
Ill-posedness in 2D Mixed Sediment River
Morphodynamics

Report



Authors:

Vı́ctor Chavarŕıas 1

Willem Ottevanger 2

Ralph Schielen 3

Astrid Blom 1

1 Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands.
2 Deltares, Delft, The Netherlands.

3 Rijkswaterstaat, Lelystad, The Netherlands.

Version: 1.1.208 DRAFT compiled on 2017/11/20 AT 12:37

i



Ill-posedness in 2D Mixed Sediment River Morphodynamics V. CHAVARRÍAS et al.

Preface

This document is a concept report (concept rapportage) of the project “Ellipticity implementation in D3D”
(RWS bestelnummer 4500268550, TUD kenmerk 17363). We present the overall structure of the final report.
The text in red highlights incomplete sections.
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Abstract

The currently applied model for predicting mixed-sediment river morphodynamics at large spatial scales
and long time scales may be ill-posed under certain circumstances. In these conditions produces unphys-
ical and unrealistic results. The conditions in which the model loses its predictive capabilities have been
thoroughly studied under the assumption of one-dimensional flow. In this project we extend the analysis
to two-dimensional conditions. We implement a routine in the software package Delft3D to check whether
simulations run with this software suffer from ill-posedness.
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1 Introduction

In modeling the morphodynamic change of a river, estuary or the coast, most often a set of equations representing
flow is solved in combination with an equation accounting for mass conservation of bed sediment. This approach,
however, does not capture the mixed character of the sediment. The mixed character of the sediment in alluvial
rivers is a property necessary to explain physical phenomena such as downstream fining (Sternberg , 1875; Blom
et al., 2016), the gravel sand transition zone (Yatsu, 1955), the formation of bedload sheets (Seminara et al.,
1996), the evolution of bars (Lanzoni and Tubino, 1999), and bed surface armoring (Parker and Klingeman,
1982).

The currently applied model for predicting mixed-sediment river morphodynamics at large spatial scales
and long time scales is the active layer model (Hirano, 1971). This is a deterministic model where the bed is
discretized into layers and the sediment mixture in a finite number of size fractions. The topmost layer (the
active layer) interacts with the flow (i.e., the sediment transport and friction depend on the conditions of this
layer) while the layers below (the substrate) only act as bookkeeping system. There is a sediment flux from and
to the active layer if there is a time variation of the elevation of the interface between the active layer and the
substrate.

This model has proven its value over a wide range of different situations for decades. Nevertheless under
some circumstances the model may be ill-posed (Ribberink , 1987; Stecca et al., 2014; Chavarŕıas et al.) and in
these conditions produces unphysical and unrealistic results (Joseph and Saut , 1990; Chavarŕıas et al.).

There are alternatives to the active layer model such as the one by Ribberink (1987) where a second active
layer is taken into account. This model was derived for dune-dominated cases and it does not solve the problem
of ill-posedness (Sieben, 1997). The continuous model by Blom et al. (2003, 2006, 2008) was also derived for
dune dominated cases and it is not applicable at large space scales or long time scales (Blom, 2008). A simplified
continuous model derived by Viparelli et al. (2017) is applicable at large scale but it can also become ill-posed
(Chavarŕıas et al.). Thus, the active layer model is still the main model for predicting mixed sediment river
morphodynamics.

When the relevant morphodynamic characteristics can be well reproduced in a one-dimensional approach,
the flow is often represented by the Saint-Venant (1871) equations. The conditions under which this system of
equations can be ill-posed have been studied by, for instance, Ribberink (1987), Sieben (1997), and Stecca et al.
(2014). When flow curvature plays a significant role in the morphodynamics the one-dimensional approach is
no longer valid. This fact is clearly seen in river bends where the curvature of the flow creates a shallower
inner bend and deeper outer bend as was first observed and explained by Thomson (1876). In these cases
the flow is intrinsically three-dimensional and is characterized by a mean flow and a secondary or spiral flow.
For large temporal and spatial scales as typically occurs in engineering applications, it is not feasible to solve a
three-dimensional system of equations. However, the secondary flow can be parametrized and included in a two-
dimensional system of equations (i.e., the Shallow Water Equations), considerably reducing the computational
time (Kalkwijk and Booij , 1986). The parametrization is based on the intensity of the secondary flow I which
is a measure of the magnitude of the velocity component normal to the depth-averaged velocity. An advection-
diffusion equation models this variable which is found in extra terms in the momentum equations. Thus, the
consideration of secondary flow not only modifies the momentum equations but also adds an extra equation to
the system. Chavarŕıas and Ottevanger (2016) studied the mathematical character of the system of equations
formed by the Shallow Water Equations in combination with the active layer model. However, they did not study
the effect of considering secondary flow. They implemented a routine in the software package Delft3D to obtain
the parameters needed to assess the well-posedness of a simulation. Yet, the actual check on the parameters was
not implemented. Moreover, they did not study the implications of ill-posedness in 2D numerical simulations.

The objective of this project is to extend the previous analysis by including secondary flow. An analytical
study of the system of equations will shed light on the relative importance of this specific mechanism with
emphasis on the role of diffusive processes on the mathematical character of the system of equations. We aim
at showing the consequences of ill-posedness in 2D numerical simulations and to assess the implications for field
cases.

The report is organized as follows. In Section 2 we summarize the research questions. The model equations
are shown in Section 3. In Section 4 we linearize the system of equations. In Section 5 we present the results of
the linear analysis. In Section 6 we discuss the implementation of the check in Delft3D together with the results
of its application to numerical simulations. In Section 7 we discuss our results and sketch the future work. In
Section 8 we present the main conclusions.

2 Research Questions and Methodology

Our objective is to study the mathematical character of the system of equations used to model mixed-sediment
morphodynamics in two dimensions. We will focus on the following research questions:
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1. What is the role of secondary flow as regards to the mathematical character of the system of equations?

2. What are the consequences of ill-posedness in 2D numerical simulations?

3. What are the implications of ill-posedness in field cases?

To answer Research Question 1 we will conduct a mathematical analysis of the system of equations composed
by the Shallow Water Equations in combination with the active layer model and secondary flow. We will assess
the role of diffusive processes as well as the relative importance of the different physical mechanism.

To answer Research Question 2 we will finish the implementation of the check tool in Delft3D. Then, the
tool will be extended accounting for secondary flow. Once the tool is validated, it will be applied to idealized
simulations to get insight on the consequences of ill-posedness.

