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Summary
Morfodynamische simulaties geven belangrijke informatie over het systeemgedrag, en moeten
dus van voldoende kwaliteit zijn. Er is aangetoond dat de huidige morfodynamische modellen
soms ’elliptisch gedrag’ vertonen. Dat betekent dat de resultaten dan mogelijk geen voorspel-
lende waarde meer hebben. Aangezien Rijkswaterstaat veelvuldig gebruik maakt van mor-
fodynamische modellen (bijvoorbeeld bij het project Duurzame Vaardiepte Rijndelta (DVR),
maar ook bij het simuleren van de gevolgen van Ruimte voor de Riviermaatregelen en bij
ingrepen zoals sedimentsuppletie) is een check op dit probleem noodzakelijk om voldoende
vertrouwen te houden in langjarige morfodynamische berekeningen. Vanuit de literatuur en
vanuit recent onderzoek van TUD is bekend dat bij bepaalde condities, het actieve laag con-
cept van Hirano dat ten grondslag ligt aan de morfologische modelering van meerdere sedi-
ment fracties een elliptisch karakter kan krijgen. Dat ligt niet aan de numerieke modelsyste-
men (Delft3D en SOBEK) maar is een eigenschap van de wiskundige vergelijkingen. Als men
zich niet bewust is van deze eigenschap, is er een risico bij de interpretatie van de resultaten
van langjarige morfodynamische berekeningen. Een analyse van dit probleem is urgent en
noodzakelijk voor de toepassingen (RWS), voor de adviseurs (o.m. HKV, RHDHV), en ook
voor Deltares als adviseur en tevens ontwikkelaar van de numerieke modelsystemen.

In samenwerking tussen TUD, Deltares en RWS kan dit probleem snel opgepakt worden.
Door een analyse van het probleem uit te voeren kunnen we aangeven waar de risico’s liggen
en een oplossingsrichting formuleren die uitzicht biedt op een oplossingsmethode die fun-
damenteel correct is. Daarmee wordt de richting voor vervolgonderzoek aangegeven. Het
bepalen van de aan- of afwezigheid van het probleem (dus: zijn de berekeningen wel of niet
elliptisch) in morfodynamische berekeningen die in de praktijk worden gemaakt (bijvoorbeeld
bij de beschrijving van de langjarige ontwikkeling van de rivierbodem of het bepalen van de
gevolgen van bagger- en suppletieprogramma’s) is onderdeel van deze pilotactiviteit.
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1 Introduction

The current model to predict mixed-sediment river morphodynamics at large spatial scales
and long time scales is the active layer model (Hirano, 1971). This is a deterministic model
where the bed is discretized in layers and the sediment mixture in a finite number of size frac-
tions. The topmost layer (the active layer) interacts with the flow (i.e., the sediment transport
and friction depend on the conditions of this layer) while the layers below (the substrate) only
act as bookkeeping system. There is a sediment flux from and to the active layer if there is a
time variation of the elevation of the interface between the active layer and the substrate.

This model has proven its value over a wide range of different situations for decades. Nev-
ertheless in some circumstances the model may be ill-posed (Ribberink, 1987; Stecca et al.,
2014) and in these conditions produces unphysical and unrealistic results.

There are alternatives to the active layer model as the one by Ribberink (1987) where a sec-
ond active layer is taken into account. This model was derived for dune-dominated cases and
it does not solve the problem of ill-posedness (Sieben, 1997). The continuous model by Blom
et al. (2003, 2006, 2008) was also derived for dune dominated cases and it is not applicable
at large space scales or long time scales (Blom, 2008). A simplified continuous model derived
by Viparelli et al. (2016) which is applicable at large scale but it can also become ill-posed
(Chavarrías et al.). Thus the active layer model is still the main model for mixed sediment river
morphodynamics.

All previous analyses of the active layer model that we are aware of have been done assuming
one-dimensional flow. Yet, to model the effects of flow curvature it is necessary to (at least)
consider the bi-dimensionality of flow, which introduces a degree of complexity. While the
equations to model the evolution of the bed are intrinsically the same only adding one dimen-
sion to the divergence terms, the flow equations substantially change between one and two
dimensions. In two dimensions the water flow is modelled using the Shallow Water Equations
(which in one dimension reduce into the Saint-Venant (1871) equations). The Shallow Water
Equations do not resolve for the vertical distribution of the velocity and are thus inadequate
when, for instance, large curvature in a river bend induces a three dimensional flow (sec-
ondary flow). Yet, the secondary flow can be parametrized to avoid the expense of a three
dimensional model (Kalkwijk and Booij, 1986). The parametrization is based on the intensity
of the secondary flow I which is a measure of the magnitude of the velocity component normal
to the depth-averaged velocity. An advection-diffusion equation models this variable which is
found in extra terms in the momentum equations. Thus, the consideration of secondary flow
not only modifies the momentum equations but also adds an extra equation to the system.

Another degree of complexity is added when taking into consideration the effect of the bed
slope (in streamwise and lateral direction) in the sediment transport. This effect corrects for
the fact that sediment is more easily transported downslope than upslope. A fundamental
difference between this second degree of complexity when compared to the parametrization
of secondary flow is that this does not introduce a dependent variable as it is modelled as a
closure relation. Nevertheless, this closure relation also introduces a diffusive character just
as the secondary flow.

Here we aim at building a check function to assess the well-posedness of 2D simulations run
in Delft3D. To this end in Section 2 we describe the equations that model shallow water flow
coupled to the active layer model. In Section 3 we describe how we characterize a 2D system
of partial differential equations and we obtain the matrix-vector formulation of the model. In
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Section 4 we present the (preliminary) results of the implementation of the check function.
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2 Mathematical Model Description

In this section we describe the equations that model shallow water flow with a parametrized
secondary flow correction together with the active layer model of Hirano (1971). These equa-
tions represent hydrostatic flow over a mobile bed composed of several (N ) non-cohesive
sediment fractions. In Section 2.1 we write the model equations. In Section 2.2 we simplify
the equations. In Section 2.3 we describe the closure relations of the model.

2.1 Equations

The equations we use are:

• Water mass conservation:

∂h

∂t
+
∂qx
∂x

+
∂qy
∂y

= 0 (2.1)

• Water momentum conservation in x direction:

∂qx
∂t

+
∂(q2x/h+ gh2/2)

∂x
+
∂
( qxqy

h

)
∂y

+ gh
∂η

∂x
− F ′sx = −ghSfx (2.2)

• Water momentum conservation in y direction:

∂qy
∂t

+
∂(q2y/h+ gh2/2)

∂y
+
∂
( qxqy

h

)
∂x

+ gh
∂η

∂y
− F ′sy = −ghSfy (2.3)

• Constitutive equation for the secondary flow intensity:

∂I

∂t
+
qx
h

∂I

∂x
+
qy
h

∂I

∂y
−DH

∂2I

∂x2
−DH

∂2I

∂y2
= Ss (2.4)

• Sediment mass conservation for the entire mixture (Exner):

∂η

∂t
+
∂qbx
∂x

+
∂qby
∂y

= 0 (2.5)

• Sediment mass conservation per grain size in the active layer (Hirano):

