\contentsline {table}{\numberline {1}{\ignorespaces Parameters of the function for the bed slope.}}{8}{table.1} \contentsline {table}{\numberline {2}{\ignorespaces Physical parameters of the reference state to test linear analysis.}}{17}{table.2} \contentsline {table}{\numberline {3}{\ignorespaces Parameters which are equal for the simulations to test the linear analysis. The symbols not defined previously are the length of the domain $L$ [\si {m}], the time step $\Delta t$ [\si {s}], the space step in the $x$ direction $\Delta x$ [\si {m}], the space step in $y$ direction [\si {m}], and the simulation time $T$ [\si {s}]. The time in parenthesis is the spin-up time.}}{17}{table.3} \contentsline {table}{\numberline {4}{\ignorespaces Parameters which are different for the simulations to test the linear analysis.}}{18}{table.4} \contentsline {table}{\numberline {5}{\ignorespaces Parameters that are different between secondary flow cases. The parameters that are equal are shown in Table \ref {tab:L_ph}. W=well-posed, I=ill-posed.}}{20}{table.5} \contentsline {table}{\numberline {6}{\ignorespaces Parameters that are different between secondary flow cases. W=well-posed, I=ill-posed.}}{26}{table.6} \contentsline {table}{\numberline {7}{\ignorespaces Physical parameters of the reference situation for mixed-size sediment conditions.}}{30}{table.7} \contentsline {table}{\numberline {8}{\ignorespaces Parameters that are different between mixed-size sediment cases. W=well-posed, I=ill-posed.}}{30}{table.8} \contentsline {table}{\numberline {9}{\ignorespaces Physical parameters of the simulations to test the implementation that are equal for all simulations}}{33}{table.9} \contentsline {table}{\numberline {10}{\ignorespaces Physical parameters of the simulations to test the implementation that are different for all simulations. EH stands for \citet {Engelund67} and MPM-P0.8 stands for \citet {MeyerPeter48} with the hiding correction by \citet {Parker82_3} with parameter $b$=0.8. W means well-posed and I ill-posed.}}{33}{table.10} \contentsline {table}{\numberline {11}{\ignorespaces Numerical parameters of the simulations to test the implementation}}{34}{table.11} \contentsline {table}{\numberline {12}{\ignorespaces Eigenvalues in the $x$ direction for the reference situation computed with Matlab.}}{36}{table.12} \contentsline {table}{\numberline {13}{\ignorespaces Eigenvalues in the $y$ direction for the reference situation computed with Matlab.}}{36}{table.13} \contentsline {table}{\numberline {14}{\ignorespaces Eigenvalues in the $x$ direction computed in Delft3D.}}{36}{table.14} \contentsline {table}{\numberline {15}{\ignorespaces Eigenvalues in the $y$ direction computed in Delft3D.}}{36}{table.15} \contentsline {table}{\numberline {16}{\ignorespaces Phisical parameters of the simulations to test the computational cost.}}{38}{table.16} \contentsline {table}{\numberline {17}{\ignorespaces Numerical parameters of the simulations to test the computational cost.}}{39}{table.17} \contentsline {table}{\numberline {18}{\ignorespaces Simulations to test the computation cost of the ill-posedness check routine.}}{39}{table.18} \contentsline {table}{\numberline {19}{\ignorespaces Time spent in each module.}}{39}{table.19} \contentsline {table}{\numberline {20}{\ignorespaces Parameters of the laboratory experiments conducted by \citet {Ashida90}. The flow depth $h$ is an average value on one wavelength. The sediment transport rate is a cross sectional average.}}{40}{table.20} \contentsline {table}{\numberline {21}{\ignorespaces Simulations of Case A1 to study the consequences of the modeling choices as regards to secondary flow.}}{42}{table.21} \contentsline {table}{\numberline {22}{\ignorespaces Simulations of Case A2 to study the consequences of the modeling choices as regards to bed slope effects.}}{45}{table.22}