To answer Research Question 3 we will run simulations which, rather than idealized, resemble the conditions
frequently found in field cases.

Eventually, we will write a report presenting the results.

3 Model Equations

In this section we describe the equations that model shallow water flow with a parametrized secondary flow
correction together with the active layer model of Hirano (1971). These equations represent hydrostatic flow
over a mobile bed composed of several (N) non-cohesive sediment fractions. In Section 3.1 we write the model
equations. In Section 3.2 we simplify the equations. In Section 3.3 we describe the closure relations of the
model. The equations are expanded in Section 3.4 to write them in matrix form (Section 3.5).

3.1 Balance Equations

The equations we use are:

• Water mass conservation:
∂h

∂t
+
∂qx
∂x

+
∂qy
∂y

= 0 (1)

• Water momentum conservation in x direction:

∂qx
∂t

+
∂(q2x/h+ gh2/2)

∂x
+
∂
( qxqy

h

)
∂y

+ gh
∂η

∂x
− F ′sx = −ghSfx (2)

• Water momentum conservation in y direction:

∂qy
∂t

+
∂(q2y/h+ gh2/2)

∂y
+
∂
( qxqy

h

)
∂x

+ gh
∂η

∂y
− F ′sy = −ghSfy (3)

• Constitutive equation for the secondary flow intensity:

∂I

∂t
+
qx
h

∂I

∂x
+
qy
h

∂I

∂y
−DH

∂2I

∂x2
−DH

∂2I

∂y2
= Ss (4)

• Sediment mass conservation for the entire mixture (Exner):

∂η

∂t
+
∂qbx
∂x

+
∂qby
∂y

= 0 (5)

• Sediment mass conservation per grain size in the active layer (Hirano):

∂Mak

∂t
+ f Ik

∂(η − La)

∂t
+
∂qbkx
∂x

+
∂qbky
∂y

= 0 k ∈ {1, N − 1} (6)

• Sediment mass conservation per grain size in the substrate:

∂Msk

∂t
− f Ik

∂(η − La)

∂t
= 0 k ∈ {1, N − 1} (7)

where:
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• x = Cartesian x coordinate [m]

• y = Cartesian y coordinate [m]

• t = time coordinate [s]

• h = flow depth [m]

• qx = specific water discharge in x direction [m2/s]

• qy = specific water discharge in y direction [m2/s]

• η = bed elevation [m]

• f Ik = volume fraction content of size fraction k at the interface between the active layer and the substrate
[−]

• La = active layer thickness [m]

• qbkx = sediment transport of size fraction k (including pores) in x direction [m2/s]

• qbky = sediment transport of size fraction k (including pores) in y direction [m2/s]

• qbx = total sediment transport (including pores) in x direction [m2/s]

• qby = total sediment transport (including pores) in y direction [m2/s]

• Sfx = friction slope in the x direction [−]

• Sfy = friction slope in the y direction [−]

• g = acceleration due to gravity [m/s2]

• Mak = FakLa = volume of sediment of size fraction k in the active layer per unit of surface area [m]

• Fak = volume fraction content of size fraction k in the active layer [−]

• Msk =
∫ η−La
η0

fsk(z)dz = volume of sediment of size fraction k in the substrate per unit of surface area

[m]

• η0 = reference bed elevation [m]

• fsk = volume fraction of size fraction k in the substrate [−]

• N = number of size fractions [−]

• F ′sx = force per unit mass along the flow depth due to the secondary flow in the x direction [m2/s2]

• F ′sy = force per unit mass along the flow depth due to the secondary flow in the y direction [m2/s2]

• I = secondary flow intensity [m/s]

• DH = horizontal diffusion coefficient [m2/s]

• Ss = source term due to secondary flow [m/s]

The volume fraction content of sediment at the active layer and the substrate are constrained by the equa-
tions:

N∑
k=1

Fak = 1,

N∑
k=1

fsk(z) = 1 , (8)

thus, the volume of sediment per unit area are constrained by the equations:

N∑
k=1

Mak = La,

N∑
k=1

Msk = η − La − η0 . (9)
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3.2 Simplifications

We:

1. assume a constant active layer thickness:
∂La
∂t

= 0 (10)

Substitution of Equation 10 in 6 and 7 yields:

∂Mak

∂t
− f Ik

∂qbx
∂x
− f Ik

∂qby
∂y

+
∂qbkx
∂x

+
∂qbky
∂y

= 0 k ∈ {1, N − 1} (11)

∂Msk

∂t
+ f Ik

∂qbx
∂x

+ f Ik
∂qby
∂y

= 0 k ∈ {1, N − 1} (12)

3.3 Closure Relations

The governing equations still need closure relations for the friction slope, the sediment transport rate, the
secondary flow terms, and the fractions at the interface between the substrate and the active layer to form a
complete set of equations. In this section we describe those closure relations.

3.3.1 Friction Slope

The friction slope is:

Sfx =
CfqxQ

gh3
Sfy =

CfqyQ

gh3
(13)

where:

• Cf = dimensionless friction coefficient [−]

• Q = |~q| = module of the specific water discharge [m/s2]

3.3.2 Sediment Transport Rate

The sediment transport rate per size fraction (including pores) ~qbk [m2/s] can be expressed as:

~qbk = (qbkx, qbky) = qbk(cosϕsk, sinϕsk) k ∈ {1, N} (14)

where:

• ϕsk = direction of the sediment transport rate (correcting for bed slope and secondary flow) [rad]

• qbk = absolute value of the sediment transport rate including pores [m2/s]

The direction of the sediment transport rate ϕsk [rad] is:

tanϕsk =
sinϕτ − 1

gsk

∂η
∂y

cosϕτ − 1
gsk

∂η
∂x

k ∈ {1, N} (15)

where:

• ϕτ = direction of the sediment transport rate only correcting for secondary flow [rad]

• gsk = bed slope function [−]

The direction of the sediment transport rate ϕτ [rad] is:

tanϕτ =
qy − hαI qxQ I
qx − hαI qyQ I

(16)

where:

• αI = constant [−]

4
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The constant αI [−] is:

αI =
2

κ2
Es

(
1−

√
Cf

2κ

)
(17)

where:

• κ = Von Kármán constant [−]

• Es = calibration parameter [−]

The bed slope function gsk is:

gsk = Asθ
Bs
k

(
dk
h

)Cs ( dk
Dm

)Ds
(18)

where:

• As = calibration constant [−]

• Bs = calibration constant [−]

• Cs = calibration constant [−]

• Ds = calibration constant [−]

• θk = module of the Shields stress of size fraction k [−]

• dk = characteristic grain size of size fraction k [m]

• Dm = characteristic mean grain size of the mixture [m]

Values for the constants are summarized in Table 1.

