use the same pH scale as originally
published. Auxiliary functions to convert between pH scales (free, total and
seawater scales) are provided.

The solver modules interact with MOD_CHEMCCONSTS only via the api1_aaa,
api2_aaa, . . . and the aphscale variables that hold the stoechiometric con-
stants’ products, i.e., the Πj factors in the main paper. The aaa part in the
names identify the respective acid systems on the basis of the three-letter codes
given in brackets in the list above. aphscale holds the pH scale conversion fac-
tor s (Munhoven, 2013, eqn. (20)).

The FUNCTION sub-programs for calculating the individual constants are
kept PRIVATE in the module. This helps to avoid potential misuse. A spe-
cific SUBROUTINE should be used to initialize the relevant api1_aaa, api2_aaa,
. . . and aphscale variables. Special attention must be paid to consistently use
a common pH scale for the set of constants, and convert where necessary.
Two sample subroutines, SETUP_API4PHTOT and SETUP_API4PHSWS respectively
based upon the total and seawater scales are provided in mod_chemconsts.f90.
For the exact names and detailed characteristics (references, pH scale, units,
etc.), please refer to the source code file and the comments included.

mod_chemconsts.f90 further contains FUNCTION sub-programs to calculate

• the solubility of CO2 gas

• the solubility product of calcite

• the solubility product of aragonite

• the concentrations of some conservative seawater solutes as a function of
salinity (calcium, boron, fluoride, sulphate)

• the density of seawater as a function of temperature, salinity and pres-
sure.

For further information, please refer to the detailed comments in the source
code.

6

3.2 Module MOD_PHSOLVERS

The source code of this module is in mod_phsolvers.F90. It provides the fol-
lowing solvers, suitable for solving the most complete approximations of total
alkalinity (eqn. (21) in Munhoven, 2013):

SOLVE_AT_GENERAL
the universal and robust algorithm from Munhoven (2013) with Newton-
Raphson iterations;

SOLVE_AT_ICACFP
the classical Iterative Carbonate Alkalinity Correction (ICAC) method
with fixed-point iterations;

SOLVE_AT_BACASTOW
the variant of the previous proposed by Bacastow (1981) that uses secant
instead of the fixed-point iterations – for most practical applications this
is the fastest routine;

SOLVE_AT_GENERAL_SEC
the variant of SOLVE_AT_GENERAL that uses secant instead of Newton-
Raphson iterations;

SOLVE_AT_OCMIP
the re-implementation of the solver originally provided for the Ocean
Carbon Cycle Model Intercomparison Project Phase 2 (OCMIP-2, Orr
et al., 2000), with minimal validity checks added (e.g., for bracketing val-
ues provided) and with the same optional automatic initialisation scheme
as the other solvers, and functionally equivalent to the original for the
rest;

SOLVE_AT_FAST
the variant of SOLVE_AT_GENERAL that does not include the convergence
control devices — slightly faster but possibly divergent.

The module furthermore contains the following auxiliary sub-programs:

ANW_INFSUP
a subroutine to calculate the infimum and the supremum of AlknW([H+]),
i.e., of the total alkalinity component not related to water self-ionization
— these are required to calculate the safe bounds;

EQUATION_AT
a function sub-program to evaluate the rational function form of the total
alkalinity-pH equation, and, optionally also its derivative;

AHINI_FOR_AT
a subroutine that implements the cubic polynomial based initialisation
scheme, extended such as to return (units are mol/kg)

• 10−3 if the provided alkalinity is lower than or equal to 0

7

• 10−10 if the provided alkalinity is greater than or equal to 2CT + BT

• 10−7 if the provided alkalinity value is within those bounds, but the
second order approximation does not have a solution

• the root of the second order approximation around the location of
the minimum of the cubic (see Munhoven (2013) for details) else.

AC_FROM_AT
a function to estimate the carbonate alkalinity from total alkalinity for a
given [H+] – required by SOLVE_AT_ICACFP and SOLVE_AT_BACASTOW;

SOLVE_AC
a function to solve the quadratic that relates [H+] to total dissolved in-
organic carbon and carbonate alkalinity – required by SOLVE_AT_ICACFP
and SOLVE_AT_BACASTOW.

