! This file contains a subroutine to compute different wave parameters ! to be sent to COHERENS !COH!======================================================================== !COHSUBROUTINE wavecalculator( AC2, & !COH & DEP2 ,SPCSIG , & !COH & SPCDIR ,KGRPNT , & !COH & DISBOT ,DISSURF , & !COH & DISWCAP ,ubot , & !COH & tbot ,hsimp , & !COH & hs2COH ,tp2COH, dirm2COH , & !COH & ubot2COH ,botexcur2COH , & !COH & fbotx2COH ,fboty2COH , & !COH & fsurx2COH ,fsury2COH , & !COH & ustx2COH ,usty2COH , & !COH & wavpres2COH ,mask2COH , & !COH & s2h ,b2h , & !COH & us2h ,p2h, f2h ) !COH !*********************************************************************** !COH ! !COH USE SWCOMM1 !COH USE SWCOMM2 !COH USE SWCOMM3 ! also to use PWTAIL(1) !COH USE SWCOMM4 !COH USE M_PARALL ! !COH ! !COH IMPLICIT NONE !COH !COH !The following variables are send from SWAN to COHERENS. In brackets the name of the existing !COH !COHERENS variables are given !COH !COH ! Significant Wave height (waveheight) [m] !COH !COH ! Peak period (waveperiod) [s] !COH !COH ! Mean wave direction (wavedir) [rad] !COH !COH ! Wave induced pressure (wavepres) [Pa] !COH ! The wave stress determined from the wave dissipation !COH !COH ! Depth averaged Stokes drift (umvelstokesatc and vmvelstokesatc) !COH !COH ! Near bed orbital velocity amplitude (wavevel) [m/s] !COH ! Line 1781: ! JUBOT [ 3] bottom orbital velocity within array COMPDA !COH !COH ! Near bed orbital excursion (waveexcurs) !COH ! TMBOT Bottom wave period (in s) defined as the ratio of the bottom excursion !COH ! amplitude to the bottom orbital velocity. !COH ! bea !COH !COH ! The following variables are send from COHERENS to SWAN !COH !COH ! Bottom elevation (depmeanatc). Note that this is only necessary for morphology. !COH ! !COH ! Water (level) (zeta) !COH ! !COH ! Depth averaged velocity in x and y dir !COH !COH !COH ! Argument variables !COH ! !COH ! IN: !COH ! !COH ! AC2 input action density !COH ! CG local group velocity in output point !COH ! DEP2 input depth at comp. grid points !COH ! KGRPNT input index for indirect adressing !COH ! NE local ratio of group and phase velocity !COH ! NED local derivative of NE with respect to depth !COH ! SPCDIR input (*,1); spectral directions (radians) !COH ! (*,2); cosine of spectral directions !COH ! (*,3); sine of spectral directions !COH ! (*,4); cosine^2 of spectral directions !COH ! (*,5); cosine*sine of spectral directions !COH ! (*,6); sine^2 of spectral directions !COH ! SPCSIG input relative frequencies in computational domain in !COH ! sigma-space !COH ! XCGRID input coordinates of computational grid in x-direction !COH ! YCGRID input coordinates of computational grid in y-direction !COH ! WK local wavenumber in output point !COH ! !COH ! INTEGER MIP !COH INTEGER KGRPNT(MXC,MYC) !COH !COH LOGICAL :: s2h,b2h,us2H,f2h,p2h !COH !COH REAL AC2(MDC,MSC,MCGRD), CG(MSC), DEP2(MCGRD), NE(MSC), NED(MSC) !COH REAL ACLOC(MDC,MSC) !COH REAL AC2LOC(MCGRD) !COH