∂Mak

∂t
+ f Ik

∂(η − La)
∂t

+
∂qbkx
∂x

+
∂qbky
∂y

= 0 k ∈ {1, N − 1} (2.6)

• Sediment mass conservation per grain size in the substrate:

∂Msk

∂t
− f Ik

∂(η − La)
∂t

= 0 k ∈ {1, N − 1} (2.7)

where:

• x = x coordinate [m]
• y = y coordinate [m]
• t = time coordinate [s]
• h = flow depth [m]
• qx = specific water discharge in x direction [m2/s]
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• qy = specific water discharge in y direction [m2/s]
• η = bed elevation [m]
• f Ik = volume fraction content of size fraction k at the interface between the active layer

and the substrate [−]
• La = active layer thickness [m]
• qbkx = sediment transport of size fraction k (including pores) in x direction [m2/s]
• qbky = sediment transport of size fraction k (including pores) in y direction [m2/s]
• qbx = total sediment transport (including pores) in x direction [m2/s]
• qby = total sediment transport (including pores) in y direction [m2/s]
• Sfx = friction slope in the x direction [−]
• Sfy = friction slope in the y direction [−]
• g = acceleration due to gravity [m/s2]
• Mak = FakLa = volume of sediment of size fraction k in the active layer per unit of

surface area [m]
• Fak = volume fraction content of size fraction k in the active layer [−]
• Msk =

∫ η−La

η0
fsk(z)dz = volume of sediment of size fraction k in the substrate per unit

of surface area [m]
• η0 = reference bed elevation [m]
• fsk = volume fraction of size fraction k in the substrate [−]
• N = number of size fractions [−]
• F ′sx = force per unit mass along the flow depth due to the secondary flow in the x direction

[m2/s2]
• F ′sy = force per unit mass along the flow depth due to the secondary flow in the y direction

[m2/s2]
• I = secondary flow intensity [m/s]
• DH = diffusion coefficient [m2/s]
• Ss = source term [m/s]

We use a notation with prime to avoid confusion with the Deltares notation which is based on
the non-conservative Shallow Water Equations.

The volume fraction content of sediment at the active layer and the substrate are constrained
by the equations:

N∑
k=1

Fak = 1,
N∑
k=1

fsk(z) = 1 , (2.8)

thus, the volume of sediment per unit area are constrained by the equations:

N∑
k=1

Mak = La,

N∑
k=1

Msk = η − La − η0 . (2.9)
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2.2 Simplifications

We:

1 assume a constant active layer thickness:

∂La
∂t

= 0 (2.10)

Substitution of Equation 2.10 in 2.6 and 2.7 yields:

∂Mak

∂t
− f Ik

∂qbx
∂x
− f Ik

∂qby
∂y

+
∂qbkx
∂x

+
∂qbky
∂y

= 0 k ∈ {1, N − 1} (2.11)

∂Msk

∂t
+ f Ik

∂qbx
∂x

+ f Ik
∂qby
∂y

= 0 k ∈ {1, N − 1} (2.12)

2.3 Closure Relations

The governing equations still need closure relations for the friction slope, the sediment trans-
port rate, the secondary flow terms, and the fractions at the interface between the substrate
and the active layer to form a complete set of equations. In this section we describe those
closure relations.

2.3.1 Friction Slope

The friction slope is:

Sfx =
CfqxQ

gh3
Sfy =

CfqyQ

gh3
(2.13)

where:

• Cf = dimensionless friction coefficient [−]
• Q = |~q| = module of the specific water discharge [m/s2]

2.3.2 Sediment Transport Rate

The sediment transport rate per size fraction (including pores) ~qbk [m2/s] can be expressed
as:

~qbk = (qbkx, qbky) = qbk(cosϕτ , sinϕτ ) k ∈ {1, N} (2.14)

where:

• ϕτ = direction of the sediment transport rate [rad]
• qbk = absolute value of the sediment transport rate including pores [m2/s]

The direction of the sediment transport rate ϕτ [rad] is:

tanϕτ =
qy − hαI qxQ I
qx − hαI qyQ I

(2.15)

where:
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• αI = constant [−]

The constant αI [−] is:

αI =
2

κ2
Es

(
1−

√
Cf

2κ

)
(2.16)

where:

• κ = Von Kármán constant [−]
• Es = calibration parameter [−]

The absolute value of the sediment transport rate is:

qbk = Fak

√
gRd3k (1− p)Amax (θk − ξkθc, 0)B k ∈ {1, N} (2.17)

where:

• p = porosity [−]
• R = ρs/ρw − 1 = submerged sediment density [−]
• ρs = 2650 = sediment density [kg/m3]
• ρw = 1000 = water density [kg/m3]
• dk = characteristic grain size of size fraction k [m]
• A = nondimensional parameter [−]
• B = nondimensional parameter [−]
• θk = module of the Shields stress of size fraction k [-]
• θc = nondimensional critical bed shear stress [−]
• ξk = hiding coefficient [−]

The module of the Shields stress is:

θk =
Cf
(
Q
h

)2
gRdk

k ∈ {1, N} (2.18)

A common hiding functions is the one due to Egiazaroff (1965):

ξk =

 log10 (19)

log10

(
19 dk

Dm

)
2

k ∈ {1, N} (2.19)

where:

• Dm = characteristic mean grain size of the mixture [m]

A simpler expression was developed by Parker et al. (1982):

ξk =

(
Dm

dk

)b
k ∈ {1, N} (2.20)

where:

• b = nondimensional parameter [−]
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2.3.3 Secondary Flow Terms

The secondary flow terms in the momentum equations are:

F ′sx =
∂T ′xx
∂x

+
∂T ′xy
∂y

(2.21)

F ′sy =
∂T ′yx
∂x

+
∂T ′yy
∂y

(2.22)

where:

• T ′lm = shear stress per unit mass and volume along the flow depth in the direction l-m
[m3/s2]

The closure relation for the secondary flow terms are:

T ′xx = −2
β∗I

Q
qxqy (2.23)

T ′xy = T ′yx =
β∗I

Q

(
q2x − q2y

)
(2.24)

T ′yy = T ′yy = 2
β∗I

Q
qxqy (2.25)

where:

• β∗ = βc (5α− 15.6α2 + 37.5α3) = constant [−]
• βc ∈ [0, 1] = calibration parameter [−]

• α =

√
Cf

κ
< 0.5 = constant [−]

2.3.4 Volume Fraction Content at the Interface

The volume fraction content at the interface between the active layer and the substrate under
degradational conditions is assumed to be equal to the volume fraction content at the top part
of the substrate. Under aggradational conditions Hirano (1971) proposed the flux to the sub-
strate to have the same grain size distribution as the active layer. Parker (1991) introduced
the concept that the aggradational flux to the substrate is also influenced by the grain size dis-
tribution of the bed load. Hoey and Ferguson (1994) combined both concepts in a parameter
that sets the contribution of the bed load relative to the active layer. Currently, only the initial
concept of Hirano is implemented in Delft3D which in mathematical terms can be written as:

f Ik =

{
fsk(z = η − La) if ∂(η−La)

∂t
< 0

Fak if ∂(η−La)
∂t

> 0
(2.26)
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3 Model Characterization

In this section we describe the assessment of the model comprised by the Shallow Water
Equations coupled to the active layer model Hirano (1971). In Section 3.1 we introduce the
necessary mathematical concepts. To asses the model we decompose the equations’ terms
into spatial gradients of the dependent variables (Section 3.2). In Section 3.3 we present the
matrix-vector formulation of the model.

