\relax \providecommand\hyper@newdestlabel[2]{} \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined \global\let\oldcontentsline\contentsline \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global\let\oldnewlabel\newlabel \gdef\newlabel#1#2{\newlabelxx{#1}#2} \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\ifx\hyper@anchor\@undefined \let\contentsline\oldcontentsline \let\newlabel\oldnewlabel \fi} \fi} \global\let\hyper@last\relax \gdef\HyperFirstAtBeginDocument#1{#1} \providecommand\HyField@AuxAddToFields[1]{} \providecommand\HyField@AuxAddToCoFields[2]{} \citation{Ashida90} \citation{Ashida90} \citation{Talmon95} \citation{Sekine92_1} \citation{Ashida90} \citation{Engelund67} \citation{MeyerPeter48} \citation{Parker82_3} \citation{Ashida90} \citation{Sternberg75,Blom16} \citation{Yatsu55,Blom17} \citation{Seminara96} \citation{Lanzoni99} \citation{Parker82} \citation{Hirano71} \citation{Ribberink87_PhD,Stecca14,Chavarrias18} \citation{Joseph90} \citation{Ribberink87_PhD} \citation{Sieben97_PhD} \citation{Blom06_2,Blom08_2} \citation{Blom08} \citation{Viparelli17} \citation{Chavarrias18} \citation{SaintVenant71} \citation{Ribberink87_PhD} \citation{Sieben97_PhD} \citation{Stecca14} \citation{Chavarrias18} \citation{Thomson76} \citation{vanBendegom47} \citation{Flokstra77} \citation{Kalkwijk80,deVriend81_PhD,Kalkwijk86} \citation{Jagers03_PhD} \citation{Rodi82} \citation{vanBendegom47} \citation{Engelund73} \citation{Chavarrias16} \citation{Sloff92,Sloff93,sieben94,Sieben97_PhD} \citation{Chavarrias16} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{4}{section.1}} \newlabel{sec:int}{{1}{4}{Introduction}{section.1}{}} \citation{Hirano71} \citation{Exner20} \@writefile{toc}{\contentsline {section}{\numberline {2}Research Questions and Methodology}{5}{section.2}} \newlabel{sec:rq}{{2}{5}{Research Questions and Methodology}{section.2}{}} \@writefile{toc}{\contentsline {section}{\numberline {3}Model Equations}{5}{section.3}} \newlabel{sec:me}{{3}{5}{Model Equations}{section.3}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Balance Equations}{5}{subsection.3.1}} \newlabel{subsec:sec_eq}{{3.1}{5}{Balance Equations}{subsection.3.1}{}} \newlabel{eq:wmass_sf}{{1}{5}{Balance Equations}{equation.3.1}{}} \newlabel{eq:wmomx_sf}{{2}{5}{Balance Equations}{equation.3.2}{}} \newlabel{eq:wmomy_sf}{{3}{5}{Balance Equations}{equation.3.3}{}} \newlabel{eq:consI}{{4}{5}{Balance Equations}{equation.3.4}{}} \citation{Hirano71} \newlabel{eq:exner_sf}{{5}{6}{Balance Equations}{equation.3.5}{}} \newlabel{eq:hirano_full_sf}{{6}{6}{Balance Equations}{equation.3.6}{}} \newlabel{eq:substrate_full_sf}{{7}{6}{Balance Equations}{equation.3.7}{}} \newlabel{eq:Fcons}{{8}{7}{Balance Equations}{equation.3.8}{}} \newlabel{eq:Mcons}{{9}{7}{Balance Equations}{equation.3.9}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Simplifications}{7}{subsection.3.2}} \newlabel{subsec:sec_sim}{{3.2}{7}{Simplifications}{subsection.3.2}{}} \newlabel{eq:wmomx_sf_s}{{10}{7}{Simplifications}{equation.3.10}{}} \newlabel{eq:wmomy_sf_s}{{11}{7}{Simplifications}{equation.3.11}{}} \newlabel{eq:cntLa}{{12}{7}{Simplifications}{equation.3.12}{}} \newlabel{eq:hirano}{{13}{7}{Simplifications}{equation.3.13}{}} \newlabel{eq:substrate}{{14}{7}{Simplifications}{equation.3.14}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Closure Relations}{7}{subsection.3.3}} \newlabel{subsec:sec_cr}{{3.3}{7}{Closure Relations}{subsection.3.3}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.1}Friction Slope}{7}{subsubsection.3.3.1}} \newlabel{eq:Sf}{{15}{7}{Friction Slope}{equation.3.15}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2}Sediment Transport Rate}{7}{subsubsection.3.3.2}} \newlabel{subsubsec:sedtrans}{{3.3.2}{7}{Sediment Transport Rate}{subsubsection.3.3.2}{}} \newlabel{eq:qbk_sf}{{16}{7}{Sediment Transport Rate}{equation.3.16}{}} \citation{Rozovskii57} \citation{Talmon95} \citation{Talmon95} \citation{Zimmerman78} \citation{Talmon95} \newlabel{eq:phis}{{17}{8}{Sediment Transport Rate}{equation.3.17}{}} \newlabel{eq:phitau0}{{18}{8}{Sediment Transport Rate}{equation.3.18}{}} \newlabel{eq:alphaI}{{19}{8}{Sediment Transport Rate}{equation.3.19}{}} \newlabel{eq:g_sk}{{20}{8}{Sediment Transport Rate}{equation.3.20}{}} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Parameters of the function for the bed slope.}}{8}{table.1}} \newlabel{tab:gsval}{{1}{8}{Parameters of the function for the bed slope}{table.1}{}} \newlabel{eq:qbk}{{21}{8}{Sediment Transport Rate}{equation.3.21}{}} \citation{MeyerPeter48} \citation{Egiazaroff65} \citation{Parker82_3} \newlabel{eq:qbk_st}{{22}{9}{Sediment Transport Rate}{equation.3.22}{}} \newlabel{eq:thetak}{{23}{9}{Sediment Transport Rate}{equation.3.23}{}} \newlabel{eq:egiazaroff}{{24}{9}{Sediment Transport Rate}{equation.3.24}{}} \newlabel{eq:xi_parker}{{25}{9}{Sediment Transport Rate}{equation.3.25}{}} \newlabel{eq:Qbk}{{26}{9}{Sediment Transport Rate}{equation.3.26}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.3}Secondary Flow Terms}{9}{subsubsection.3.3.3}} \newlabel{subsubsec:sf_cr}{{3.3.3}{9}{Secondary Flow Terms}{subsubsection.3.3.3}{}} \newlabel{eq:Fsx}{{27}{9}{Secondary Flow Terms}{equation.3.27}{}} \newlabel{eq:Fsy}{{28}{9}{Secondary Flow Terms}{equation.3.28}{}} \citation{Legleiter06} \citation{Madsen88} \citation{Fischer73,Struiksma85_2,Madsen88} \citation{Fischer73} \citation{Elder59} \newlabel{eq:Txx}{{29}{10}{Secondary Flow Terms}{equation.3.29}{}} \newlabel{eq:Txy}{{30}{10}{Secondary Flow Terms}{equation.3.30}{}} \newlabel{eq:Tyy}{{31}{10}{Secondary Flow Terms}{equation.3.31}{}} \newlabel{eq:Ss}{{32}{10}{Secondary Flow Terms}{equation.3.32}{}} \newlabel{eq:Rs_1}{{33}{10}{Secondary Flow Terms}{equation.3.33}{}} \newlabel{eq:Rs_2}{{34}{10}{Secondary Flow Terms}{equation.3.34}{}} \newlabel{eq:Rs_3}{{35}{10}{Secondary Flow Terms}{equation.3.35}{}} \newlabel{eq:Rs_4}{{36}{10}{Secondary Flow Terms}{equation.3.36}{}} \newlabel{eq:TI}{{37}{10}{Secondary Flow Terms}{equation.3.37}{}} \citation{Elder59} \citation{Fischer67} \citation{Erdogan67} \citation{Fischer69} \citation{Hirano71} \citation{Parker91_1} \citation{Hoey94} \newlabel{eq:DHs}{{38}{11}{Secondary Flow Terms}{equation.3.38}{}} \newlabel{eq:DHn}{{39}{11}{Secondary