As Bs Cs Ds Note
1.70 0.5 0.0 0.0 Talmon et al. (1995) (their experiments, straigh flume)
0.85 0.5 0.0 0.0 Talmon et al. (1995) (experiments by Zimmerman and Kennedy (1978), circular flume)
9.00 0.5 0.3 0.0 Talmon et al. (1995) (2D runs of field and lab)

Table 1: Parameters of the function for the bed slope.

The absolute value of the sediment transport rate is:

qbk = Fak

√
gRd3k (1− p) q∗bk k ∈ {1, N} , (19)

where:

• q∗bk = nondimensional sediment transport rate [−]

• p = porosity [−]

• R = ρs/ρw − 1 = submerged sediment density [−]

• ρs = 2650 = sediment density [kg/m3]

• ρw = 1000 = water density [kg/m3]

The nondimensional sediment transport rate is computed using, for instance, a generalized form of the
relation developed by Meyer-Peter and Müller (1948)

q∗bk = Amax (θk − ξkθc, 0)
B

k ∈ {1, N} , (20)

where:

• A = nondimensional parameter [−]

• B = nondimensional parameter [−]

• θc = nondimensional critical bed shear stress [−]

5



Ill-posedness in 2D Mixed Sediment River Morphodynamics V. CHAVARRÍAS et al.

• ξk = hiding coefficient [−]

The module of the Shields stress is:

θk =
Cf

(
Q
h

)2
gRdk

k ∈ {1, N} (21)

A common hiding functions is the one due to Egiazaroff (1965):

ξk =

 log10 (19)

log10

(
19 dk

Dm

)
2

k ∈ {1, N} (22)

A simpler expression was developed by Parker et al. (1982):

ξk =

(
Dm

dk

)b
k ∈ {1, N} (23)

where:

• b = nondimensional parameter [−]

3.3.3 Secondary Flow Terms

The secondary flow terms in the momentum equations are:

F ′sx =
∂T ′xx
∂x

+
∂T ′xy
∂y

(24)

F ′sy =
∂T ′yx
∂x

+
∂T ′yy
∂y

(25)

where:

• T ′lm = shear stress per unit mass and volume along the flow depth in the direction l-m [m3/s2]

The closure relation for the secondary flow force terms are:

T ′xx = −2
β∗I

Q
qxqy (26)

T ′xy = T ′yx =
β∗I

Q

(
q2x − q2y

)
(27)

T ′yy = T ′yy = 2
β∗I

Q
qxqy (28)

where:

• β∗ = βc
(
5α− 15.6α2 + 37.5α3

)
= constant [−]

• βc ∈ [0, 1] = calibration parameter [−]

• α =

√
Cf
κ < 0.5 = constant [−]

The closure relation for the source term of the secondary flow equation (4) is:

Ss = −I − Ie
TI

(29)

where:

• Ie = Q/Rs = equilibrium secondary flow intensity [m/s]

• TI = adaptation time scale [s]

• Rs = radius of curvature of the streamlines [m]

6
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The radius of curvature of the streamlines is defined as:

1

Rs
=

dx
dt

d2y
dt2 −

dy
dt

d2x
dt2((

dx
dt

)2
+
(

dy
dt

)2)3/2
, (30)

substituting u = dx
dt and v = dy

dt we obtain:

1

Rs
=

udv
dt − v

du
dt

(u2 + v2)
3/2

, (31)

expanding the material derivatives and assuming steady flow we obtain:

1

Rs
=
u2 ∂v∂x + uv ∂v∂y − uv

∂u
∂x − v

2 ∂u
∂y

(u2 + v2)
3/2

, (32)

in terms of water discharge we obtain:

1

Rs
=
−qxqy ∂qx∂x + q2x

∂qy
∂x − q

2
y
∂qx
∂y + qxqy

∂qy
∂y(

q2x + q2y
)3/2 . (33)

The adaptation time scale TI is:

TI =
LIh

Q
(34)

where:

• LI = L∗Ih = adaptation length scale [m]

• L∗I = 1−2α
2κ2α = nondimensional adaptation length scale [−]

3.3.4 Volume Fraction Content at the Interface

The volume fraction content at the interface between the active layer and the substrate under degradational
conditions is assumed to be equal to the volume fraction content at the top part of the substrate. Under aggra-
dational conditions Hirano (1971) proposed the flux to the substrate to have the same grain size distribution
as the active layer. Parker (1991) introduced the concept that the aggradational flux to the substrate is also
influenced by the grain size distribution of the bed load. Hoey and Ferguson (1994) combined both concepts in
a parameter that sets the contribution of the bed load relative to the active layer. Currently, only the initial
concept of Hirano is implemented in Delft3D which in mathematical terms can be written as:

f Ik =

{
fsk(z = η − La) if ∂(η−La)

∂t < 0

Fak if ∂(η−La)
∂t > 0

(35)

3.4 Expansion of the System Equations

All the terms in the model equations need to be expressed as a function of the second derivative, first derivative,
linear relation, or source of the dependent variables of the system (i.e., h, qx, qy, I, η,Mak∀k ∈ {1, N − 1}). The
terms that need to be decomposed are the secondary flow terms in the momentum equations (Section 3.4.1),
the sediment transport rate (Section 3.4.2), and the source term in the constitutive equation for secondary flow
(Section 3.4.3). The system equations are written in expanded form in Sections 3.4.4-3.4.9.

3.4.1 Expansion of the Secondary Flow Terms in the Momentum Equations

The secondary flow terms in the momentum equations, Equations (26), (27), and (27) are a function of the
specific water discharge and secondary flow intensity only:

T ′ij = f(qx, qy, I)⇒

⇒
∂T ′ij
∂x

=
∂T ′ij
∂qx

∂qx
∂x

+
∂T ′ij
∂qy

∂qy
∂x

+
∂T ′ij
∂I

∂I

∂x

and

⇒
∂T ′ij
∂y

=
∂T ′ij
∂qx

∂qx
∂y

+
∂T ′ij
∂qy

∂qy
∂y

+
∂T ′ij
∂I

∂I

∂y

(36)
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where i = (x, y) and j = (x, y).