The module offers a few customization options:

• the precompiler token VARIANT_BACASTOWORIG can be used to select one
of two variants of Bacastow’s method:

– with #define VARIANT_BACASTOWORIG, the original version, where
secant iterations are carried out for X =

√
K1K2/[H+] as the vari-

able, is adopted;

– with #undef VARIANT_BACASTOWORIG (this is default), the secant it-
erations are carried out for [H+] directly.

• the maximum number of iterations allowed for each method is controlled
by the parameters jp_maxniter_idmethod, where the method identifica-
tor idmethod should be substituted by

– atgen for SOLVE_AT_GENERAL

– icacfp for SOLVE_AT_ICACFP

– bacastow for SOLVE_AT_BACASTOW

– atsec for SOLVE_AT_GENERAL_SEC

– ocmip for SOLVE_AT_OCMIP

– atfast for SOLVE_AT_FAST

All of these are set to 50 by default.

After the call, the actual number of iterations performed can be retrieved from
the niter_idmethod variable related to the used solver, and that is provided in
the module (with idmethod as above). For other details, such as the number,
order and type of arguments in the solver function sub-programs, please refer
to the comments in the source code.

8

3.3 Module MOD_ACBW_PHSOLVERS

The source code of this module is in mod_acbw_phsolvers.F90. It provides the
following solvers, based up the (eqns. (14) or (15) in Munhoven, 2013):

SOLVE_ACBW_GENERAL
a simplified version of SOLVE_AT_GENERAL, considering carbonate, bo-
rate and water self-ionization contributions to total alkalinity only (based
upon the rational function version of the equation).

SOLVE_ACBW_POLY
a solver based upon the quintic equation (eqn. (15) in Munhoven, 2013),
using a hybrid Newton-Raphson–bisection method similar to that used
in SOLVE_AT_GENERAL to ensure convergence;

SOLVE_ACBW_POLYFAST
a variant of the previous without the convergence control device;

SOLVE_ACBW_ICACFP
a simplified version of SOLVE_AT_ICACFP, considering carbonate, borate
and water self-ionization contributions to total alkalinity only;

SOLVE_ACBW_BACASTOW
a simplified version of SOLVE_AT_BACASTOW, considering carbonate, bo-
rate and water self-ionization contributions to total alkalinity only.

The module also contains the following auxiliary program:

AHINI_FOR_ACBW
an implementation of the special initialisation scheme for the cubic equa-
tion, extended such as to derive an starting value from the classical root
bounds of Cauchy (scaled here) or Kojima that provide estimates for the
radius of the disc in the complex space that contains all the roots of a
polynomial (Stoer, 1989) in case the parabolic expansion around the min-
imum does not provide a valid starting value.

ACBW_HINFSUP
calculates the upper and lower bounds for the root of the equation fol-
lowing Munhoven (2013, section 5.1)

SOLVE_AC
a function to solve the quadratic that relates [H+] to total dissolved inor-
ganic carbon and carbonate alkalinity – required by SOLVE_ACBW_ICACFP
and SOLVE_ACBW_BACASTOW.

In comparison with the solvers provided in mod_phsolvers.F90, these are sim-
plified (e.g., the approximations [H+]T = [H+]f + [HSO−4] and [H+]SWS =
[H+]f + [HSO−4] + [HF] are used) and most functions calls are inlined.

9

3.4 Module MOD_ACB_PHSOLVERS

The source code of this module is in mod_acbw_phsolvers.F90. It provides the
following three solvers for the equation based upon AlkCB (eqns. (12) or (13) in
Munhoven, 2013):

SOLVE_ACB_POLY
a solver for the cubic equation, based upon a hybrid Newton-Raphson–
bisection method similar to that used in SOLVE_AT_GENERAL to ensure
convergence;

SOLVE_ACB_POLYFAST
a variant of the previous without the convergence control device;

SOLVE_ACB_GENERAL
a simplified version of SOLVE_AT_GENERAL, considering carbonate and bo-
rate alkalinity only (based upon the rational function version of the equa-
tion).