Flow Terms}{equation.3.39}{}} \newlabel{eq:DHn_sf}{{40}{11}{Secondary Flow Terms}{equation.3.40}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.4}Volume Fraction Content at the Interface}{11}{subsubsection.3.3.4}} \newlabel{eq:hoey}{{41}{11}{Volume Fraction Content at the Interface}{equation.3.41}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Expansion of the System Equations}{11}{subsection.3.4}} \newlabel{subsec:sec_ed}{{3.4}{11}{Expansion of the System Equations}{subsection.3.4}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.4.1}Expansion of the Secondary Flow Terms in the Momentum Equations}{11}{subsubsection.3.4.1}} \newlabel{subsubsec:sec_f_mom}{{3.4.1}{11}{Expansion of the Secondary Flow Terms in the Momentum Equations}{subsubsection.3.4.1}{}} \newlabel{eq:Tiifuncx_sf}{{42}{11}{Expansion of the Secondary Flow Terms in the Momentum Equations}{equation.3.42}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.4.2}Expansion of the Sediment Transport Rate}{12}{subsubsection.3.4.2}} \newlabel{subsubsec:sed_tra}{{3.4.2}{12}{Expansion of the Sediment Transport Rate}{subsubsection.3.4.2}{}} \newlabel{eq:qsfuncx_sf}{{43}{12}{Expansion of the Sediment Transport Rate}{equation.3.43}{}} \newlabel{eq:qsfuncy_sf}{{44}{12}{Expansion of the Sediment Transport Rate}{equation.3.44}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.4.3}Expansion of the Source Term in the Constitutive Equation for the Secondary Flow}{12}{subsubsection.3.4.3}} \newlabel{subsubsec:stsf}{{3.4.3}{12}{Expansion of the Source Term in the Constitutive Equation for the Secondary Flow}{subsubsection.3.4.3}{}} \newlabel{eq:Ssfunc_sf}{{45}{12}{Expansion of the Source Term in the Constitutive Equation for the Secondary Flow}{equation.3.45}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.4.4}Water Mass Conservation}{12}{subsubsection.3.4.4}} \newlabel{subsubsec:exp_wmass}{{3.4.4}{12}{Water Mass Conservation}{subsubsection.3.4.4}{}} \newlabel{eq:wmass_sf_exp}{{47}{12}{Water Mass Conservation}{equation.3.47}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.4.5}Water Momentum Conservation in \emph {x} Direction}{12}{subsubsection.3.4.5}} \newlabel{subsubsec:exp_wmomx}{{3.4.5}{12}{Water Momentum Conservation in \emph {x} Direction}{subsubsection.3.4.5}{}} \newlabel{eq:wmomx_sf_exp}{{48}{12}{Water Momentum Conservation in \emph {x} Direction}{equation.3.48}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.4.6}Water Momentum Conservation in \emph {y} Direction}{13}{subsubsection.3.4.6}} \newlabel{subsubsec:exp_wmomy}{{3.4.6}{13}{Water Momentum Conservation in \emph {y} Direction}{subsubsection.3.4.6}{}} \newlabel{eq:wmomy_sf_exp}{{49}{13}{Water Momentum Conservation in \emph {y} Direction}{equation.3.49}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.4.7}Constitutive Equation for the Secondary Flow}{13}{subsubsection.3.4.7}} \newlabel{subsubsec:exp_consI}{{3.4.7}{13}{Constitutive Equation for the Secondary Flow}{subsubsection.3.4.7}{}} \newlabel{eq:consI_exp}{{50}{13}{Constitutive Equation for the Secondary Flow}{equation.3.50}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.4.8}Sediment Mass Conservation for the Entire Mixture}{13}{subsubsection.3.4.8}} \newlabel{subsubsec:exp_exner_sf}{{3.4.8}{13}{Sediment Mass Conservation for the Entire Mixture}{subsubsection.3.4.8}{}} \newlabel{eq:exner_sf_exp}{{51}{13}{Sediment Mass Conservation for the Entire Mixture}{equation.3.51}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.4.9}Sediment Mass Conservation per Grain Size in the Active Layer}{13}{subsubsection.3.4.9}} \newlabel{subsubsec:exp_hirano_sf}{{3.4.9}{13}{Sediment Mass Conservation per Grain Size in the Active Layer}{subsubsection.3.4.9}{}} \newlabel{eq:hirano_sf_exp}{{52}{13}{Sediment Mass Conservation per Grain Size in the Active Layer}{equation.3.52}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Matrix Formulation}{13}{subsection.3.5}} \newlabel{subsec:sec_mf}{{3.5}{13}{Matrix Formulation}{subsection.3.5}{}} \newlabel{eq:matrixf_sf}{{53}{13}{Matrix Formulation}{equation.3.53}{}} \newlabel{eq:Q_sf}{{54}{13}{Matrix Formulation}{equation.3.54}{}} \newlabel{eq:D_x}{{55}{14}{Matrix Formulation}{equation.3.55}{}} \newlabel{eq:D_y}{{56}{14}{Matrix Formulation}{equation.3.56}{}} \newlabel{eq:C}{{57}{14}{Matrix Formulation}{equation.3.57}{}} \newlabel{eq:Ax_sf}{{58}{14}{Matrix Formulation}{equation.3.58}{}} \newlabel{eq:Ay_sf}{{59}{14}{Matrix Formulation}{equation.3.59}{}} \newlabel{eq:S_sf}{{60}{14}{Matrix Formulation}{equation.3.60}{}} \@writefile{toc}{\contentsline {section}{\numberline {4}Perturbation Analysis}{15}{section.4}} \newlabel{sec:pa}{{4}{15}{Perturbation Analysis}{section.4}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Linearization}{15}{subsection.4.1}} \newlabel{subsec:lin}{{4.1}{15}{Linearization}{subsection.4.1}{}} \newlabel{eq:matrixf_sf_0}{{61}{15}{Linearization}{equation.4.61}{}} \newlabel{eq:matrixf_sf_s1}{{62}{15}{Linearization}{equation.4.62}{}} \newlabel{eq:l_gen}{{63}{15}{Linearization}{equation.4.63}{}} \newlabel{eq:lin1}{{64}{15}{Linearization}{equation.4.64}{}} \newlabel{eq:D_lin}{{65}{15}{Linearization}{equation.4.65}{}} \newlabel{eq:C_lin}{{66}{15}{Linearization}{equation.4.66}{}} \newlabel{eq:A_lin}{{67}{15}{Linearization}{equation.4.67}{}} \newlabel{eq:eta_lin2}{{68}{15}{Linearization}{equation.4.68}{}} \citation{Engelund73,Parker76,Fredsoe78} \citation{Olesen83,Kuroki84,Colombini87,Tubino99} \citation{Olesen83} \citation{Colombini87} \citation{Schielen93} \newlabel{eq:AJt}{{69}{16}{Linearization}{equation.4.69}{}} \newlabel{eq:S_lin}{{70}{16}{Linearization}{equation.4.70}{}} \newlabel{eq:SJ}{{71}{16}{Linearization}{equation.4.71}{}} \newlabel{eq:adv_p}{{72}{16}{Linearization}{equation.4.72}{}} \newlabel{eq:adv_pw}{{73}{16}{Linearization}{equation.4.73}{}} \newlabel{eq:ode}{{74}{16}{Linearization}{equation.4.74}{}} \newlabel{eq:R}{{75}{16}{Linearization}{equation.4.75}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Test Using Numerical Simulations}{16}{subsection.4.2}} \newlabel{subsec:nosec}{{4.2}{16}{Test Using Numerical Simulations}{subsection.4.2}{}} \citation{Siviglia13} \citation{Engelund67} \citation{Sekine92_1} \citation{Koch80} \citation{Colombini87,Schielen93} \citation{Schielen93,Iwasaki17} \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Physical parameters of the reference state to test linear analysis.