3.4.2 Expansion of the Sediment Transport Rate

The directional sediment transport rates qbkx and qbky are not only a function of the flow velocity in their
respective directions but also of the flow velocity in the other direction and the secondary flow intensity:

qbkx = f(h, qx, qy, I,Mak,
∂η

∂x
,
∂η

∂y
)⇒

⇒ ∂qbkx
∂x

=
∂qbkx
∂h

∂h

∂x
+
∂qbkx
∂qx

∂qx
∂x

+
∂qbkx
∂qy

∂qy
∂x

+
∂qbkx
∂I

∂I

∂x

+

N−1∑
l=1

∂qbkx
∂Mal

∂Mal

∂x
+
∂qbkx

∂ ∂η∂x

∂2η

∂x2
+
∂qbkx

∂ ∂η∂y

∂2η

∂x∂y
k ∈ {1, N}

(37)

and,

qbky = f(h, qx, qv, I,Mak,
∂η

∂x
,
∂η

∂y
)⇒

⇒ ∂qbky
∂y

=
∂qbky
∂h

∂h

∂y
+
∂qbky
∂qx

∂qx
∂y

+
∂qbky
∂qy

∂qy
∂y

+
∂qbky
∂I

∂I

∂y

+

N−1∑
l=1

∂qbky
∂Mal

∂Mal

∂y
+
∂qbky

∂ ∂η∂x

∂2η

∂x∂y
+
∂qbky

∂ ∂η∂y

∂2η

∂y2
k ∈ {1, N}

(38)

The same holds for the total bed load in x and y direction (qbx and qby). Note that MaN is not an independent
variable.

3.4.3 Expansion of the Source Term in the Constitutive Equation for the Secondary Flow

Here we expand the term Ss of Equation (4).

Ss = −I − Ie
TI

=
−I
TI

+
Ie
TI

=
−QI
h2L∗I

+ Ssxx
∂qx
∂x

+ Ssyx
∂qy
∂x

+ Ssxy
∂qx
∂y

+ Ssyy
∂qy
∂y

(39)

where:

Ssxx =
1

Qh2L∗I
(−qxqy)

Ssyx =
1

Qh2L∗I
(q2x)

Ssxy =
1

Qh2L∗I
(−q2y)

Ssyy =
1

Qh2L∗I
(qxqy)

(40)

3.4.4 Water Mass Conservation

All the terms of Equation (1) are already expanded:

∂h

∂t
+
∂qx
∂x

+
∂qy
∂y

= 0 (41)

3.4.5 Water Momentum Conservation in x Direction

∂qx
∂t

+
∂(q2x/h+ gh2/2)

∂x
+
∂
( qxqy

h

)
∂y

+ gh
∂η

∂x
− F ′sx = −ghSfx =⇒

∂qx
∂t

+

(
gh−

(qx
h

)2) ∂h

∂x
+

(
2
qx
h
− ∂T ′xx

∂qx

)
∂qx
∂x
− ∂T ′xx

∂qy

∂qy
∂x
− ∂T ′xx

∂I

∂I

∂x
+ gh

∂η

∂x
+

+
−qxqy
h2

∂h

∂y
+

(
qy
h
−
∂T ′xy
∂qx

)
∂qx
∂x
−
(
qx
h
−
∂T ′xy
∂qy

)
∂qy
∂y
−
∂T ′xy
∂I

∂I

∂y
+

+
CfqxQ

h2
= 0

(42)
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3.4.6 Water Momentum Conservation in y Direction

∂qy
∂t

+
∂(q2y/h+ gh2/2)

∂y
+
∂
( qxqy

h

)
∂x

+ gh
∂η

∂y
− F ′sy = −ghSfy =⇒

∂qy
∂t

+
−qxqy
h2

∂h

∂x
+

(
qy
h
−
∂T ′yx
∂qx

)
∂qx
∂x

+

(
qx
h
−
∂T ′yx
∂qy

)
∂qy
∂x
−
∂T ′yx
∂I

∂I

∂x
+

+

(
gh−

(qy
h

)2) ∂h

∂y
−
∂T ′yy
∂qx

∂qx
∂y

+

(
2
qy
h
−
∂T ′yy
∂qy

)
∂qy
∂y
−
∂T ′yy
∂I

∂I

∂y
+ gh

∂η

∂y
+

+
CfqyQ

h2
= 0

(43)

3.4.7 Constitutive Equation for the Secondary Flow

∂I

∂t
+
qx
h

∂I

∂x
+
qy
h

∂I

∂y
−DH

∂2I

∂x2
−DH

∂2I

∂y2
= Ss =⇒

∂I

∂t
−DH

∂2I

∂x2
−DH

∂2I

∂y2
− Ssxx

∂qx
∂x
− Ssyx

∂qy
∂x

+
qx
h

∂I

∂x
− Ssxy

∂qx
∂y
− Ssyy

∂qy
∂y

+
qy
h

∂I

∂y
+

QI

h2L∗I
= 0

(44)

3.4.8 Sediment Mass Conservation for the Entire Mixture

∂η

∂t
+
∂qbx
∂x

+
∂qby
∂y

= 0 =⇒

∂η

∂t
+
∂qbx
∂h

∂h

∂x
+
∂qbx
∂qx

∂qx
∂x

+
∂qbx
∂qy

∂qy
∂x

+
∂qbx
∂I

∂I

∂x
+

N−1∑
l=1

∂qbx
∂Mal

∂Mal

∂x
+

+
∂qby
∂h

∂h

∂y

∂qby
∂qx

∂qx
∂y

+
∂qby
∂qy

∂qy
∂y

+
∂qby
∂I

∂I

∂y
+

N−1∑
l=1

∂qby
∂Mal

∂Mal

∂y

(45)