The module also contains the following two auxiliary programs:

AHINI_FOR_ACB
an implementation of the special initialisation scheme for the cubic equa-
tion, identical to AHINI_FOR_ACBW above;

ACB_HINFSUP
a subroutine to determine a bracketing interval for the root of the equa-
tion, following the lines detailed in section 4 of the companion “Addi-
tional Results” document (file alkphsuppresults.pdf in the Supplemen-
tary Materials).

For this module, the same simplifications as in MOD_ACB_PHSOLVERS described
above are adopted.

3.5 Debugging output

Debugging output from the solvers in the three modules may be activated by
passing the option -DDEBUG_PHSOLVERS to the Fortran compiler. In the pro-
vided makefile, this can easily be done by adding -DDEBUG_PHSOLVERS to the
OPTIONDEFS token. Please notice, however, that it is not recommended to use
this option with the test cases as they would generate many Gigabytes of de-
bugging information.

3.6 Practical usage: typical sequence

After the user has chosen a suitable solver from one of three modules (either
mod_phsolvers.F90 for the complete version, or mod_acb_phsolvers.F90 or
mod_acbw_phsolvers.F90 for the simplified versions), the steps required to
include it into your own program are as follows.

10

1. Make sure the adequate precision is selected in the MOD_PRECISION mod-
ule (mod_precision.f90).

2. Make your choice for the stoichiometric constants (i.e., chose pH scale,
etc.): either use one of the SETUP_API_... routines that are provided in
mod_chemconsts.f90, adapt one of them or create a new one – make sure
it initializes all of the required api_... variables in mod_chemconsts.f90
and, if necessary, also the aphscale variable for the pH scale conversion.

3. In the scoping unit of your code that requires pH calculation, include the
Fortran directives

USE MOD_PRECISION
USE MOD_CHEMCONSTS
USE MOD_XXXX_PHSOLVERS

where MOD_XXXX_PHSOLVERS must be replaced by the name of the module
that contains the chosen solver (MOD_PHSOLVERS, MOD_ACB_PHSOLVERS or
MOD_ACBW_PHSOLVERS). If the exact speciation of athe acid systems are also
required, one may furthermore include

USE MOD_CHEMSPECIATION

4. Before each call of the solver, make sure that the set of chemical constants
(for the desired temperature, salinity and pressure) is correctly initialized
by calling the adequate SETUP_API... subroutine.

5. Call the chosen solver function.

6. If required, call the relevant SPECIATION_aaa(...) subroutines from
MOD_CHEMSPECIATION to calculate the actual speciations (where the aaa
parts in the subroutine names identify the respective acid systems on the
basis of the three-letter codes given in brackets in section 3.1 above). No-
tice that the SPECIATION_aaa(...) subroutines rely upon the api1_aaa,
api2_aaa, . . . values that were used to calculate pH. Their values must
therefore not be changed before the speciation calculations for the sake
of consistency.

3.7 Streamlining, extensions, . . .

Recommended streamlining

In case a large number of pH calculations for many different temperature,
salinity and pressure conditions are required, it is recommended to restrict the
SETUP_API_... routine to the strict minimal set of stoichiometric constants re-
quired to solve the problem. Because of the exponential or power function
evaluations required for the calculation of each single of the chemical con-
stants, calculating even the bare minimum set of constants may take a signifi-
cant fraction of the total time needed to complete one pH determination.

11

How to extend it

SOLVESAPHE is obviously extensible: users may add extra acid systems if
needed. This task is not complicated, but requires changes at different places.

1. First, decide to which extent the dissociation of considered acid is going
to be taken into account (define the number of dissociations n and the
integer m that sets the zero proton level of the system — see Munhoven
(2013) for more details).