3.1 Hyperbolicity of a 2D System of Equations

We first assume a system of equations without diffusive terms. In a 1D problem the equations
can be recast in a matrix form:

∂Q

∂t
+A

∂Q

∂x
= S . (3.1)

This is the one-dimensional quasi-linear non-conservative form of the advection equation. Q
is the vector of dependent variables, A is the system matrix, and S is the vector of source
terms. t [s] denotes the time coordinate, x [m] the streamwise coordinate.

The problem in Equation 3.1 will be well-posed if wave-like solutions exist. This is, if the n
system equations give rise to n waves propagating along the domain. This property is called
hyperbolicity. A system is hyperbolic or parabolic at a point (x, t) if all the eigenvalues of
matrix A are real. Physical propagation problems are modelled with hyperbolic or parabolic
systems of equations. If all the eigenvalues are complex, the system is said to be elliptic.
Elliptic systems model equilibrium physical problems. If matrix A has both real and complex
eigenvalues it is a mixed-type system.

A 2D problem can be recast in a matrix form:

∂Q

∂t
+Ax

∂Q

∂x
+Ay

∂Q

∂y
= S (3.2)

where Ax and Ay are the system matrices in x and y direction.

For a 2D problem to be hyperbolic, wavelike solutions must exist for any arbitrary direction
specified by the unit vector ~n = (nx, ny). Thus, the problem specified by Equation 3.2 is said
to be hyperbolic if the matrix:

A2D = Axnx +Ayny (3.3)

diagonalizes with real eigenvalues. In this case, the derivative of the eigenvalues with respect
to nx and ny yield the eigenvalues in the x-y domain. These eigenvalues form the intersection
of the Monge cone(s) with a unit time (see e.g. Sloff (1992); Sieben (1994)). Thus the Monge
cone is a visualization of the propagation celerity of the information in the domain. If at least
one cone is not real the system is elliptic.

3.2 Decomposition of the System Equations

In this section we decompose the divergence terms of the model equations.

Mathematical analysis of the well-posedness of the Hirano active layer concept in 2D models 9 of 29



1230044-000-ZWS-0035, Version 1.0, 19 December 2016, definitief

3.2.1 Decomposition of the Sediment Transport Rate

The directional sediment transport rates qbkx and qbky are not only a function of the flow
velocity in their respective directions but also of the flow velocity in the other direction and the
secondary flow intensity:

qbkx = f(h, qx, qy, I,Mak)⇒

⇒ ∂qbkx
∂x

=
∂qbkx
∂h

∂h

∂x
+
∂qbkx
∂qx

∂qx
∂x

+
∂qbkx
∂qy

∂qy
∂x

+
∂qbkx
∂I

∂I

∂x

+
N−1∑
l=1

∂qbkx
∂Mal

∂Mal

∂x
k ∈ {1, N}

(3.4)

and,

qbky = f(h, qx, qv, I,Mak)⇒

⇒ ∂qbky
∂y

=
∂qbky
∂h

∂h

∂y
+
∂qbky
∂qx

∂qx
∂y

+
∂qbky
∂qy

∂qy
∂y

+
∂qbky
∂I

∂I

∂y

+
N−1∑
l=1

∂qbky
∂Mal

∂Mal

∂y
k ∈ {1, N}

(3.5)

The same holds for the total bed load in x and y direction (qbx and qby). Note thatMaN is not
an independent variable.

The derivatives of the directional sediment transport rates with respect to the model variables
have the same expression as when secondary flow is not considered. However, in this case
the direction of the sediment transport depends on all the variables but the volume of sediment
in the active layer. Thus, some of the derivatives of the sediment transport direction that are
zero when secondary flow is not considered are not 0 when this is considered.

3.2.2 Secondary Flow Terms

The secondary flow t, Equations (2.23), (2.24), and (2.24) are a function of the specific water
discharge and secondary flow intensity only:

T ′ij = f(qx, qy, I)⇒

⇒
∂T ′ij
∂x

=
∂T ′ij
∂qx

∂qx
∂x

+
∂T ′ij
∂qy

∂qy
∂x

+
∂T ′ij
∂I

∂I

∂x

and

⇒
∂T ′ij
∂y

=
∂T ′ij
∂qx

∂qx
∂y

+
∂T ′ij
∂qy

∂qy
∂y

+
∂T ′ij
∂I

∂I

∂y

(3.6)

where i = (x, y) and j = (x, y).
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3.2.3 Substitution and Expansion

In this section we substitute the decomposed divergence terms in the model equations and
we expand the terms to obtain products of the gradient of the dependent variables.

All the terms in the water mass equation, Equation (2.1), are already products of the gradient
of the dependent variables.

Expanding the terms of the equation for the conservation of water momentum in the x direc-
tion, Equation (2.2), we obtain:

∂qx
∂t

+

(
gh−

(qx
h

)2) ∂h

∂x
− qxqy

h2
∂h

∂y

+

(
2
qx
h
− ∂T ′xx

∂qx

)
∂qx
∂x

+

(
qy
h
−
∂T ′xy
∂qx

)
∂qx
∂y

−∂T
′
xx

∂qy

∂qy
∂x

+

(
qx
h
−
∂T ′xy
∂qy

)
∂qy
∂y

−∂T
′
xx

∂I

∂I

∂x
−
∂T ′xy
∂I

∂I

∂y
+ gh

∂η

∂x
= −ghSfx

(3.7)

Expanding the terms of the equation for the conservation of water momentum in the y direc-
tion, Equation (2.3), we obtain:

∂qy
∂t
− qxqy

h2
∂h

∂x
+

(
gh−

(qy
h

)2) ∂h

∂y

+

(
qy
h
−
∂T ′yx
∂qx

)
∂qx
∂x
−
∂T ′yy
∂qx

∂qx
∂y

+

(
qx
h
−
∂T ′yx
∂qy

)
∂qy
∂x

+

(
2
qy
h
−
∂T ′yy
∂qy

)
∂qy
∂y

−
∂T ′yx
∂I

∂I

∂x
−
∂T ′yy
∂I

∂I

∂y
+ gh

∂η

∂y
= −ghSfy

(3.8)

All the terms in the constitutive equation of the secondary flow intensity, Equation (2.4), are
already products of the gradient of the dependent variables.