3.4.9 Sediment Mass Conservation per Grain Size in the Active Layer

∂Mak

∂t
− f Ik

∂qbx
∂x
− f Ik

∂qby
∂y

+
∂qbkx
∂x

+
∂qbky
∂y

= 0 k ∈ {1, N − 1} =⇒

∂Mak

∂t
+

[
∂qbkx
∂h

− f Ik
∂qbx
∂h

]
∂h

∂x
+

[
∂qbkx
∂qx

− f Ik
∂qbx
∂qx

]
∂qx
∂x

+

[
∂qbkx
∂qy

− f Ik
∂qbx
∂qy

]
∂qy
∂x

+

+

[
∂qbkx
∂I

− f Ik
∂qbx
∂I

]
∂I

∂x
+

N−1∑
l=1

[
∂qbkx
∂Mal

− f Ik
∂qbx
∂Mal

]
∂Mal

∂x
+[

∂qbkx
∂h

− f Ik
∂qbx
∂h

]
∂h

∂y
+

[
∂qbkx
∂qx

− f Ik
∂qbx
∂qx

]
∂qx
∂y

+

[
∂qbkx
∂qy

− f Ik
∂qbx
∂qy

]
∂qy
∂y

+

+

[
∂qbkx
∂I

− f Ik
∂qbx
∂I

]
∂I

∂y
+

N−1∑
l=1

[
∂qbkx
∂Mal

− f Ik
∂qbx
∂Mal

]
∂Mal

∂y
+

(46)

3.5 Matrix Formulation

In this section we write the system of equations in matrix formulation. Equation (12) is a linear combination of
equations (11) and (5). The rest of the equations do not depend on Msk. Thus, the substrate equations provide
a zero eigenvalue with multiplicity N − 1. To simplify the writing we omit the substrate equations.

We recast the model Equations, (41), (42), (43), (44), (45), and (46) in matrix form:

∂Q

∂t
+ Dx

∂2Q

∂x2
+ Dy

∂2Q

∂y2
+ C

∂2Q

∂x∂y
+ Ax

∂Q

∂x
+ Ay

∂Q

∂y
+ S = 0 (47)

The dependent variables are h, qx, qy, I, η, and Mak for 1 ≤ k ≤ N − 1:

Q =


h
qx
qy
I
η

[Mak]

 (48)
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The diffusive matrix in x direction is:

Dx =



0 0 0 0 0 [0]
0 0 0 0 0 [0]
0 0 0 0 0 [0]
0 0 0 DH 0 [0]

0 0 0 0 ∂qbx
∂ ∂η∂x

[0]

[0] [0] [0] [0]
[
∂qbkx
∂ ∂η∂x

− f Ik
∂qbx
∂ ∂η∂x

]
[0]


(49)

The diffusive matrix in y direction is:

Dy =



0 0 0 0 0 [0]
0 0 0 0 0 [0]
0 0 0 0 0 [0]
0 0 0 DH 0 [0]

0 0 0 0
∂qby

∂ ∂η∂y
[0]

[0] [0] [0] [0]

[
∂qbky

∂ ∂η∂y
− f Ik

∂qby

∂ ∂η∂y

]
[0]


(50)

The matrix of cross derivatives is:

C =



0 0 0 0 0 [0]
0 0 0 0 0 [0]
0 0 0 0 0 [0]
0 0 0 0 0 [0]

0 0 0 0 ∂qbx
∂ ∂η∂y

+
∂qby

∂ ∂η∂x
[0]

[0] [0] [0] [0]

[
∂qbkx
∂ ∂η∂y

− f Ik
∂qbx
∂ ∂η∂y

+
∂qbky

∂ ∂η∂x
− f Ik

∂qby

∂ ∂η∂x

]
[0]


(51)

The system matrix in x direction is:

Ax =



0 1 0 0 0 [0]

gh−
(
qx
h

)2
2 qxh −

∂T ′xx
∂qx

−∂T
′
xx

∂qy
−∂T

′
xx

∂I gh [0]
−qxqy
h2

qy
h −

∂T ′yx
∂qx

qx
h −

∂T ′yx
∂qy

−∂T
′
yx

∂I 0 [0]

0 −Ssxx −Ssyx qx
h 0 [0]

∂qbx
∂h

∂qbx
∂qx

∂qbx
∂qy

∂qbx
∂I 0

[
∂qbx
∂Mal

][
∂qbkx
∂h − f

I
k
∂qbx
∂h

] [
∂qbkx
∂qx
− f Ik

∂qbx
∂qx

] [
∂qbkx
∂qy
− f Ik

∂qbx
∂qy

] [
∂qbkx
∂I − f

I
k
∂qbx
∂I

]
[0]

[
∂qbkx
∂Mal

− f Ik
∂qbx
∂Mal

]


(52)

The system matrix in y direction is:

Ay =



0 0 1 0 0 [0]
−qxqy
h2

qy
h −

∂T ′xy
∂qx

qx
h −

∂T ′xy
∂qy

−∂T
′
xy

∂I 0 [0]

gh−
( qy
h

)2 −∂T
′
yy

∂qx
2
qy
h −

∂T ′yy
∂qy

−∂T
′
yy

∂I gh [0]

0 −Ssxy −Ssyy qy
h 0 [0]

∂qby
∂h

∂qby
∂qx

∂qby
∂qy

∂qby
∂I 0

[
∂qby
∂Mal

][
∂qbky
∂h − f

I
k
∂qby
∂h

] [
∂qbky
∂qx
− f Ik

∂qby
∂qx

] [
∂qbky
∂qy
− f Ik

∂qby
∂qy

] [
∂qbky
∂I − f

I
k
∂qby
∂I

]
[0]

[
∂qbky
∂Mal

− f Ik
∂qby
∂Mal

]


(53)

The vector of source terms is:

S =



0
ghSfx
ghSfy
QI
h2L∗I

0
[0]

 (54)
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4 Perturbation Analysis

In this Section we conduct a perturbation analysis of the model equations (Section 4.1). We test the linear
analysis by means of numerical simulations (Section 4.2).

4.1 Linearization

We consider a reference state of dependent variables Q0 which is a solution of the equations and a small
perturbation to the state Q′ so that Q = Q0 + Q′. The reference state is that of steady uniform straight flow
in an arbitrary direction over a flat sloping bed composed of an arbitrary uniform grain size distribution.