}}{17}{table.2}} \newlabel{tab:L_ph}{{2}{17}{Physical parameters of the reference state to test linear analysis}{table.2}{}} \newlabel{eq:eta_p}{{76}{17}{Test Using Numerical Simulations}{equation.4.76}{}} \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Parameters which are equal for the simulations to test the linear analysis. The symbols not defined previously are the length of the domain $L$ [\si {m}], the time step $\Delta t$ [\si {s}], the space step in the $x$ direction $\Delta x$ [\si {m}], the space step in $y$ direction [\si {m}], and the simulation time $T$ [\si {s}]. The time in parenthesis is the spin-up time.}}{17}{table.3}} \newlabel{tab:L_num_eq}{{3}{17}{Parameters which are equal for the simulations to test the linear analysis. The symbols not defined previously are the length of the domain $L$ [\si {m}], the time step $\Delta t$ [\si {s}], the space step in the $x$ direction $\Delta x$ [\si {m}], the space step in $y$ direction [\si {m}], and the simulation time $T$ [\si {s}]. The time in parenthesis is the spin-up time}{table.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Domain of linear stability of the reference situation (Table \ref {tab:L_ph}) in terms of: (\textbf {a}) wavenumber, and (\textbf {b}) wave length. The continuous line is the separatrix for the case without secondary flow while the dashed line is the separatrix considering secondary flow and a diffusion coefficient $D_H=\SI {5}{m^2/s}$. The circle and square mark the conditions of the numerical simulations (Table \ref {tab:L_num_diff}).}}{18}{figure.1}} \newlabel{fig:L_re}{{1}{18}{Domain of linear stability of the reference situation (Table \ref {tab:L_ph}) in terms of: (\textbf {a}) wavenumber, and (\textbf {b}) wave length. The continuous line is the separatrix for the case without secondary flow while the dashed line is the separatrix considering secondary flow and a diffusion coefficient $D_H=\SI {5}{m^2/s}$. The circle and square mark the conditions of the numerical simulations (Table \ref {tab:L_num_diff})}{figure.1}{}} \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Parameters which are different for the simulations to test the linear analysis.}}{18}{table.4}} \newlabel{tab:L_num_diff}{{4}{18}{Parameters which are different for the simulations to test the linear analysis}{table.4}{}} \citation{Joseph90} \citation{Hadamard22} \citation{Devaney89,Banks92} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Evolution of the flow depth with time at $y=B/2$ for a location in which initially we find the trough of a bar (i.e., maximum flow depth) for simulation (\textbf {a}) L1, (\textbf {b}) L2, and (\textbf {c}) L3 (Tables \ref {tab:L_num_eq} and \ref {tab:L_num_diff}).}}{19}{figure.2}} \newlabel{fig:L_t}{{2}{19}{Evolution of the flow depth with time at $y=B/2$ for a location in which initially we find the trough of a bar (i.e., maximum flow depth) for simulation (\textbf {a}) L1, (\textbf {b}) L2, and (\textbf {c}) L3 (Tables \ref {tab:L_num_eq} and \ref {tab:L_num_diff})}{figure.2}{}} \@writefile{toc}{\contentsline {section}{\numberline {5}Results of the Perturbation Analysis}{19}{section.5}} \newlabel{sec:res_lin}{{5}{19}{Results of the Perturbation Analysis}{section.5}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Definition of Ill-posedness}{19}{subsection.5.1}} \newlabel{subsec:def_ill}{{5.1}{19}{Definition of Ill-posedness}{subsection.5.1}{}} \citation{Joseph90,Kabanikhin08} \citation{Courant28} \citation{Kelvin71} \@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Secondary Flow}{20}{subsection.5.2}} \newlabel{subsec:secflow_uni}{{5.2}{20}{Secondary Flow}{subsection.5.2}{}} \@writefile{lot}{\contentsline {table}{\numberline {5}{\ignorespaces Parameters that are different between secondary flow cases. The parameters that are equal are shown in Table \ref {tab:L_ph}. W=well-posed, I=ill-posed.}}{20}{table.5}} \newlabel{tab:s_var}{{5}{20}{Parameters that are different between secondary flow cases. The parameters that are equal are shown in Table \ref {tab:L_ph}. W=well-posed, I=ill-posed}{table.5}{}} \citation{Olesen82,Duan98,Jia99,Duan01,Kassem02,Dulal10} \citation{Duan04} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Wave growth domain for the case S1 (Tables \ref {tab:L_ph} and \ref {tab:s_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is ill-posed (Section \ref {subsec:def_ill}).}}{21}{figure.3}} \newlabel{fig:dom_S1}{{3}{21}{Wave growth domain for the case S1 (Tables \ref {tab:L_ph} and \ref {tab:s_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is ill-posed (Section \ref {subsec:def_ill})}{figure.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Minimum diffusion coefficient for the case S1 (Tables \ref {tab:L_ph} and \ref {tab:s_var}) to obtain a well-posed model as a function the wavenumber (\textbf {a}) and wavelength (\textbf {b}).}}{22}{figure.4}} \newlabel{fig:Dh_min_1}{{4}{22}{Minimum diffusion coefficient for the case S1 (Tables \ref {tab:L_ph} and \ref {tab:s_var}) to obtain a well-posed model as a function the wavenumber (\textbf {a}) and wavelength (\textbf {b})}{figure.4}{}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Wave growth domain for the case S3 (Tables \ref {tab:L_ph} and \ref {tab:s_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is ill-posed (Section \ref {subsec:def_ill}).}}{23}{figure.5}} \newlabel{fig:dom_S3}{{5}{23}{Wave growth domain for the case S3 (Tables \ref {tab:L_ph} and \ref {tab:s_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is ill-posed (Section \ref {subsec:def_ill})}{figure.5}{}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Wave growth domain for the case S4 (Tables \ref {tab:L_ph} and \ref {tab:s_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is well-posed (Section \ref {subsec:def_ill}).}}{23}{figure.6}} \newlabel{fig:dom_S4}{{6}{23}{Wave growth domain for the case S4 (Tables \ref {tab:L_ph} and \ref {tab:s_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is well-posed (Section \ref {subsec:def_ill})}{figure.6}{}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Wave growth domain for the case S2 (Tables \ref {tab:L_ph} and \ref {tab:s_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is ill-posed (Section \ref {subsec:def_ill}).