Substitution of equations 3.4, and 3.5 in 2.5 yields the Exner equation:

∂η

∂t
+
∂qbx
∂h

∂h

∂x
+
∂qbx
∂qx

∂qx
∂x

+
∂qbx
∂qy

∂qy
∂x

+
∂qbx
∂I

∂I

∂x
+

N−1∑
l=1

∂qbx
∂Mal

∂Mal

∂x

+
∂qby
∂h

∂h

∂y
+
∂qby
∂qx

∂qx
∂y

+
∂qby
∂qy

∂qy
∂y

+
∂qby
∂I

∂I

∂y
+

N−1∑
l=1

∂qby
∂Mal

∂Mal

∂y
= 0

(3.9)
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Substitution of equations 3.4, and 3.5 in 2.11 yields the Hirano equation:

∂Mak

∂t
+

(
∂qbkx
∂h
− f Ik

∂qbx
∂h

)
∂h

∂x
+

(
∂qbkx
∂qx

− f Ik
∂qbx
∂qx

)
∂qx
∂x

+

(
∂qbkx
∂qy

− f Ik
∂qbx
∂qy

)
∂qy
∂x

+

(
∂qbkx
∂I
− f Ik

∂qbx
∂I

)
∂I

∂x

+
N−1∑
l=1

(
∂qbkx
∂Mal

− f Ik
∂qbx
∂Mal

)
∂Mal

∂x

+

(
∂qbky
∂h
− f Ik

∂qby
∂h

)
∂h

∂y
+

(
∂qbky
∂qx

− f Ik
∂qby
∂qx

)
∂qx
∂x

+

(
∂qbky
∂qy

− f Ik
∂qby
∂qy

)
∂qy
∂y

+

(
∂qbky
∂I
− f Ik

∂qby
∂I

)
∂I

∂y

+
N−1∑
l=1

(
∂qbky
∂Mal

− f Ik
∂qby
∂Mal

)
∂Mal

∂y
= 0 k ∈ {1, N − 1}

(3.10)

3.3 Matrix-Vector Formulation

Equation (2.12) is a linear combination of equations (2.11) and (2.5). The rest of the equations
do not depend on Msk.

We recast the model Equations, (2.1), (3.7), (3.8), (2.4), (3.9), and (3.10) in matrix form:

∂Q

∂t
+Ax

∂Q

∂x
+Ay

∂Q

∂y
+Dx

∂2Q

∂x2
+Dy

∂2Q

∂y2
+B = 0 (3.11)

The dependent variables are h, qx, qy, I , η, and Mak for 1 ≤ k ≤ N − 1:

Q =


h
qx
qy
I
η

[Mak]

 (3.12)

The system matrix in x direction is:

Ax =



0 1 0 0 0 [0]

gh−
(
qx
h

)2
2 qx
h
− ∂T ′xx

∂qx
−∂T ′xx

∂qy
−∂T ′xx

∂I
gh [0]

−qxqy
h2

qy
h
− ∂T ′yx

∂qx

qx
h
− ∂T ′yx

∂qy
−∂T ′yx

∂I
0 [0]

0 0 0 qx
h

0 [0]
∂qbx
∂h

∂qbx
∂qx

∂qbx
∂qy

∂qbx
∂I

0
[
∂qbx
∂Mal

]
[
∂qbkx
∂h
− f Ik

∂qbx
∂h

] [
∂qbkx
∂qx
− f Ik

∂qbx
∂qx

] [
∂qbkx
∂qy
− f Ik

∂qbx
∂qy

] [
∂qbkx
∂I
− f Ik

∂qbx
∂I

]
[0]

[
∂qbkx
∂Mal

− f Ik
∂qbx
∂Mal

]


(3.13)
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The system matrix in y direction is:

Ay =



0 0 1 0 0 [0]
−qxqy
h2

qy
h
− ∂T ′xy

∂qx

qx
h
− ∂T ′xy

∂qy
−∂T ′xy

∂I
0 [0]

gh−
( qy
h

)2 −∂T ′yy
∂qx

2 qy
h
− ∂T ′yy

∂qy
−∂T ′yy

∂I
gh [0]

0 0 0 qy
h

0 [0]
∂qby
∂h

∂qby
∂qx

∂qby
∂qy

∂qby
∂I

0
[
∂qby
∂Mal

][
∂qbky
∂h
− f Ik

∂qby
∂h

] [
∂qbky
∂qx
− f Ik

∂qby
∂qx

] [
∂qbky
∂qy
− f Ik

∂qby
∂qy

] [
∂qbky
∂I
− f Ik

∂qby
∂I

]
[0]

[
∂qbky
∂Mal

− f Ik
∂qby
∂Mal

]


(3.14)

The diffusive matrix in x and y direction are:

Dx = Dy =


0 0 0 0 0 [0]
0 0 0 0 0 [0]
0 0 0 0 0 [0]
0 0 0 DH 0 [0]
0 0 0 0 0 [0]
[0] [0] [0] [0] [0] [0]

 (3.15)

The vector of source terms is:

B =


0

−ghSfx
−ghSfy
Ss
0
[0]

 (3.16)

3.4 Implementation in Delft3D

In this section a short description of the implementation of the Hirano check in Delft3D is
given. For details about the files and the generated output see Appendix A.

In the current implementation in Delft3D the entries of the Jacobian matrices, Equations (3.13)
and (3.14), have been computed numerically. However, the effect of secondary flow and
gravitational pull on the sediment in transport have been neglected.

The entries of the Jacobian in top left block (3x3 related to h, qx and qy) are directly computed
based on the analytical expressions presented in Equations 3.13 and 3.14. The entries of
the Jacobian of the other blocks (related to η and Mak) contain derivatives of the sediment
transport rate with respect to h, qx, qy, and Mak. These derivatives are obtained using using
a finite difference approach:

∂qbkx
∂f

=
qbkx (f + df)− qbkx (f)

df
, (3.17)

where f is one of the dependent variables. To compute these values many calls are made
to the sediment transport computation without bed or composition update. For each variable
a perturbation (df ) is introduced. This leads to the following sequence of calls (only the
resulting x-direction is shown here, but the y-direction is also computed in the same loop):
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• Call 1: perturbation to the first dependent variable:
h+ dh, qx, qy, η, Ma,1, . . ., Ma,N−1
→ qbx(h+ dh), qbx,1(h+ dh) . . . qbx,N−1(h+ dh)

• Call 2: perturbation to the second dependent variable:
h, qx + dqx, qy, η, Ma,1, . . . , Ma,N−1
→ qbx(qx + dqx), qbx,1(qx + dqx) . . . qbx,N−1(qx + dqx)
...

• Call N + 3: perturbation to the N + 3 (and last) dependent variable:
h, qx, qy, η, Ma,1, . . . , Ma,N−1 + dMa,N−1
→ qbx(Ma,N−1+dMa,N−1), qbx,1(Ma,N−1+dMa,N−1) . . . qbx,N−1(Ma,N−1+dMa,N−1)

• Call N + 4: no perturbation, update of bed elevation and composition:
h, qx, qy, η, Ma,1, . . . , Ma,N−1
→ qbx, qbx,1 . . . qbx,N−1

To compute the partial derivatives the differentials need to modify only one of the dependent
variables at a time. Note that we have chosen to use as dependent variables h, qx, qy, η, and
Mak for k = 1, N . Thus, when a differential is added to, for instance, the flow depth h, we
need to impose that there is no change in the specific water discharge in x and y direction by
adjusting the mean flow velocity.