Mathematically, h0 = c1, qx0 = c2, qy0 = c3, I0 = 0, ∂η
∂x = c4, ∂η

∂y = c5, Mak0 = c6 ∀k ∈ {1, N − 1}, where
cX stands for a constant such that:

∂Q0

∂t
+ Dx (Q0)

∂2Q0

∂x2
+ Dy (Q0)

∂2Q0

∂y2
+ C (Q0)

∂2Q0

∂x∂y
+ Ax (Q0)

∂Q0

∂x
+ Ay (Q0)

∂Q0

∂y
+ S (Q0) = 0 =⇒

Ax (Q0)
∂Q0

∂x
+ Ay (Q0)

∂Q0

∂y
+ S (Q0) = 0

(55)

We substitute the perturbed solution into the system of equations (47):

∂Q

∂t
+ Dx (Q)

∂2Q

∂x2
+ Dy (Q)

∂2Q

∂y2
+ C (Q)

∂2Q

∂x∂y
+ Ax (Q)

∂Q

∂x
+ Ay (Q)

∂Q

∂y
+ S (Q) = 0 =⇒

∂ (Q0 + Q′)

∂t
+ Dx (Q0 + Q′)

∂2 (Q0 + Q′)

∂x2
+ Dy (Q0 + Q′)

∂2 (Q0 + Q′)

∂y2
+ C (Q0 + Q′)

∂2 (Q0 + Q′)

∂x∂y
+

+Ax (Q0 + Q′)
∂ (Q0 + Q′)

∂x
+ Ay (Q0 + Q′)

∂ (Q0 + Q′)

∂y
+ S (Q0 + Q′) = 0

(56)

The terms of the matrices Dx, Dy, C, Ax, and Ay evaluated at (Q0 + Q′) are linearized such that:

G (Q0 + Q′) = G (Q0) + GJ (Q0) Q′ +O
(
Q′

2
)

(57)

where G is one of the matrices and GJ is a matrix that contains the first order terms. For instance, for the
first term of the momentum equation in the x direction we obtain:

gh−
(qx
h

)2
= g (h0 + h′)−

(
(qx0 + q′x)

(h0 + h′)

)2

=

= gh0 + gh′ −
(
q2x0 + q

′2
x + 2qx0q

′
x

) (
h−20 − 2h30h

′) =

= gh0 −
(
qx0
h0

)2

+

(
g +

q2x0
h30

)
h′ + 2

qx0
h20

q′x − h−20 q
′2
x + 2h−30 h′q

′2
x − 4h−30 qx0q

′
xh
′

(58)

Neglecting secondary terms we obtain:

Dj (Q0 + Q′)
∂2 (Q0 + Q′)

∂j2
= [Dj (Q0) + DJj (Q0) Q′]

[
∂2Q0

∂j2
+
∂2Q′

∂j2

]
= Dj (Q0)

∂2Q′

∂j2
(59)

C (Q0 + Q′)
∂2 (Q0 + Q′)

∂xy
= [C (Q0) + CJ (Q0) Q′]

[
∂2Q0

∂xy
+
∂2Q′

∂xy

]
= C (Q0)

∂2Q′

∂xy
(60)

Aj (Q0 + Q′)
∂ (Q0 + Q′)

∂j
= [Aj (Q0) + AJj (Q0) Q′]

[
∂Q0

∂j
+
∂Q′

∂j

]
= AJj (Q0) Q′

∂Q0

∂j
+ Aj (Q0)

∂Q′

∂j
(61)

where subindex j = x, y. We have used that ∂2Q0

∂j2 = 0 and that GJ (Q0) Q′ ∂
2Q′

∂j2 is negligible. Note that
∂Q0

∂j 6= 0 because the bed slope is not zero. In this case:

gh
∂η

∂j
= g (h0 + h′)

∂ (η0 + η′)

∂j
= gh0

∂η0
∂j

+ gh0
∂η′

∂j
+ gh′

∂η0
∂j

(62)
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where we have neglected secondary terms. The first right hand side term is part of Aj (Q0) ∂Q0

∂j , the second

term is part of Aj (Q0) ∂Q
′

∂j and the third term is the only term of AJj (Q0) Q′ ∂Q0

∂j . Thus, we write:

AJt =
(
AJx (Q0) ∂Q0

∂x + AJy (Q0) ∂Q0

∂y

)
Q′ =



0 0 0 0 0 [0]

g ∂η0∂x 0 0 0 0 [0]

g ∂η0∂y 0 0 0 0 [0]

0 0 0 0 0 [0]
0 0 0 0 0 [0]

[0] [0] [0] [0] [0] [0]


(63)

where ∂η0
∂j = −Cfqj0Q0

gh3
0

which we obtain from the fact that Q0 is a uniform steady solution.

The source term is linearized:

S (Q0 + Q′) = S (Q0) + SJ (Q0) Q′ +O
(
Q′

2
)

(64)

where SJ is the jacobian of S:

SJ =



0 0 0 0 0 [0]
−2QCfqx

h3

Cf(Q2+q2x)
h2Q

Cfqxqy
Qh2 0 0 [0]

−2QCfqy
h3

Cfqxqy
Qh2

Cf(Q2+q2y)
h2Q 0 0 [0]

−2QI
L∗Ih

3
qxI

L∗Ih
2Q

qyI
L∗Ih

2Q
Q

L∗Ih
2 0 [0]

0 0 0 0 0 [0]
[0] [0] [0] [0] [0] [0]


(65)

Substituting Equations (59), (60), (61), (63), and (64) in Equation (56) and using the fact Q0 satisfies
Equation (47 we obtain:

∂Q′

∂t
+ Dx0

∂2Q′

∂x2
+ Dy0

∂2Q′

∂y2
+ C0

∂2Q′

∂x∂y
+ Ax0

∂Q′

∂x
+ Ay0

∂Q′

∂y
+ B0Q′ = 0 (66)

where the subindex 0 indicates that the matrix is evaluated at the unperturbed state and B = SJ + AJt.
Assuming a wave type perturbation Q′ = Q̂ (t) eikxx+ikyy where i is the imaginary unit and kx and ky are

wave numbers in x and y direction respectively and Q̂ (t) is a time dependent amplitude we obtain the system:

∂Q̂ (t)

∂t
−Dx0k

2
xQ̂ (t)−Dy0k

2
yQ̂ (t)−C0kxkyQ̂ (t) + Ax0ikxQ̂ (t) + Ay0ikyQ̂ (t) + B0Q̂ (t) = 0 =⇒

∂Q̂ (t)

∂t
=
[
Dx0k

2
x + Dy0k

2
y + C0kxky −Ax0ikx −Ay0iky −B0

]
Q̂ (t) .