}}{24}{figure.7}} \newlabel{fig:dom_S2}{{7}{24}{Wave growth domain for the case S2 (Tables \ref {tab:L_ph} and \ref {tab:s_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is ill-posed (Section \ref {subsec:def_ill})}{figure.7}{}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Wave growth domain for the case S5 (Tables \ref {tab:L_ph} and \ref {tab:s_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is well-posed (Section \ref {subsec:def_ill}).}}{24}{figure.8}} \newlabel{fig:dom_S5}{{8}{24}{Wave growth domain for the case S5 (Tables \ref {tab:L_ph} and \ref {tab:s_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is well-posed (Section \ref {subsec:def_ill})}{figure.8}{}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Flow depth after \SI {15}{s} in the simulation of Case S1.}}{25}{figure.9}} \newlabel{fig:S1_xyd_1}{{9}{25}{Flow depth after \SI {15}{s} in the simulation of Case S1}{figure.9}{}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Flow depth after \SI {60}{s} in the simulation of Case S1.}}{25}{figure.10}} \newlabel{fig:S1_xyd_2}{{10}{25}{Flow depth after \SI {60}{s} in the simulation of Case S1}{figure.10}{}} \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Flow depth after \SI {60}{s} in the simulation of Case S4.}}{25}{figure.11}} \newlabel{fig:S4_xyd}{{11}{25}{Flow depth after \SI {60}{s} in the simulation of Case S4}{figure.11}{}} \citation{Sekine92_1} \@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Bed Slope Effect}{26}{subsection.5.3}} \newlabel{subsec:bedslope_uni}{{5.3}{26}{Bed Slope Effect}{subsection.5.3}{}} \@writefile{lot}{\contentsline {table}{\numberline {6}{\ignorespaces Parameters that are different between secondary flow cases. W=well-posed, I=ill-posed.}}{26}{table.6}} \newlabel{tab:B_var}{{6}{26}{Parameters that are different between secondary flow cases. W=well-posed, I=ill-posed}{table.6}{}} \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Wave growth domain for the case B1 (Tables \ref {tab:L_ph} and \ref {tab:B_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is well-posed (Section \ref {subsec:def_ill}).}}{26}{figure.12}} \newlabel{fig:dom_B1}{{12}{26}{Wave growth domain for the case B1 (Tables \ref {tab:L_ph} and \ref {tab:B_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is well-posed (Section \ref {subsec:def_ill})}{figure.12}{}} \@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Wave growth domain for the case B2 (Tables \ref {tab:L_ph} and \ref {tab:B_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is ill-posed (Section \ref {subsec:def_ill}).}}{27}{figure.13}} \newlabel{fig:dom_B2}{{13}{27}{Wave growth domain for the case B2 (Tables \ref {tab:L_ph} and \ref {tab:B_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is ill-posed (Section \ref {subsec:def_ill})}{figure.13}{}} \@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Flow depth at the end of the simulation of Case B2.}}{27}{figure.14}} \newlabel{fig:B2_xyd}{{14}{27}{Flow depth at the end of the simulation of Case B2}{figure.14}{}} \@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Longitudinal profile of the flow depth at the end of the simulation of Case B2.}}{28}{figure.15}} \newlabel{fig:B2_xd}{{15}{28}{Longitudinal profile of the flow depth at the end of the simulation of Case B2}{figure.15}{}} \@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Flow depth at the end of the simulation of Case B1.}}{28}{figure.16}} \newlabel{fig:B1_xyd}{{16}{28}{Flow depth at the end of the simulation of Case B1}{figure.16}{}} \@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Longitudinal profile of the flow depth at the end of the simulation of Case B1.}}{29}{figure.17}} \newlabel{fig:B1_xd}{{17}{29}{Longitudinal profile of the flow depth at the end of the simulation of Case B1}{figure.17}{}} \citation{Ribberink87_PhD,Stecca14,Chavarrias18} \citation{Chavarrias18} \citation{Chavarrias18} \@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Mixed-size Sediment}{30}{subsection.5.4}} \newlabel{subsec:mixsed}{{5.4}{30}{Mixed-size Sediment}{subsection.5.4}{}} \@writefile{lot}{\contentsline {table}{\numberline {7}{\ignorespaces Physical parameters of the reference situation for mixed-size sediment conditions.}}{30}{table.7}} \newlabel{tab:ref_mixed}{{7}{30}{Physical parameters of the reference situation for mixed-size sediment conditions}{table.7}{}} \@writefile{lot}{\contentsline {table}{\numberline {8}{\ignorespaces Parameters that are different between mixed-size sediment cases. W=well-posed, I=ill-posed.}}{30}{table.8}} \newlabel{tab:mixed_var}{{8}{30}{Parameters that are different between mixed-size sediment cases. W=well-posed, I=ill-posed}{table.8}{}} \@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Wave growth domain for the case M1 (Tables \ref {tab:ref_mixed} and \ref {tab:mixed_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is well-posed (Section \ref {subsec:def_ill}).}}{30}{figure.18}} \newlabel{fig:dom_M1}{{18}{30}{Wave growth domain for the case M1 (Tables \ref {tab:ref_mixed} and \ref {tab:mixed_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is well-posed (Section \ref {subsec:def_ill})}{figure.18}{}} \citation{Sekine92_1} \citation{Exner20} \@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Wave growth domain for the case M2 (Tables \ref {tab:ref_mixed} and \ref {tab:mixed_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is ill-posed (Section \ref {subsec:def_ill}).}}{31}{figure.19}} \newlabel{fig:dom_M2}{{19}{31}{Wave growth domain for the case M2 (Tables \ref {tab:ref_mixed} and \ref {tab:mixed_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is ill-posed (Section \ref {subsec:def_ill})}{figure.19}{}} \newlabel{eq:qbkx_m1}{{77}{31}{Mixed-size Sediment}{equation.5.77}{}} \newlabel{eq:qbky_m1}{{78}{31}{Mixed-size Sediment}{equation.5.78}{}} \newlabel{eq:varphisk_m1}{{79}{31}{Mixed-size Sediment}{equation.5.79}{}} \newlabel{eq:dqbky_dsy_m1}{{80}{31}{Mixed-size Sediment}{equation.5.80}{}} \newlabel{eq:dqbky_dsy_m2}{{81}{31}{Mixed-size Sediment}{equation.5.81}{}} \newlabel{eq:dqbky_dsy_m3}{{82}{32}{Mixed-size Sediment}{equation.5.82}{}} \newlabel{eq:dqbky_dsy_m3_agg}{{83}{32}{Mixed-size Sediment}{equation.5.83}{}} \@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Wave growth domain for the case M3 (Tables \ref {tab:ref_mixed} and \ref {tab:mixed_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is ill-posed (Section \ref {subsec:def_ill}).