2. Add function subprograms in mod_chemconsts.f90 to make available
the required chemical constants. All of the routines in SOLVESAPHE ex-
pect concentrations to be expressed in mol/kg. The arguments of the sub-
routine functions should adhere to the common structure t_k, s, p_bar
(in this order), where t_k is the temperature in Kelvin, s is salinity and
p_bar the applied pressure in bar. It is recommended to keep the actual
functions that evaluate the parametrizations private in the module.

3. Add the api1_aaa, api2_aaa, . . . variables to mod_chemconsts.f90, chos-
ing a unique identificator aaa for the new contributing acid system.

4. If required, add a new speciation subroutine SPECIATION_aaa(...) to
mod_chemspeciation.f90, distinguished by the unique identificator aaa
for the new contributing acid system.

5. Prepare a SETUP_API_... routine to initialize all of the api* variables
of all the acid systems considered (incl water self-ionization and the pH
scale conversion factor aphscale.

6. Amend mod_at_phsolvers.F90, depending on the type of solver used.

• If the used solver is SOLVE_AT_GENERAL, SOLVE_AT_GENERAL_SEC or
SOLVE_AT_FAST, take the effect of the additional acid system into ac-
count by amending ANW_INFSUP and EQUATION_AT (add the dummy
p_aaatot to the argument lists and adapt the code), then include
p_aaatot in the argument list of the solver function sub-program
and adapt the calls to ANW_INFSUP and EQUATION_AT;
if your solver is one of SOLVE_AT_ICACFP or SOLVE_AT_BACASTOW,
then take the effect of the additional acid system into account by
amending AC_FROM_AT (add the dummy p_aaatot to the argument
lists and adapt the code), then include p_aaatot in the argument list
of the solver function sub-program and adapt the call to AC_FROM_AT.

7. Change the calls to the new SETUP_API_... (only if its name has changed,
the argument list should have remained the same) and adapt the list of
arguments wherever the solver is called in the main program to make it
conformant with the changes made in the module.

12

History of the codes

21st February 2013 (version 1.0)
Initial release

17th June 2013 (version 1.0.1)
Removed one spurious and unused precompiler directive in the drivers
driver_acb.F90 and driver_acbw.F90

History of this document

21st February 2013 (version 1.0 of the manual)
Initial release

9th July 2013 (version 1.0.1 of the manual)
Removed the theoretical part on the determination of the bracketing in-
terval used in ACB_HINFSUP. This text can now be found in the “Addi-
tional Results” supplement to the main paper. Also added the section on
the “History of the codes”.

References

Bacastow, R.: Numerical evaluation of the evasion factor, in: Carbon Cycle
Modelling, edited by Bolin, B., vol. 16 of SCOPE, chap. 3.4, pp. 95–98, John
Wiley & Sons, Chichester, NY, 1981.

Munhoven, G.: Mathematics of the total alkalinity–pH equation — pathway to
robust and universal solution algorithms: the SolveSAPHE package v1.0.1,
Geosci. Model Dev., 2013.

Orr, J., Najjar, R., Sabine, C., and Joos, F.: Abiotic-howto, available at
http://ocmip5.ipsl.jussieu.fr/OCMIP/phase2/simulations/Abiotic/
HOWTO-Abiotic.html, last access: 20th July 2012, 2000.

Stoer, J.: Numerische Mathematik 1, Springer-Verlag, Berlin, 5 edn., 1989.

13

http://ocmip5.ipsl.jussieu.fr/OCMIP/phase2/simulations/Abiotic/HOWTO-Abiotic.html
http://ocmip5.ipsl.jussieu.fr/OCMIP/phase2/simulations/Abiotic/HOWTO-Abiotic.html

	Requirements
	Compiler and Preprocessor
	Contents and summary description of solvesaphe.tar.gz

	Building the test cases
	Description and usage of the core modules
	Module MOD_CHEMCONSTS
	Module MOD_PHSOLVERS
	Module MOD_ACBW_PHSOLVERS
	Module MOD_ACB_PHSOLVERS
	Debugging output
	Practical usage: typical sequence
	Streamlining, extensions, …

	History of the codes
	History of this document