(67)

Using the properties of the eigenvalues we obtain the ordinary differential equation:

dΦ

dt
= λΦ , (68)

where Φ and λ are an eigenvector and eigenvalue of matrix

R = Dx0k
2
x + Dy0k

2
y + C0kxky −Ax0ikx −Ay0iky −B0 , (69)

respectively. The real part of λm ∀m ∈ {1, N + 4} is the growth rate of the perturb solution. The imaginary
part yields the propagation speed.

4.2 Test Using Numerical Simulations

In this Section we test the linear stability analysis. To this end we study the initial development of free
alternate bars in straight channels which are recognized to be the result of an instability mechanism (Engelund
and Skovgaard , 1973; Parker , 1976; Fredsœ, 1978; Olesen, 1982, 1983; Kuroki and Kishi , 1984; Ikeda, 1984;
Jaeggi , 1984; Colombini et al., 1987; Tubino, 1991; Schielen et al., 1993; Tubino et al., 1999; Lanzoni , 2000). We
compare the linear theory with the results of numerical simulations using Delft3D following a similar strategy
as Siviglia et al. (2013).

The linear analysis predicts the stability or instability of a combinations of wave numbers in streamwise and
transverse direction for a given a reference state. That is, a double-periodic perturbation (characterized by a
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certain wave number in x and y direction) is added to a uniform flow and if the real part of all the eigenvalues
of the resulting system, Equation (69), are negative, the perturbations will decay. If at least one is positive,
they will grow.

We consider a uniform state with the parameters shown in Table 2. We consider unisize sediment. The
sediment transport rate is computed using the relation by Engelund and Hansen (1967). The bed slope effects
are taken into account using the relation by Sekine and Parker (1992). This is equivalent to use the relation by
Koch and Flokstra (1980), Equation (18), with parameters As = 1, Bs = 0, Cs = 0, and Ds = 0. The instability
domain of the reference state is plotted in Figure 1. The curves are the separatrix between the linearly stable
and unstable domains (i.e., growth rate, real part of the eigenvalues, equal to 0). The continuous line is obtained
assuming no secondary flow while the discontinuous line considers secondary flow with a diffusion coefficient
DH = 5 m2/s. The left plot presents the domain in terms of wave number. The right plot present the same
domain in terms of wavelength. Due to the impermeable boundary conditions at the closed domains (i.e., the
river banks), only natural multiples of π are valid transverse wave numbers. Since the first mode (i.e., transverse
bars) is the most unstable one (Colombini et al., 1987; Schielen et al., 1993), the width is obtained as π/kwy.
Note that secondary flow reduces the unstable domain thus reducing the conditions in which bars grow.

u [m/s] v [m/s] h [m] Cf [−] dk [m] s [−] qbk [m2/s]
1 0 1 0.007 0.001 7.135 41× 10−4 1.118× 10−4

Table 2: Physical parameters of the reference state to test linear analysis.
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Figure 1: Domain of linear stability of the reference situation (Table 2) in terms of: (a) wavenumber, and (b)
wave length. The continuous line is the separatrix for the case without secondar flow while the dashed line is
the separatrix considering secondary flow and a diffusion coefficient DH = 5 m2/s. The circle and square mark
the conditions of the numerical simulations (Table 4).

We conduct three numerical simulations varying the width and the consideration of secondary flow (Figure 1).
The simulations start under the equilibrium conditions of the uniform reference state in which a double-periodic
perturbation in bed elevation that satisfies the boundary conditions is added:

η′ = A sin
(πy
B

)
cos

(
2πx

Lb
− π

2

)
, (70)

where A = 0.005 m is the amplitude, B [m] is the width, and Lb = 100 m is the streamwise wavelength. The
channel is aligned with the x axis with the origin at the center of the channel. Table 3 presents the parameters
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which are equal for all simulations and Table 4 presents the ones which are different. The simulations have a
spin up time of 1800 s for the flow to adapt to the perturbed initial condition. We have visually checked that
after the spin up time the flow is steady.

L [m] ∆t [s] ∆x [m] ∆y [m] T [s]
1000 1 1 1 (1800) + 3600

Table 3: Parameters which are equal for the simulations to test the linear analysis. The symbols not defined
previously are the length of the domain L [m], the time step ∆t [s], the space step in the x direction ∆x [m],
the space step in y direction [m], and the simulation time T [s]. The time in parenthesis is the spin-up time.

Simulation B [m] sec. flow linear analysis
L1 22 N growth
L2 17 N decay
L3 22 Y decay

Table 4: Parameters which are different for the simulations to test the linear analysis.

In Figure 2 we show the evolution of the flow depth with time at y = B/2 for a location in which initially we
find the trough of a bar (i.e., maximum flow depth). For the three numerical simulations the initial perturbation
grows or decays as predicted in the linear analysis.
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Figure 2: Domain of linear stability of the reference situation (Table 2) in terms of: (a) wavenumber, and (b)
wave length. The continuous line is the separatrix for the case without secondar flow while the dashed line is
the separatrix considering secondary flow and a diffusion coefficient DH = 5 m2/s. The circle and square mark
the conditions of the numerical simulations (Table 4).

5 Results of the Linear Analysis

In this section we apply the results of the linear analysis to study the effects of secondary flow and bed slope
effects on the mathematical character of the system of equations.
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5.1 Definition of Ill-posedness

In this section we describe the conditions

• Hadamard definition

• dampening of oscillations for increasing kwx and kwy

• the largest degree rules

• friction does not affect

• if no diffusion in all equations

• if diffusion in not all equations

• if no diffusion only eigenvalues of Ax i Ay

• possible role of eigenvectors

5.2 Secondary Flow in a Unisize Sediment Case

• ill-posed if sec flow but no diffusion 020

• role of diffusion

5.3 Secondary Flow in a Mixed-size Sediment Case

5.4 Bed Slope Effect in a Unisize Sediment Case

5.5 Bed Slope Effect in a Mixed-size Sediment Case

6 Ill-posedness Check in Delft3D

In this section we test the implementation of the ellipticity check in Delft3D.

6.1 Implementation Test Without Considering Secondary Flow nor Bed Slope
Effects

In this section we test the implementation of the ellipticity check under conditions without secondary flow nor
including the effects of bed slope on the sediment transport. Under these conditions the system of equations
(47) does not have diffusive terms. Moreover, the well-posedness of the system is not influenced by the source
terms (Section 4.2). Thus, the test is based solely on the analysis of the matrices in Equations (52) and (53).
Chavarŕıas and Ottevanger (2016) checked that the matrices were correctly implemented. Here we test that
the eigenvalues are correctly computed and that the output is correctly passed.