}}{32}{figure.20}} \newlabel{fig:dom_M3}{{20}{32}{Wave growth domain for the case M3 (Tables \ref {tab:ref_mixed} and \ref {tab:mixed_var}) as a function of the wavenumber (\textbf {a}) and wavelength (\textbf {b}). In the green area the growth rate is negative (dampening) while in the red area it is positive (growth). This situation is ill-posed (Section \ref {subsec:def_ill})}{figure.20}{}} \@writefile{toc}{\contentsline {section}{\numberline {6}Ill-posedness Check in Delft3D}{32}{section.6}} \newlabel{sec:ch_d3d}{{6}{32}{Ill-posedness Check in Delft3D}{section.6}{}} \citation{Madsen88} \citation{Chavarrias16} \citation{Chavarrias16} \citation{Engelund67} \citation{MeyerPeter48} \citation{Parker82_3} \citation{Engelund67} \citation{MeyerPeter48} \citation{Parker82_3} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Description}{33}{subsection.6.1}} \newlabel{subsec:desc}{{6.1}{33}{Description}{subsection.6.1}{}} \@writefile{lot}{\contentsline {table}{\numberline {9}{\ignorespaces Physical parameters of the simulations to test the implementation that are equal for all simulations}}{33}{table.9}} \newlabel{tab:I_ph_eq}{{9}{33}{Physical parameters of the simulations to test the implementation that are equal for all simulations}{table.9}{}} \@writefile{lot}{\contentsline {table}{\numberline {10}{\ignorespaces Physical parameters of the simulations to test the implementation that are different for all simulations. EH stands for \citet {Engelund67} and MPM-P0.8 stands for \citet {MeyerPeter48} with the hiding correction by \citet {Parker82_3} with parameter $b$=0.8. W means well-posed and I ill-posed.}}{33}{table.10}} \newlabel{tab:I_ph_dif}{{10}{33}{Physical parameters of the simulations to test the implementation that are different for all simulations. EH stands for \citet {Engelund67} and MPM-P0.8 stands for \citet {MeyerPeter48} with the hiding correction by \citet {Parker82_3} with parameter $b$=0.8. W means well-posed and I ill-posed}{table.10}{}} \citation{Chavarrias16} \@writefile{lot}{\contentsline {table}{\numberline {11}{\ignorespaces Numerical parameters of the simulations to test the implementation}}{34}{table.11}} \newlabel{tab:I_num}{{11}{34}{Numerical parameters of the simulations to test the implementation}{table.11}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Matrices Test}{34}{subsection.6.2}} \newlabel{subsec:mat_test}{{6.2}{34}{Matrices Test}{subsection.6.2}{}} \newlabel{eq:Ax_S1}{{84}{34}{Matrices Test}{equation.6.84}{}} \newlabel{eq:Ay_S1}{{85}{34}{Matrices Test}{equation.6.85}{}} \newlabel{eq:Ax_S1_Delft3D}{{86}{34}{Matrices Test}{equation.6.86}{}} \newlabel{eq:Ay_S1_Delft3D}{{87}{34}{Matrices Test}{equation.6.87}{}} \newlabel{eq:Ax_S2}{{88}{34}{Matrices Test}{equation.6.88}{}} \newlabel{eq:Ay_S2}{{89}{34}{Matrices Test}{equation.6.89}{}} \newlabel{eq:Ax_S2_Delft3D}{{90}{35}{Matrices Test}{equation.6.90}{}} \newlabel{eq:Ay_S2_Delft3D}{{91}{35}{Matrices Test}{equation.6.91}{}} \newlabel{eq:Ax_S3}{{92}{35}{Matrices Test}{equation.6.92}{}} \newlabel{eq:Ay_S3}{{93}{35}{Matrices Test}{equation.6.93}{}} \newlabel{eq:Ax_S3_Delft3D}{{94}{35}{Matrices Test}{equation.6.94}{}} \newlabel{eq:Ay_S3_Delft3D}{{95}{35}{Matrices Test}{equation.6.95}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.3}Eigenvalues Test}{35}{subsection.6.3}} \newlabel{subsec:eig_test}{{6.3}{35}{Eigenvalues Test}{subsection.6.3}{}} \@writefile{lot}{\contentsline {table}{\numberline {12}{\ignorespaces Eigenvalues in the $x$ direction for the reference situation computed with Matlab.}}{36}{table.12}} \newlabel{tab:I_mat_x}{{12}{36}{Eigenvalues in the $x$ direction for the reference situation computed with Matlab}{table.12}{}} \@writefile{lot}{\contentsline {table}{\numberline {13}{\ignorespaces Eigenvalues in the $y$ direction for the reference situation computed with Matlab.}}{36}{table.13}} \newlabel{tab:I_mat_y}{{13}{36}{Eigenvalues in the $y$ direction for the reference situation computed with Matlab}{table.13}{}} \@writefile{lot}{\contentsline {table}{\numberline {14}{\ignorespaces Eigenvalues in the $x$ direction computed in Delft3D.}}{36}{table.14}} \newlabel{tab:I_d3d_x}{{14}{36}{Eigenvalues in the $x$ direction computed in Delft3D}{table.14}{}} \@writefile{lot}{\contentsline {table}{\numberline {15}{\ignorespaces Eigenvalues in the $y$ direction computed in Delft3D.}}{36}{table.15}} \newlabel{tab:I_d3d_y}{{15}{36}{Eigenvalues in the $y$ direction computed in Delft3D}{table.15}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Output Test}{36}{subsection.6.4}} \newlabel{subsec:out_test}{{6.4}{36}{Output Test}{subsection.6.4}{}} \@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Longitudinal profile at the center of the domain ($y$=\SI {5}{m}) at the initial state of the simulation of Case I4.}}{37}{figure.21}} \newlabel{fig:I4_fsk}{{21}{37}{Longitudinal profile at the center of the domain ($y$=\SI {5}{m}) at the initial state of the simulation of Case I4}{figure.21}{}} \citation{Engelund67} \citation{Sekine92_1} \@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Volume fraction content at the first substrate layer (\textbf {a}) and output of ill-posedness (\textbf {b}). The data concerns the center of the domain ($y$=\SI {5}{m}).}}{38}{figure.22}} \newlabel{fig:I4_i}{{22}{38}{Volume fraction content at the first substrate layer (\textbf {a}) and output of ill-posedness (\textbf {b}). The data concerns the center of the domain ($y$=\SI {5}{m})}{figure.22}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.5}Computational Time Test}{38}{subsection.6.5}} \newlabel{subsec:time_test}{{6.5}{38}{Computational Time Test}{subsection.6.5}{}} \@writefile{lot}{\contentsline {table}{\numberline {16}{\ignorespaces Phisical parameters of the simulations to test the computational cost.