In the case of the differentials added to the volume of each sediment fraction in the active
layer the constrain that the addition of the volume fraction content of all the sediment in the
active layer is equal to 1 (Equations (2.8) and (2.9)) needs to hold. To this end the volume
fraction of sediment in the active layer after one size fraction is perturbed (superscript ′) is
added to compute the volume of sediment of the last fraction N as:

M
′

aN = La −
N−1∑
k=1

M
′

ak . (3.18)

A series of tests were consequently run during the development after every change to the
code, to ensure that the implemented code does not interfere with the normal computation
loop. During the development no changes to the outcome of the standard Delft3D simulation
were made.
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4 Results

4.1 2D Eigenvalue Analysis

In this section we describe the eigenvalue analysis performed to be able to check the imple-
mentation of the ellipticity check tool in Delft3D. Once the function is implemented in Delft3D
we will compare the eigenvalues obtained by that function to the ones obtained by means of
a symbolic solver. The use of the symbolic solver allows us to obtain the eigenvalues without
introducing the complexities of the interpolation and the numerical computation of the neces-
sary derivatives in Delft3D. Moreover, we validate the symbolic results with previous analysis
and analytical solutions.

Using the symbolic solver of Matlab we obtain a symbolic expression of the system matrix
A2D, Equation 3.3, for 4 simplified cases:

1 The Shallow Water Equations without secondary flow correction
2 The Shallow Water Equations without secondary flow correction coupled to the Exner

(1920) model (unisize)
3 The Shallow Water Equations without secondary flow correction coupled to the Hirano

(1971) model (2 size fractions)
4 The Shallow Water Equations without secondary flow correction coupled to the Hirano

(1971) model (3 size fractions)

We obtain the symbolic expressions of eigenvalues of A2D, Equation 3.3, for each case.
These expressions are symbolically derived with respect to nx and ny to obtain the eigen-
values in x and y coordinates. The evaluation of these last eigenvalues for certain values
of unitary vectors covering all the space domain yield the Monge cone associated with each
system.

To validate our method we compare the Monge cones obtained using our method to analytical
solutions and previous results.

We first consider a case in which u = 1 m/s, v = 0 m/s, and h = 1 m. In Figure 4.1a
we plot the intersection of the Monge cone of the Shallow Water Equations at t = 1 s for
this specific case. Note that because we do not consider the non-linearities of the system
the time at which we plot the Monge cone is irrelevant. This solution is the same as obtained
analytically (Sloff, 1992).

We consider the same situation with a mobile bed composed of one sediment size fraction
with characteristic grain size equal to 0.001 m and a dimensionless friction coefficient equal
to 0.007. The sediment transport is computed using the relation by Engelund and Hansen
(1967). In Figure 4.1b we plot the intersection of the Monge cones of the Shallow Water
Equations coupled to the Exner (1920) equation at t = 1 s for this specific case. Note that
a new cone appears close to the origin. A zoom in this cone is plotted in Figure 4.1c. This
result is the same as obtained in (Sloff, 1992).

We consider the previous situation in which, rather than one single size fraction, we have two
size fractions with characteristic grain sizes equal to 0.001 and 0.002 m. The volume fraction
content of both size fractions in the active layer is equal to 0.5. The volume fraction content
of both size fractions at the interface between the active layer and the substrate is equal to
0.5. Thus, this situation represents an aggradational case. The active layer thickness is equal
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Figure 4.1: Intersection of the Monge cone at t = 1 s for the Shallow Water equations
in combination with: (a) a fixed bed, (b-c) the Exner (1920) equation, (d-e)
the Hirano (1971) equation considering 2 sediment size fractions in aggra-
dational conditions, (f-g) the Hirano (1971) equation considering 2 sediment
size fractions in degradational conditions, and (h-i) the Hirano (1971) equa-
tion considering 3 sediment size fractions in aggradational conditions.
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to 0.1 m. In Figure 4.1d we plot the intersection of the Monge cones of the Shallow Water
Equations coupled to the Hirano (1971) equation at t = 1 s for this specific case. A new cone
appears close to the origin which can only be appreciated if we zoom in (Figure 4.1e). This
result is the same as obtained in Sieben (1994).

We consider a situation with the same parameters as before, yet the active layer is composed
of the coarse size fraction only and the volume fraction content of fine sediment at the interface
between the active layer and the substrate is equal to 1. Thus, this situation represents a
degradational case into a fine substrate. In Figure 4.1g we plot a zoom of the intersection of
the Monge cone of the Shallow Water Equations coupled to the Hirano equations at t = 1 s
for this specific case. In this case the cone does not pertain to the real numbers. Thus, this
situation is elliptic and we can only plot the real part of the cone.

Eventually, we consider the previous situation in which, rather than two size fractions, we have
three size fractions with characteristic grain sizes equal to 0.001, 0.002, and 0.004 m. The
volume fraction content all size fractions in the active layer is equal to 0.33. The volume frac-
tion content of all size fractions at the interface between the active layer and the substrate is
equal to 0.33. Thus, this situation represents an aggradational case. The sediment transport
rate is computed using the relation by Meyer-Peter and Müller (1948) with the hiding correc-
tion by Parker et al. (1982) with parameter b=0.8. In Figure 4.1h we plot the intersection of the
Monge cones of the Shallow Water Equations coupled to the Hirano (1971) equation at t = 1
s for this specific case. A new cone appears close to the origin which can only be appreciated
if we zoom in (Figure 4.1i).

4.2 Implementation Test

In this section we test the implementation of the routine in Delft3D. To this end we compare the
matrices given by Deft3D to the ones obtained in the external Matlab algorithm. We test the
implementation in three short normal flow simulations which reproduce the last three cases
described in Section 4.1.

The domain is 1 m long and 1 m wide, discretized in square cells of side 0.5 m. The bound-
aries at x = 0 m and x = 1 m are open. The boundaries at y = 0 m and y = 1 m are
closed. To obtain a mean flow velocity in the x direction equal to 1 m/s and 0 m/s in the y
direction in combination with a mean flow depth equal to 1 m, the water discharge is equal to
1m3/s. The water level at the downstream end is such that the flow depth is equal to 1 m. A
tiny lowering of 0.001m/min is imposed to guarantee that there is a minimal degradation so
that the volume fraction content at the interface between the active layer and the substrate is
equal to the volume fraction content at the substrate. The nondimensional friction coefficient
is equal to 0.007 (Chézy equal to 37.44 m1/2/s). The active layer thickness is equal to 0.1
m. The substrate is 1 m deep discretized in two equal layers. Secondary flow is not taken
into account. The time step is equal to 0.1 s (which guarantees a small enough CFL number).
The simulations last for 60 s.

The matrices in Delft3D are obtained at the node n = 2 and m = 2 at t = 2 s.