We use the same three test simulations as in Chavarŕıas and Ottevanger (2016). The simulations are 2
dimensional. The domain is rectangular with two open boundaries on opposite ends. The initial condition
is in equilibrium for a certain upstream water and sediment discharge and a certain downstream water level.
The initial water and sediment discharge remain constant throughout the simulation time. A slow lowering
(0.001 m/min) of the downstream water level is imposed that causes degradational conditions. The simulations
differ in the number of size fractions and the initial stratigraphy. Table 5 summarizes the initial conditions
and physical parameters that are the same for all simulations. Table 6 contains the initial conditions and
physical parameters which are different between simulations. Table 7 summarizes the numerical parameters of
the simulations.

L [m] B [m] u [m/s] v [m/s] h [m] Cf [−] La [m] s [−]
1 1 1 0 1 0.007 0.1 7.13541 · 10−4

Table 5: Physical parameters of the simulations to test the implementation that are equal for all simulations
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Simulation dk [m] Fak [−] fIk [−] qbk [m2/s] Sed. Trans. Math. Charac.

I1 [0.001, 0.002] [0.50, 0.50] [0.50, 0.50] [5.588, 2.794] · 10−5 EH W

I2 [0.001, 0.002] [1.00, 0.00] [0.00, 0.00] [0.000, 5.588] · 10−5 EH I

I3 [0.001, 0.002, 0.004] [0.33, 0.33, 0.33] [0.33, 0.33, 0.33] [6.723, 6.319, 5.865] · 10−5 MPM-P0.8 W

Table 6: Physical parameters of the simulations to test the implementation that are different for all simulations.
EH stands for Engelund and Hansen (1967) and MPM-P0.8 stands for Meyer-Peter and Müller (1948) with the
hiding correction by Parker et al. (1982) with parameter b=0.8. W means well-posed and I ill-posed.

∆t [s] ∆x [m] ∆y [m] ∆z [m] T [s]
0.1 0.5 0.5 0.5 60

Table 7: Numerical parameters of the simulations to test the implementation

The symbols not defined previously are the length L [m] and width B [m] of the domain, the bed slope s [−],
the time step ∆t [s], the space step in the x direction ∆x [m], the space step in y direction [m], the thickness
of the substrate layers ∆z [m], and the simulation time T [s].

In Tables 8 and 9 we show the eigenvalues of matrices Ax and Ay, respectively, as computed for the reference
situation using Matlab. In Tables 10 and 11 we show the eigenvalues given in Delft3D at the node n = 2 and
m = 2 at t = 2 s. The minimal difference is mainly due to the fact that while the eigenvalues computed in
matlab are those at the exact reference situation, the ones in Delft3D are computed with the flow conditions
after 2 s.

Eigenvalue I1 I2 I3
λ1 +4.133 + 0.000i +4.133 + 0.000i +4.134 + 0.000i
λ2 −2.134 + 0.000i −2.133 + 0.000i −2.135 + 0.000i
λ3 (+6.216 + 0.000i)× 10−4 (+7.251 + 6.630i)× 10−4 (+1.382 + 0.000i)× 10−3

λ4 (+1.552 + 0.000i)× 10−3 (+7.251− 6.630i)× 10−4 (+3.258 + 0.000i)× 10−3

λ5 +1.000 + 0.000i +1.000 + 0.000i (+2.995 + 0.000i)× 10−3

λ6 +0.000 + 0.000i +1.000 + 0.000i

Table 8: Eigenvalues in the x direction for the reference situation computed with Matlab.

Eigenvalue I1 I2 I3
λ1 +3.132 + 0.000i +3.132 + 0.000i −3.133 + 0.000i
λ2 −3.132 + 0.000i −3.132 + 0.000i +3.133 + 0.000i
λ3 +0.000 + 0.000i +0.000 + 0.000i +0.000 + 0.000i
λ4 +0.000 + 0.000i +0.000 + 0.000i +0.000 + 0.000i
λ5 +0.000 + 0.000i +0.000 + 0.000i +0.000 + 0.000i
λ6 +0.000 + 0.000i +0.000 + 0.000i +0.000 + 0.000i

Table 9: Eigenvalues in the y direction for the reference situation computed with Matlab.

Eigenvalue I1 I2 I3
λ1 +4.133 + 0.000i +4.133 + 0.000i +4.133 + 0.000i
λ2 −2.134 + 0.000i −2.133 + 0.000i −2.135 + 0.000i
λ3 (+6.216 + 0.000i)× 10−4 (+7.249 + 6.622i)× 10−4 (+1.383 + 0.000i)× 10−3

λ4 (+1.552 + 0.000i)× 10−3 (+7.249− 6.622i)× 10−4 (+3.261 + 0.000i)× 10−3

λ5 +1.000 + 0.000i +1.000 + 0.000i (+2.998 + 0.000i)× 10−3

λ6 +0.000 + 0.000i +1.000 + 0.000i

Table 10: Eigenvalues in the x direction computed in Delft3D.

• check output elliptic/hyperbolic
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Eigenvalue I1 I2 I3
λ1 +3.132 + 0.000i +3.132 + 0.000i −3.132 + 0.000i
λ2 −3.132 + 0.000i −3.132 + 0.000i +3.132 + 0.000i
λ3 +0.000 + 0.000i +0.000 + 0.000i +0.000 + 0.000i
λ4 +0.000 + 0.000i +0.000 + 0.000i +0.000 + 0.000i
λ5 +0.000 + 0.000i +0.000 + 0.000i +0.000 + 0.000i
λ6 +0.000 + 0.000i +0.000 + 0.000i +0.000 + 0.000i

Table 11: Eigenvalues in the y direction computed in Delft3D.

6.2 Implementation Test Considering Secondary Flow and Bed Slope Effects

6.3 Experiment by Ashida et al. (1990)

6.4 DVR Simulation

7 Discussion

• Perturb around a state with secondary flow intensity equal to equlibrium. That is, perturb around
equilibrium solution of flow in a bend rather than flat bed no circular flow.

• possible role of eigenvectors

8 Conclusions

• role of diffusion in secondary flow formulation

• implementation validated in Delft3D
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