}}{38}{table.16}} \newlabel{tab:T_ph1}{{16}{38}{Phisical parameters of the simulations to test the computational cost}{table.16}{}} \@writefile{lot}{\contentsline {table}{\numberline {17}{\ignorespaces Numerical parameters of the simulations to test the computational cost.}}{39}{table.17}} \newlabel{tab:T_ph2}{{17}{39}{Numerical parameters of the simulations to test the computational cost}{table.17}{}} \@writefile{lot}{\contentsline {table}{\numberline {18}{\ignorespaces Simulations to test the computation cost of the ill-posedness check routine.}}{39}{table.18}} \newlabel{tab:T_var}{{18}{39}{Simulations to test the computation cost of the ill-posedness check routine}{table.18}{}} \@writefile{lot}{\contentsline {table}{\numberline {19}{\ignorespaces Time spent in each module.}}{39}{table.19}} \newlabel{tab:T_times}{{19}{39}{Time spent in each module}{table.19}{}} \citation{Ashida90} \citation{Ashida90} \citation{Ashida90} \citation{Ashida90} \citation{Ashida90} \citation{Ashida72} \citation{Iwagaki56} \citation{Ashida72} \citation{Engelund74} \citation{Hasegawa83} \citation{Talmon95} \citation{Talmon95} \@writefile{lof}{\contentsline {figure}{\numberline {23}{\ignorespaces Time spent in each module.}}{40}{figure.23}} \newlabel{fig:T}{{23}{40}{Time spent in each module}{figure.23}{}} \@writefile{toc}{\contentsline {section}{\numberline {7}Application to Real Scenarios}{40}{section.7}} \newlabel{sec:apl}{{7}{40}{Application to Real Scenarios}{section.7}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.1}Laboratory Scale}{40}{subsection.7.1}} \newlabel{subsec:ashida90}{{7.1}{40}{Laboratory Scale}{subsection.7.1}{}} \@writefile{lot}{\contentsline {table}{\numberline {20}{\ignorespaces Parameters of the laboratory experiments conducted by \citet {Ashida90}. The flow depth $h$ is an average value on one wavelength. The sediment transport rate is a cross sectional average.}}{40}{table.20}} \newlabel{tab:A_eq}{{20}{40}{Parameters of the laboratory experiments conducted by \citet {Ashida90}. The flow depth $h$ is an average value on one wavelength. The sediment transport rate is a cross sectional average}{table.20}{}} \citation{Ashida90} \citation{Elder59} \citation{Elder59} \citation{Fischer69} \citation{Elder59} \@writefile{lof}{\contentsline {figure}{\numberline {24}{\ignorespaces Initial bed elevation of the model of the experiments by \citet {Ashida90}.}}{41}{figure.24}} \newlabel{fig:ashida_dom}{{24}{41}{Initial bed elevation of the model of the experiments by \citet {Ashida90}}{figure.24}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.1.1}Modeling of Secondary Flow}{41}{subsubsection.7.1.1}} \newlabel{subsubsec:ashida90_sf}{{7.1.1}{41}{Modeling of Secondary Flow}{subsubsection.7.1.1}{}} \citation{Ashida90} \citation{deVriend81_PhD} \citation{deVriend81_PhD} \citation{Ashida90} \citation{Ashida90} \citation{Sekine92_1} \citation{Talmon95} \citation{Sekine92_1} \@writefile{lof}{\contentsline {figure}{\numberline {25}{\ignorespaces Grain size distribution of the sediment in Case A2, original (blue) and discretized (orange).}}{42}{figure.25}} \newlabel{fig:A_gsd}{{25}{42}{Grain size distribution of the sediment in Case A2, original (blue) and discretized (orange)}{figure.25}{}} \@writefile{lot}{\contentsline {table}{\numberline {21}{\ignorespaces Simulations of Case A1 to study the consequences of the modeling choices as regards to secondary flow.}}{42}{table.21}} \newlabel{tab:A1_var}{{21}{42}{Simulations of Case A1 to study the consequences of the modeling choices as regards to secondary flow}{table.21}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.1.2}Modeling of the Bed Slope Effects}{42}{subsubsection.7.1.2}} \newlabel{subsubsec:ashida90_bs}{{7.1.2}{42}{Modeling of the Bed Slope Effects}{subsubsection.7.1.2}{}} \citation{Talmon95} \citation{Sekine92_1} \citation{Talmon95} \citation{Talmon95} \citation{Talmon95} \citation{Sekine92_1} \citation{Sekine92_1} \@writefile{lof}{\contentsline {figure}{\numberline {26}{\ignorespaces Measured bed elevation of case A1 (from \citet {Ashida90}).}}{43}{figure.26}} \newlabel{fig:A1_me}{{26}{43}{Measured bed elevation of case A1 (from \citet {Ashida90})}{figure.26}{}} \@writefile{lof}{\contentsline {figure}{\numberline {27}{\ignorespaces Predicted bed elevation of Case A1 without secondary flow (Simulation A1.1).}}{43}{figure.27}} \newlabel{fig:A11_etab}{{27}{43}{Predicted bed elevation of Case A1 without secondary flow (Simulation A1.1)}{figure.27}{}} \citation{Talmon95} \citation{Ashida90} \citation{Ashida90} \citation{Chavarrias18} \@writefile{lof}{\contentsline {figure}{\numberline {28}{\ignorespaces Predicted bed elevation of Case A1 with secondary flow and $D_H=\SI {1.6907e-04}{m^2/s}$ (Simulation A1.2).}}{44}{figure.28}} \newlabel{fig:A12_etab}{{28}{44}{Predicted bed elevation of Case A1 with secondary flow and $D_H=\SI {1.6907e-04}{m^2/s}$ (Simulation A1.2)}{figure.28}{}} \@writefile{lof}{\contentsline {figure}{\numberline {29}{\ignorespaces Predicted bed elevation of Case A1 with secondary flow and $D_H=\SI {0.50}{m^2/s}$ (Simulation A1.3).}}{44}{figure.29}} \newlabel{fig:A13_etab}{{29}{44}{Predicted bed elevation of Case A1 with secondary flow and $D_H=\SI {0.50}{m^2/s}$ (Simulation A1.3)}{figure.29}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.1.3}Modeling of a Degradational Case}{44}{subsubsection.7.1.3}} \newlabel{subsubsec:ashida90_deg}{{7.1.3}{44}{Modeling of a Degradational Case}{subsubsection.7.1.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {30}{\ignorespaces Longitudinal profile of bed elevation with time at $y=\SI {0.0466}{m}$ to the left of the centerline ($N=12$). The results correspond to the Simulation of Case A1 with secondary flow and $D_H=\SI {1.6907e-04}{m^2/s}$ (Simulation A1.2).}}{45}{figure.30}} \newlabel{fig:A12_xz}{{30}{45}{Longitudinal profile of bed elevation with time at $y=\SI {0.0466}{m}$ to the left of the centerline ($N=12$). The results correspond to the Simulation of Case A1 with secondary flow and $D_H=\SI {1.6907e-04}{m^2/s}$ (Simulation A1.2)}{figure.30}{}} \@writefile{lot}{\contentsline {table}{\numberline {22}{\ignorespaces Simulations of Case A2 to study the consequences of the modeling choices as regards to bed slope effects.