In Simulation 1, the sediment mixture is discretized in two sediment size fractions with char-
acteristic grain sizes equal to 0.001 and 0.002 m. The sediment transport rate is computed
using the Engelund and Hansen (1967) sediment transport relation. The sediment input at the
upstream end of the fine and coarse size fractions is equal to 5.588 · 10−5 and 2.794 · 10−5

m3/s. This boundary condition is in equilibrium with a bed slope equal to 7.13541 · 10−4

and a volume fraction content of the fine sediment in the active layer equal to 0.5. The volume
fraction content of fine sediment in the substrate is equal to 0.5.
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Under these conditions, matrix Ax, Equation 3.13, and Ay, Equation 3.14, (assuming no
secondary flow) computed in Matlab are:

Ax1 =


0 1 0 0 0

8.8100 2 0 9.8100 0
0 0 1 0 0

−6.9853 · 10−4 6.9853 · 10−4 0 0 9.3138 · 10−4

−1.1642 · 10−4 1.1642 · 10−4 0 0 1.3970 · 10−3


(4.1)

Ay1 =


0 0 1 0 0
0 0 1 0 0

9.8100 0 0 9.8100 0
0 0 1.3970 · 10−4 0 0
0 0 2.3284 · 10−5 0 0


(4.2)

The same matrices computed in Delft3D are:

Ax1,Delft3D =


0 1.0000 0 0 0

8.8097 2.0001 0 9.8098 0
0 0 1.0001 0 0

−6.9828 · 10−4 6.9859 · 10−4 2.7937 · 10−8 0 9.3135 · 10−4

−1.1639 · 10−4 1.1644 · 10−4 4.6564 · 10−9 0 1.3970 · 10−3


(4.3)

Ay1,Delft3D =


0 0 1.0000 0 0
0 0 1.0001 0 0

9.8098 0 0 9.8098 0
0 0 1.3969 · 10−4 0 0
0 0 2.3283 · 10−5 0 0


(4.4)

The absolute value of the relative error in the norm of matrices Ax and Ay in Simulation 1 is
equal to 2.3617 · 10−5 and 1.8428 · 10−5 respectively.

In Simulation 2, the sediment mixture is discretized in two sediment size fractions with char-
acteristic grain sizes equal to 0.001 and 0.002 m. The sediment transport rate is computed
using the Engelund and Hansen (1967) sediment transport relation. The sediment input at the
upstream end of the fine and coarse size fractions is equal to 0 and 5.588 · 10−5 m3/s. This
boundary condition is in equilibrium with a bed slope equal to 7.13541 · 10−4 and a volume
fraction content of the fine sediment in the active layer equal to 0. The volume fraction content
of fine sediment in the substrate is equal to 1.
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Under these conditions, matrix Ax, Equation 3.13, and Ay, Equation 3.14, (assuming no
secondary flow) computed in Matlab are:

Ax2 =


0 1 0 0 0

8.8100 2 0 9.8100 0
0 0 1 0 0

−4.6569 · 10−4 4.6569 · 10−4 0 0 9.3138 · 10−4

4.6569 · 10−4 −4.6569 · 10−4 0 0 9.3138 · 10−4


(4.5)

Ay2 =


0 0 1 0 0
0 0 1 0 0

9.8100 0 0 9.8100 0
0 0 9.3138 · 10−5 0 0
0 0 −9.3138 · 10−5 0 0


(4.6)

The same matrices computed in Delft3D are:

Ax2,Delft3D =


0 1.0000 0 0 0

8.8097 2.0001 0 9.8098 0
0 0 1.0001 0 0

−4.6426 · 10−4 4.6655 · 10−4 1.8624 · 10−7 0 9.3135 · 10−4

4.6426 · 10−4 −4.6655 · 10−4 −1.8624 · 10−7 0 9.3135 · 10−4


(4.7)

Ay2,Delft3D =


0 0 1.0000 0 0
0 0 1.0001 0 0

9.8098 0 0 9.8098 0
0 0 9.3125 · 10−5 0 0
0 0 −9.3125 · 10−5 0 0


(4.8)

The absolute value of the relative error in the norm of matrices Ax and Ay in Simulation 2 is
equal to 2.3568 · 10−5 and 1.8331 · 10−5 respectively.

In Simulation 3, the sediment mixture is discretized in three sediment size fractions with char-
acteristic grain sizes equal to 0.001, 0.002, and 0.004 m. The sediment transport rate is
computed using the Meyer-Peter and Müller (1948) sediment transport relation with the hid-
ing correction by Parker et al. (1982) with parameter b equal to 0.8 (Equation (2.20)). The
sediment input at the upstream end of the fine, medium, and coarse size fractions is equal
to 6.723 · 10−5, 6.319 · 10−5, and 5.865 · 10−5 m3/s. This boundary condition is in equilib-
rium with a bed slope equal to 7.13541 · 10−4 and a volume fraction content of the fine and
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medium fractions in the active layer equal to 1/3. The volume fraction content of fine and
medium fractions in the substrate is equal to 1/3.

Under these conditions, matrix Ax, Equation 3.13, and Ay, Equation 3.14, (assuming no
secondary flow) computed in Matlab are:

Ax3 =


0 1 0 0 0 0

8.8100 2 0 9.8100 0 0
0 0 1 0 0 0

−1.2553 · 10−3 1.2553 · 10−3 0 0 2.0233 · 10−3 1.2898 · 10−3

−9.2609 · 10−6 9.2609 · 10−6 0 0 3.1578 · 10−3 −1.1604 · 10−4

−5.1076 · 10−7 5.1076 · 10−7 0 0 −1.4466 · 10−4 3.0825 · 10−3


(4.9)

Ay3 =


0 0 1 0 0 0
0 0 1 0 0 0

9.8100 0 0 9.8100 0 0
0 0 3.1510 · 10−4 0 0 0
0 0 7.0133 · 10−6 0 0 0
0 0 2.7599 · 10−7 0 0 0


(4.10)

The same matrices computed in Delft3D are:

Ax3,Delft3D =


0 1.0000 0 0 0 0

8.8097 2.0001 0 9.8098 0 0
0 0 1.0001 0 0 0

−1.2549 · 10−3 1.2553 · 10−3 4.7001 · 10−8 0 2.0232 · 10−3 1.2898 · 10−3

−9.2611 · 10−6 9.2605 · 10−6 1.1237 · 10−10 0 3.1590 · 10−3 −1.1600 · 10−4

−5.1066 · 10−7 5.1063 · 10−7 1.1737 · 10−11 0 −1.4453 · 10−4 3.0833 · 10−3


(4.11)

Ay3,Delft3D =


0 0 1.0000 0 0 0
0 0 1.0001 0 0 0

9.8098 0 0 9.8098 0 0
0 0 3.1505 · 10−4 0 0 0
0 0 7.0130 · 10−6 0 0 0
0 0 2.7588 · 10−7 0 0 0


(4.12)

The absolute value of the relative error in the norm of matrices Ax and Ay in Simulation 3 is
equal to 2.3762 · 10−5 and 1.8525 · 10−5 respectively.
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Figure 4.2: Pannerdensch Kop bifurcation (©Google Earth).

4.3 2D test case

For the rapid development of the check of the well-posedness in the Hirano system, a real
world test case near the Pannerdensche Kop is used. At this location the Bovenrijn bifurcates
into the Waal heading west and the Pannerdensch Kanaal towards the north (see Figure 4.2).

The amount of sand transported into the Waal is about 8 times the amount of sand transported
into the Pannerdensch Kanaal and the amount of gravel transport into the Waal branch equals
2 times the gravel transport into the Pannerdensch Kanaal (Frings et al., 2014). This situation
is therefore a suitable test for testing the well-posedness of the Hirano active layer equations.