}}{45}{table.22}} \newlabel{tab:A2_var}{{22}{45}{Simulations of Case A2 to study the consequences of the modeling choices as regards to bed slope effects}{table.22}{}} \@writefile{lof}{\contentsline {figure}{\numberline {31}{\ignorespaces Secondary flow intensity of Case A1 with $D_H=\SI {1.6907e-04}{m^2/s}$ (Simulation A1.2).}}{46}{figure.31}} \newlabel{fig:A12_I}{{31}{46}{Secondary flow intensity of Case A1 with $D_H=\SI {1.6907e-04}{m^2/s}$ (Simulation A1.2)}{figure.31}{}} \@writefile{lof}{\contentsline {figure}{\numberline {32}{\ignorespaces Secondary flow intensity of Case A1 with $D_H=\SI {0.50}{m^2/s}$ (Simulation A1.3).}}{46}{figure.32}} \newlabel{fig:A13_I}{{32}{46}{Secondary flow intensity of Case A1 with $D_H=\SI {0.50}{m^2/s}$ (Simulation A1.3)}{figure.32}{}} \@writefile{lof}{\contentsline {figure}{\numberline {33}{\ignorespaces Longitudinal profile of bed elevation with time at $y=\SI {0.0466}{m}$ to the left of the centerline ($N=12$). The results correspond to the Simulation of Case A2 using the bed slope effects relation by \citet {Talmon95} (Simulation A2.1).}}{47}{figure.33}} \newlabel{fig:A21_xz}{{33}{47}{Longitudinal profile of bed elevation with time at $y=\SI {0.0466}{m}$ to the left of the centerline ($N=12$). The results correspond to the Simulation of Case A2 using the bed slope effects relation by \citet {Talmon95} (Simulation A2.1)}{figure.33}{}} \@writefile{lof}{\contentsline {figure}{\numberline {34}{\ignorespaces Longitudinal profile of bed elevation with time at $y=\SI {0.0466}{m}$ to the left of the centerline ($N=12$). The results correspond to the Simulation of Case A2 using the bed slope effects relation by \citet {Sekine92_1} (Simulation A2.2).}}{47}{figure.34}} \newlabel{fig:A22_xz}{{34}{47}{Longitudinal profile of bed elevation with time at $y=\SI {0.0466}{m}$ to the left of the centerline ($N=12$). The results correspond to the Simulation of Case A2 using the bed slope effects relation by \citet {Sekine92_1} (Simulation A2.2)}{figure.34}{}} \@writefile{lof}{\contentsline {figure}{\numberline {35}{\ignorespaces Measured mean grain size at the bed surface of case A2 (from \citet {Ashida90}).}}{48}{figure.35}} \newlabel{fig:A2_me}{{35}{48}{Measured mean grain size at the bed surface of case A2 (from \citet {Ashida90})}{figure.35}{}} \@writefile{lof}{\contentsline {figure}{\numberline {36}{\ignorespaces Predicted mean grain size at the bed surface of case A2 (Simulation A2.3).}}{48}{figure.36}} \newlabel{fig:A23_dm}{{36}{48}{Predicted mean grain size at the bed surface of case A2 (Simulation A2.3)}{figure.36}{}} \@writefile{lof}{\contentsline {figure}{\numberline {37}{\ignorespaces Longitudinal profile of bed elevation with time at $y=\SI {0.0466}{m}$ to the left of the centerline ($N=12$). The results correspond to the Simulation of Case A3.}}{49}{figure.37}} \newlabel{fig:A31_xz}{{37}{49}{Longitudinal profile of bed elevation with time at $y=\SI {0.0466}{m}$ to the left of the centerline ($N=12$). The results correspond to the Simulation of Case A3}{figure.37}{}} \citation{Ottevanger15} \citation{Latteux95,Roelvink06,Ranasinghe11} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2}DVR Simulation}{50}{subsection.7.2}} \newlabel{subsec:dvr}{{7.2}{50}{DVR Simulation}{subsection.7.2}{}} \@writefile{lof}{\contentsline {figure}{\numberline {38}{\ignorespaces Rhine at its entrance to The Netherlands. The red mesh is the computational grid (Bovenrijn). (Adapted from Google Earth)}}{50}{figure.38}} \newlabel{fig:br2_dom}{{38}{50}{Rhine at its entrance to The Netherlands. The red mesh is the computational grid (Bovenrijn). (Adapted from Google Earth)}{figure.38}{}} \@writefile{lof}{\contentsline {figure}{\numberline {39}{\ignorespaces Initial flow depth.}}{51}{figure.39}} \newlabel{fig:D_h0}{{39}{51}{Initial flow depth}{figure.39}{}} \@writefile{lof}{\contentsline {figure}{\numberline {40}{\ignorespaces Initial mean grain size at the bed surface.}}{52}{figure.40}} \newlabel{fig:D_Fak0}{{40}{52}{Initial mean grain size at the bed surface}{figure.40}{}} \@writefile{lof}{\contentsline {figure}{\numberline {41}{\ignorespaces Initial mean grain size at the top substrate.}}{52}{figure.41}} \newlabel{fig:D_fIk0}{{41}{52}{Initial mean grain size at the top substrate}{figure.41}{}} \@writefile{lof}{\contentsline {figure}{\numberline {42}{\ignorespaces Ill-posed locations at the end of the simulation.}}{53}{figure.42}} \newlabel{fig:D_hir}{{42}{53}{Ill-posed locations at the end of the simulation}{figure.42}{}} \@writefile{lof}{\contentsline {figure}{\numberline {43}{\ignorespaces Locations that at some point have been ill-posed.}}{53}{figure.43}} \newlabel{fig:D_hir_c}{{43}{53}{Locations that at some point have been ill-posed}{figure.43}{}} \@writefile{lof}{\contentsline {figure}{\numberline {44}{\ignorespaces Bed elevation with time along a cross section in which the nodes are mainly well-posed (M=50; N=100:130).}}{54}{figure.44}} \newlabel{fig:D_xzt2}{{44}{54}{Bed elevation with time along a cross section in which the nodes are mainly well-posed (M=50; N=100:130)}{figure.44}{}} \@writefile{lof}{\contentsline {figure}{\numberline {45}{\ignorespaces Bed elevation with time along a cross section in which the nodes are mainly ill-posed (M=60; N=80:110).}}{54}{figure.45}} \newlabel{fig:D_xzt1}{{45}{54}{Bed elevation with time along a cross section in which the nodes are mainly ill-posed (M=60; N=80:110)}{figure.45}{}} \citation{Ashida90} \citation{Lanzoni06} \citation{Darmofal96} \citation{Ashida90} \citation{Elder59} \@writefile{toc}{\contentsline {section}{\numberline {8}Discussion}{55}{section.8}} \newlabel{sec:disc}{{8}{55}{Discussion}{section.8}{}} \citation{Joseph90} \citation{Sekine92_1} \citation{Ashida90} \@writefile{toc}{\contentsline {section}{\numberline {9}Conclusions}{56}{section.9}} \newlabel{sec:conc}{{9}{56}{Conclusions}{section.9}{}} \@writefile{lof}{\contentsline {figure}{\numberline {46}{\ignorespaces Ill-posedness flow chart.}}{58}{figure.46}} \newlabel{fig:ellipticity}{{46}{58}{Ill-posedness flow chart}{figure.46}{}} \bibstyle{agufull08_mod} \bibdata{references} \bibcite{Ashida72}{{1}{1972}{{\textit {Ashida and Michiue}}}{{}}} \bibcite{Ashida90}{{2}{1990}{{\textit {Ashida et~al.}}}{{\textit {Ashida, Egashira, Liu, and Umemoto}}}} \bibcite{Banks92}{{3}{1992}{{\textit {Banks et~al.}}}{{\textit {Banks, Brooks, Cairns, Davis, and Stacey}}}} \bibcite{vanBendegom47}{{4}{1947}{{\textit {{\van {Bendegom}{Van}{van}}~Bendegom}}}{{}}} \bibcite{Blom08}{{5}{2008}{{\textit {Blom}}}{{}}} \bibcite{Blom06_2}{{6}{2006}{{\textit {Blom et~al.}}}{{\textit {Blom, Parker, Ribberink, and de~Vriend}}}} \bibcite{Blom08_2}{{7}{2008}{{\textit {Blom et~al.}}}{{\textit {Blom, Ribberink, and Parker}}}} \@writefile{toc}{\contentsline {section}{\numberline {10}Recommendations}{59}{section.10}} \newlabel{sec:rec}{{10}{59}{Recommendations}{section.10}{}} \bibcite{Blom16}{{8}{2016}{{\textit {Blom et~al.}}}{{\textit {Blom, Viparelli, and Chavarr\'ias}}}} \bibcite{Blom17}{{9}{2017}{{\textit {Blom et~al.}}}{{\textit {Blom, Chavarr\'ias, Ferguson, and Viparelli}}}} \bibcite{Chavarrias16}{{10}{2016}{{\textit {Chavarr\'ias and Ottevanger}}}{{}}} \bibcite{Chavarrias18}{{11}{2018}{{\textit {Chavarr\'ias et~al.}}}{{\textit {Chavarr\'ias, Stecca, and Blom}}}} \bibcite{Colombini87}{{12}{1987}{{\textit {Colombini et~al.}}}{{\textit {Colombini, Seminara, and Tubino}}}} \bibcite{Courant28}{{13}{1928}{{\textit {Courant et~al.}}}{{\textit {Courant, Friedrichs, and Lewy}}}} \bibcite{Darmofal96}{{14}{1996}{{\textit {Darmofal and Schmid}}}{{}}} \bibcite{Devaney89}{{15}{1989}{{\textit {Devaney}}}{{}}} \bibcite{Duan98}{{16}{1998}{{\textit {Duan}}}{{}}} \bibcite{Duan04}{{17}{2004}{{\textit {Duan}}}{{}}} \bibcite{Duan01}{{18}{2001}{{\textit {Duan et~al.}}}{{\textit {Duan, Wang, and Jia}}}} \bibcite{Dulal10}{{19}{2010}{{\textit {Dulal et~al.}}}{{\textit {Dulal, Kobayashi, Shimizu, and Parker}}}} \bibcite{Egiazaroff65}{{20}{1965}{{\textit {Egiazaroff}}}{{}}} \bibcite{Elder59}{{21}{1959}{{\textit {Elder}}}{{}}} \bibcite{Engelund74}{{22}{1974}{{\textit {Engelund}}}{{}}} \bibcite{Engelund67}{{23}{1967}{{\textit {Engelund and Hansen}}}{{}}} \bibcite{Engelund73}{{24}{1973}{{\textit {Engelund and Skovgaard}}}{{}}} \bibcite{Erdogan67}{{25}{1967}{{\textit {Erdogan and Chatwin}}}{{}}} \bibcite{Exner20}{{26}{1920}{{\textit {Exner}}}{{}}} \bibcite{Fischer67}{{27}{1967}{{\textit {Fischer}}}{{}}} \bibcite{Fischer69}{{28}{1969}{{\textit {Fischer}}}{{}}} \bibcite{Fischer73}{{29}{1973}{{\textit {Fischer}}}{{}}} \bibcite{Flokstra77}{{30}{1977}{{\textit {Flokstra}}}{{}}} \bibcite{Fredsoe78}{{31}{1978}{{\textit {Freds\oe }}}{{}}} \bibcite{Hadamard22}{{32}{1923}{{\textit {Hadamard}}}{{}}} \bibcite{Hasegawa83}{{33}{1983}{{\textit {Hasegawa}}}{{}}} \bibcite{Hirano71}{{34}{1971}{{\textit {Hirano}}}{{}}} \bibcite{Hoey94}{{35}{1994}{{\textit {Hoey and Ferguson}}}{{}}} \bibcite{Iwagaki56}{{36}{1956}{{\textit {Iwagaki}}}{{}}} \bibcite{Iwasaki17}{{37}{2017}{{\textit {Iwasaki et~al.}}}{{\textit {Iwasaki, Nelson, Shimizu, and Parker}}}} \bibcite{Jagers03_PhD}{{38}{2003}{{\textit {Jagers}}}{{}}} \bibcite{Jia99}{{39}{1999}{{\textit {Jia and Wang}}}{{}}} \bibcite{Joseph90}{{40}{1990}{{\textit {Joseph and Saut}}}{{}}} \bibcite{Kabanikhin08}{{41}{2008}{{\textit {Kabanikhin}}}{{}}} \bibcite{Kalkwijk86}{{42}{1986}{{\textit {Kalkwijk and Booij}}}{{}}} \bibcite{Kalkwijk80}{{43}{1980}{{\textit {Kalkwijk and Vriend}}}{{}}} \bibcite{Kassem02}{{44}{2002}{{\textit {Kassem and Chaudhry}}}{{}}} \bibcite{Kelvin71}{{45}{1871}{{\textit {Kelvin}}}{{}}} \bibcite{Koch80}{{46}{1980}{{\textit {Koch and Flokstra}}}{{}}} \bibcite{Kuroki84}{{47}{1984}{{\textit {Kuroki and Kishi}}}{{}}} \bibcite{Lanzoni99}{{48}{1999}{{\textit {Lanzoni and Tubino}}}{{}}} \bibcite{Lanzoni06}{{49}{2006}{{\textit {Lanzoni et~al.}}}{{\textit {Lanzoni, Siviglia, Frascati, and Seminara}}}} \bibcite{Latteux95}{{50}{1995}{{\textit {Latteux}}}{{}}} \bibcite{Legleiter06}{{51}{2006}{{\textit {Legleiter and Kyriakidis}}}{{}}} \bibcite{Madsen88}{{52}{1988}{{\textit {Madsen et~al.}}}{{\textit {Madsen, Rugbjerg, and Warren}}}} \bibcite{MeyerPeter48}{{53}{1948}{{\textit {Meyer-Peter and M{\"u}ller}}}{{}}} \bibcite{Olesen82}{{54}{1982}{{\textit {Olesen}}}{{}}} \bibcite{Olesen83}{{55}{1983}{{\textit {Olesen}}}{{}}} \bibcite{Ottevanger15}{{56}{2015}{{\textit {Ottevanger et~al.}}}{{\textit {Ottevanger, Giri, and Sloff}}}} \bibcite{Parker76}{{57}{1976}{{\textit {Parker}}}{{}}} \bibcite{Parker91_1}{{58}{1991}{{\textit {Parker}}}{{}}} \bibcite{Parker82}{{59}{1982}{{\textit {Parker and Klingeman}}}{{}}} \bibcite{Parker82_3}{{60}{1982}{{\textit {Parker et~al.}}}{{\textit {Parker, Klingeman, and McLean}}}} \bibcite{Ranasinghe11}{{61}{2011}{{\textit {Ranasinghe et~al.}}}{{\textit {Ranasinghe, Swinkels, Luijendijk, Roelvink, Bosboom, Stive, and Walstra}}}} \bibcite{Ribberink87_PhD}{{62}{1987}{{\textit {Ribberink}}}{{}}} \bibcite{Rodi82}{{63}{1982}{{\textit {Rodi}}}{{}}} \bibcite{Roelvink06}{{64}{2006}{{\textit {Roelvink}}}{{}}} \bibcite{Rozovskii57}{{65}{1957}{{\textit {Rozovskii}}}{{}}} \bibcite{SaintVenant71}{{66}{1871}{{\textit {Saint-Venant}}}{{}}} \bibcite{Schielen93}{{67}{1993}{{\textit {Schielen et~al.}}}{{\textit {Schielen, Doelman, and de~Swart}}}} \bibcite{Sekine92_1}{{68}{1992}{{\textit {Sekine and Parker}}}{{}}} \bibcite{Seminara96}{{69}{1996}{{\textit {Seminara et~al.}}}{{\textit {Seminara, Colombini, and Parker}}}} \bibcite{sieben94}{{70}{1994}{{\textit {Sieben}}}{{}}} \bibcite{Sieben97_PhD}{{71}{1997}{{\textit {Sieben}}}{{}}} \bibcite{Siviglia13}{{72}{2013}{{\textit {Siviglia et~al.}}}{{\textit {Siviglia, Stecca, Vanzo, Zolezzi, Toro, and Tubino}}}} \bibcite{Sloff92}{{73}{1992}{{\textit {Sloff}}}{{}}} \bibcite{Sloff93}{{74}{1993}{{\textit {Sloff}}}{{}}} \bibcite{Stecca14}{{75}{2014}{{\textit {Stecca et~al.}}}{{\textit {Stecca, Siviglia, and Blom}}}} \bibcite{Sternberg75}{{76}{1875}{{\textit {Sternberg}}}{{}}} \bibcite{Struiksma85_2}{{77}{1985}{{\textit {Struiksma}}}{{}}} \bibcite{Talmon95}{{78}{1995}{{\textit {Talmon et~al.}}}{{\textit {Talmon, Struiksma, and Mierlo}}}} \bibcite{Thomson76}{{79}{1876}{{\textit {Thomson}}}{{}}} \bibcite{Tubino99}{{80}{1999}{{\textit {Tubino et~al.}}}{{\textit {Tubino, Repetto, and Zolezzi}}}} \bibcite{Viparelli17}{{81}{2017}{{\textit {Viparelli et~al.}}}{{\textit {Viparelli, Moreira, and Blom}}}} \bibcite{deVriend81_PhD}{{82}{1981}{{\textit {{\van {Vriend}{De}{de}}~Vriend}}}{{}}} \bibcite{Yatsu55}{{83}{1955}{{\textit {Yatsu}}}{{}}} \bibcite{Zimmerman78}{{84}{1978}{{\textit {Zimmerman and Kennedy}}}{{}}}