Due to the fact that the implementation is not yet finished we cannot check this simulation.
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5 Discussion and Further Research

The Jacobians computed in Delft3D and analytically are similar enough. A source of error is
due not only to the fact that the derivatives in Delft3D are obtained with finite differences, but
also due to the fact that the data used is not exactly the same. The values of the dependent
variables in Delft3D differ from the imposed ones in the analytical computation because the
simulation is not exactly a normal flow simulation. Thus, part of the difference between the
analytical and the Delft3D solution is not error.

We have only tested the implementation in 3 cases which do not include all the generalities.
For instance, we have to check with flow in both x and y or the effect of a curvilinear grid.

At this moment the only output are the Jacobians. It is necessary to implement the eigenval-
ues computation of the directional Jacobian, Equation 3.3, to obtain as an output the character
of the system (i.e. hyperbolic or elliptic).

At this moment we use the sediment transport at the edges rather than at the cell centers.
This is not a source of errors but a more consistent implementation would use the sediment
transport at the cell centers (or the other variables at the cell edges).

In the current implementation the volume fraction content at the interface between the active
layer and the substrate is obtained from the second layer of the Delft3D data structure. This
second layer correctly corresponds to the top substrate layer if the bed degradation is smaller
than the initial thickness of the second layer. A loop that identifies the top substrate layer in a
general case needs to be implemented.

Secondary flow has not been studied. The matrix-vector formulation has not yet been checked
and the implementation is not yet performed.

The role of the gravitational pull effects on the sediment transport has also not been studied.
A thorough analytical study needs to be conducted before anything is implemented.
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6 Conclusion

In the present report we present a mathematical analysis of the active layer model (Hirano,
1971) used in mixed-sediment river morphodynamics in combination with the Shallow Water
Equations. This is relevant to assess the well-posedness of 2D simulations.

The criteria for well-posedness without considering the effects of secondary flow and slope
effects have been formalized based on the continuous equations of motion. It is necessary to
further study the effect of the neglected terms.

We obtain the system matrices using a symbolic solver. This allows us to plot the Monge
cones to study the effect of the different model parameters. Moreover, this analytical solution
allow us to validate the implementation of a well-posedness routine in Delft3D.

We have implemented a routine in Delft3D to characterize the system of equations (i.e. ill- or
well-posed). The implementation appears to be correct. Yet, more tests need to be conducted.

A test case near the Pannerdensch Kanaal is created, which can be used to assess the
occurrence of the elliptic behavior. When the eigenvalue computation has been validated it is
recommended to research this graded sediment model for the occurrence of elliptic behavior,
and what happens in the Delft3D solution when such a circumstance is encountered.

Mathematical analysis of the well-posedness of the Hirano active layer concept in 2D models 25 of 29



1230044-000-ZWS-0035, Version 1.0, 19 December 2016, definitief

26 of 29 Mathematical analysis of the well-posedness of the Hirano active layer concept in 2D models



7 References

“Delft3D Hirano ellipticity check branch.” URL https://svn.oss.deltares.nl/
repos/delft3d/branches/research/TechnicalUniversityofDelft/20161020_
ellipticity_check.

Blom, A., 2008. “Different approaches to handling vertical and streamwise sort-
ing in modeling river morphodynamics.” Water Resour. Res. 44 (3): W03415.
DOI 10.1029/2006WR005474, ISSN 1944-7973, URL http://dx.doi.org/10.1029/
2006WR005474. URL http://dx.doi.org/10.1029/2006WR005474.

Blom, A., G. Parker, J. S. Ribberink and H. J. de Vriend, 2006. “Vertical sorting and the mor-
phodynamics of bed-form-dominated rivers: An equilibrium sorting model.” J. Geophys.
Res., Earth Surface 111: F01006. DOI 10.1029/2004JF000175, ISSN 2156-2202, URL
http://dx.doi.org/10.1029/2004JF000175. URL http://dx.doi.org/10.1029/
2004JF000175.

Blom, A., J. S. Ribberink and G. Parker, 2008. “Vertical sorting and the morphodynamics of
bed form-dominated rivers: A sorting evolution model.” J. Geophys. Res., Earth Surface
113: F01019. DOI 10.1029/2006JF000618, ISSN 2156-2202, URL http://dx.doi.org/
10.1029/2006JF000618. URL http://dx.doi.org/10.1029/2006JF000618.

Blom, A., J. S. Ribberink and H. J. de Vriend, 2003. “Vertical sorting in bed forms: Flume
experiments with a natural and a trimodal sediment mixture.” Water Resour. Res. 39 (2):
1025. DOI 10.1029/2001WR001088, ISSN 1944-7973, URL http://dx.doi.org/10.
1029/2001WR001088. URL http://dx.doi.org/10.1029/2001WR001088.

Chavarrías, V., G. Stecca, R. J. Labeur and A. Blom. “Ill-posedness in modelling mixed-
sediment river morphodynamics.” (in preparation).

Egiazaroff, I. V., 1965. “Calculation of nonuniform sediment concentrations.” In Proceedings
ASCE, vol. 91, pages 225–247.

Engelund, F. and E. Hansen, 1967. Monograph on sediment transport in alluvial streams.
Tech. Rep., Hydraul. Lab., Tech. Univ. of Denmark, Copenhagen, Denmark.

Exner, F. M., 1920. “Zur Physik der Dünen.” Akad. Wiss. Wien Math. Naturwiss 129(2a):
929–952. (in German).

Frings, R. M., R. Düring, C. Beckhausen, H. Schüttrumpf and S. Vollmer, 2014. “Fluvial
sediment budget of a modern, restrained river: The lower reach of the Rhine in Germany.”
Catena 122 (0): 91–102. DOI 10.1016/j.catena.2014.06.007, ISSN 0341-8162, URL http:
//www.sciencedirect.com/science/article/pii/S0341816214001714. URL http:
//www.sciencedirect.com/science/article/pii/S0341816214001714.

Hirano, M., 1971. “River bed degradation with armouring.” Trans. Jpn. Soc. Civ. Eng 3 (2):
194–195.

Hoey, T. B. and R. Ferguson, 1994. “Numerical simulation of downstream fining by selective
transport in gravel bed rivers: Model development and illustration.” Water Resour. Res.
30 (7): 2251–2260. DOI 10.1029/94WR00556, ISSN 1944-7973, URL http://dx.doi.
org/10.1029/94WR00556. URL http://dx.doi.org/10.1029/94WR00556.

Kalkwijk, J. P. T. and R. Booij, 1986. “Adaptation of secondary flow in nearly-horizontal
flow.” J. Hydraul. Res. 24 (1): 19-37. DOI 10.1080/00221688609499330, URL http:

Mathematical analysis of the well-posedness of the Hirano active layer concept in 2D models 27 of 29

https://svn.oss.deltares.nl/repos/delft3d/branches/research/Technical University of Delft/20161020_ellipticity_check
https://svn.oss.deltares.nl/repos/delft3d/branches/research/Technical University of Delft/20161020_ellipticity_check
https://svn.oss.deltares.nl/repos/delft3d/branches/research/Technical University of Delft/20161020_ellipticity_check
http://dx.doi.org/10.1029/2006WR005474
http://dx.doi.org/10.1029/2006WR005474
http://dx.doi.org/10.1029/2006WR005474
http://dx.doi.org/10.1029/2004JF000175
http://dx.doi.org/10.1029/2004JF000175
http://dx.doi.org/10.1029/2004JF000175
http://dx.doi.org/10.1029/2006JF000618
http://dx.doi.org/10.1029/2006JF000618
http://dx.doi.org/10.1029/2006JF000618
http://dx.doi.org/10.1029/2001WR001088
http://dx.doi.org/10.1029/2001WR001088
http://dx.doi.org/10.1029/2001WR001088
http://www.sciencedirect.com/science/article/pii/S0341816214001714
http://www.sciencedirect.com/science/article/pii/S0341816214001714
http://www.sciencedirect.com/science/article/pii/S0341816214001714
http://www.sciencedirect.com/science/article/pii/S0341816214001714
http://dx.doi.org/10.1029/94WR00556
http://dx.doi.org/10.1029/94WR00556
http://dx.doi.org/10.1029/94WR00556
http://dx.doi.org/10.1080/00221688609499330
http://dx.doi.org/10.1080/00221688609499330
http://dx.doi.org/10.1080/00221688609499330


1230044-000-ZWS-0035, Version 1.0, 19 December 2016, definitief

//dx.doi.org/10.1080/00221688609499330. URL http://dx.doi.org/10.1080/
00221688609499330.

Meyer-Peter, E. and R. Müller, 1948. “Formulas for bed-load transport.” In Proc. 2nd Meeting
Int. Assoc. Hydraul. Struct. Res., pages 39–64. Stockholm.

Parker, G., 1991. “Selective Sorting and Abrasion of River Gravel. I: Theory.” J.
Hydraul. Eng. 117 (2): 131–147. DOI 10.1061/(ASCE)0733-9429(1991)117:2(131),
URL http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%281991%
29117%3A2%28131%29. URL http://ascelibrary.org/doi/abs/10.1061/%28ASCE%
290733-9429%281991%29117%3A2%28131%29.

Parker, G., P. C. Klingeman and D. G. McLean, 1982. “Bedload and size distribution in paved
gravel-bed streams.” Journal of the Hydraulics Division 108 (4): 544–571.

Ribberink, J. S., 1987. Mathematical modelling of one-dimensional morphological changes in
rivers with non-uniform sediment. Ph.D. thesis, Delft University of Technology, The Nether-
lands.

Saint-Venant, A. J. C. B., 1871. “Théorie du mouvement non permanent des eaux, avec
application aux crues des rivières et à l’introduction des marées dans leur lit.” Comptes
Rendus des séances de l’Académie des Sciences 73: 237–240. (in French).

Sieben, A., 1994. Notes on the mathematical modelling of alluvial mountain rivers with graded
sediment. Tech. Rep. 94–3, Delft University of Technology.

Sieben, J., 1997. Modelling of hydraulics and morphology in mountain rivers. Ph.D. thesis,
Delft University of Technology.

Sloff, C. J., 1992. The method of characteristics applied to analyse 2DH models. Tech. Rep.
92–4, Delft University of Technology.

Stecca, G., A. Siviglia and A. Blom, 2014. “Mathematical analysis of the Saint-Venant-
Hirano model for mixed-sediment morphodynamics.” Water Resour. Res. 50: 7563–7589.
DOI 10.1002/2014WR015251, ISSN 1944-7973, URL http://dx.doi.org/10.1002/
2014WR015251. URL http://dx.doi.org/10.1002/2014WR015251.

Viparelli, E., R. R. H. Moreira and A. Blom, 2016. “Modelling stratigraphy-based GBR mor-
phodynamics.” In Proc. Gravel Bed Rivers 8, Kyoto, Japan. In press.

28 of 29 Mathematical analysis of the well-posedness of the Hirano active layer concept in 2D models

http://dx.doi.org/10.1080/00221688609499330
http://dx.doi.org/10.1080/00221688609499330
http://dx.doi.org/10.1080/00221688609499330
http://dx.doi.org/10.1080/00221688609499330
http://dx.doi.org/10.1080/00221688609499330
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%281991%29117%3A2%28131%29
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%281991%29117%3A2%28131%29
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%281991%29117%3A2%28131%29
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%281991%29117%3A2%28131%29
http://dx.doi.org/10.1002/2014WR015251
http://dx.doi.org/10.1002/2014WR015251
http://dx.doi.org/10.1002/2014WR015251


A Changes to Delft3D

A branch of the Delft3D modelling system was created for the development of the approximate
eigenvalue analysis (url). Using a branch allows the implementation of new concepts, whilst
ensuring the stability of the main development line. The following files have been updated for
the implementation of the check of the well-posedness of the active layer description of Hirano
(1971), and subsequently determine the possibilities to circumvent the occurrence of elliptic
behavior.

engines_gpl/flow2d3d/packages/data/include/inttim.igs
engines_gpl/flow2d3d/packages/data/src/basics/globaldata.f90
engines_gpl/flow2d3d/packages/io/src/input/rdsedmortra.f90
engines_gpl/flow2d3d/packages/io/src/output/wrsedm.f90
engines_gpl/flow2d3d/packages/kernel/kernel.vfproj
engines_gpl/flow2d3d/packages/kernel/src/compute_sediment/erosed.f90
engines_gpl/flow2d3d/packages/kernel/src/compute_sediment/hirano_check.f90
engines_gpl/flow2d3d/packages/kernel/src/compute_sediment/hirano_check_init.f90
engines_gpl/flow2d3d/packages/kernel/src/compute_sediment/hirano_check_perturbation.f90
engines_gpl/flow2d3d/packages/kernel/src/compute_sediment/Makefile.am
engines_gpl/flow2d3d/packages/kernel/src/compute_sediment/rg_dependencies.f90
engines_gpl/flow2d3d/packages/kernel/src/main/trisol.f90
engines_gpl/flow2d3d/packages/manager/src/tricom_step.F90
utils_gpl/morphology/packages/morphology_data/src/morphology_data_module.f90
utils_gpl/morphology/packages/morphology_io/src/rdmor.f90
utils_gpl/morphology/packages/morphology_io/src/rdstm.f90
utils_gpl/morphology/packages/morphology_kernel/src/bedcomposition_module.f90

In addition output fields ’HIRCHK’, ’HIRJCU’, ’HIRJCV’ are added to ’map-sed-series’ in the
trim-file. The field ’HIRCHK’ is used to indicate whether the approximate eigenvalues at the
time step previous to writing the map file are elliptic or not. This is indicated using a 1 for elliptic
and 0 for not elliptic. The fields ’HIRJCU’, ’HIRJCV’ represent the approximate Jacobian in u
and v direction. This check can be activated using the ’HiranoCheck’ option in the morphology
input file (with file extension .mor). For ease of use, the output has been added in such a way
that it can be viewed and loaded into Matlab memory using Delft3D-QuickPlot. Furthermore
the perturbation can be added using the keyword ’HiranoCheckPertubation’

[Numerics]
HiranoCheck = 1 [ - ] Flag for well-posedness of Hirano (1971) check

0 (default): Off
1 : On

HiranoCheckPertubation = 0.0001 # (default 0.0001)
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