REAL hs2COH(MXC,MYC) !COH REAL tp2COH(MXC,MYC) !COH REAL dirm2COH(MXC,MYC) !COH REAL ubot2COH(MXC,MYC) !COH REAL botexcur2COH(MXC,MYC) !COH REAL fsurx2COH(MXC,MYC) !COH REAL fsury2COH(MXC,MYC) !COH REAL fbotx2COH(MXC,MYC) !COH REAL fboty2COH(MXC,MYC) !COH REAL ustx2COH(MXC,MYC) !COH REAL usty2COH(MXC,MYC) !COH REAL wavpres2COH(MXC,MYC) !COH REAL mask2COH(MXC,MYC) !COH !COH !COH !COH ! FOR DISSIPATION BASED FORCE !COH REAL DISBOT(MCGRD),DISSURF(MCGRD),DISWCAP(MCGRD) !=epsilon/rho/g=[m2/s] as calculated by swan !COH !COH INTEGER SIGMAXID(MCGRD) !COH REAL DIRMEAN(MCGRD,3) !COH !COH REAL tbot(MCGRD) !COH REAL ubot(MCGRD) !COH REAL hsimp(MCGRD) !COH !COH !COH REAL SPCDIR(MDC,6) !COH REAL SPCSIG(MSC) !COH REAL SME_T,SME_P,SME_D,ACS2,ACS3 !COH REAL WK(MSC) !COH !COH ! Dummy variables to be used in the process of calculation of Stokes drift !COH REAL SVx(MXC,MYC),SVy(MXC,MYC) !COH ! Spectrally integrated Stokes dummy variables !COH REAL SMS_x,SMS_y !COH !COH !COH ! !COH ! AC2LOC Local action density !COH ! ACWAVE Action density in output point !COH ! DEPLOC local depth !COH ! ID counter for steps in direction !COH ! IP counter !COH ! IS counter for sigma !COH ! !COH !COH REAL ETOT,EEX,EEY,EAD,EDI,EHFR,DS,DIRDEG,EFTAIL,DEGCNV !COH REAL DEPLOC,EMAX,ETF ,E1,E2,X !COH REAL, PARAMETER :: epsmax = 50 !COH INTEGER IX,IY,IP, IS, ID,ISMAX !COH INTEGER :: NORG, NNEW !COH ! !COH LOGICAL STPNOW !COH !COH ! Gather data for parallel computations !COH !COH IF (PARLL) THEN !COH !COH DO ID = 1, MDC !COH DO IS = 1, MSC !COH AC2LOC(:) = AC2(ID,IS,:) !COH CALL SWEXCHG( AC2LOC, KGRPNT ) !COH AC2(ID,IS,:) = AC2LOC(:) !COH END DO !COH END DO !COH !COH IF (STPNOW()) RETURN !COH END IF !COH !COH ! mask with wet points at current time step !COH !COH mask2COH = 0.0 !COH DO IX = 1,MXC !COH DO IY = 1,MYC !COH IP = KGRPNT(IX,IY) !COH IF(IP.GT.1) THEN !COH DEPLOC=DEP2(IP) !COH IF(DEPLOC.GT.DEPMIN) THEN !COH mask2COH(IX,IY) = 1.0 !COH ENDIF !COH ENDIF !COH ENDDO !COH ENDDO !COH !COH ! wave peak period, significant wave height and mean direction !COH !COH IF (s2h) THEN !COH !COH EFTAIL = 1. / (PWTAIL(1) - 1.) !COH DO IX = 1,MXC !COH DO IY = 1,MYC !COH tp2COH(IX,IY) = 0.0 !COH dirm2COH(IX,IY) = 0.0 !COH hs2COH(IX,IY) = 0.0 !COH IP = KGRPNT(IX,IY) !COH IF(IP.GT.1) THEN !COH DEPLOC=DEP2(IP) !COH IF (DEPLOC.GT.DEPMIN) THEN !COH CALL KSCIP1 (MSC, SPCSIG, DEPLOC, WK, CG, NE, NED) !COH ACLOC(:,:)=AC2(:,:,IP) !COH ! Calculate the frequency bin with maximum energy SIGMAXID !COH EMAX=0. !COH ISMAX=1 !COH DO IS = 1, MSC !COH ETF=0. !COH DO ID = 1, MDC !COH ETF = ETF + SPCSIG(IS)*ACLOC(ID,IS)*DDIR !COH ENDDO !COH IF(ETF.gt.EMAX) THEN !COH EMAX=ETF !COH ISMAX=IS !COH ENDIF !COH ENDDO !COH SIGMAXID(IP)=ISMAX !COH !Peak wave period !COH tp2COH(IX,IY)=2*PI/SPCSIG(SIGMAXID(IP)) !COH !COH ! Mean wave direction !COH ETOT = 0. !COH EEX = 0. !COH EEY = 0. !COH DO ID=1, MDC !COH EAD = 0. !COH DO IS=2,MSC !COH DS=SPCSIG(IS)-SPCSIG(IS-1) !COH EDI = 0.5*(SPCSIG(IS)*ACLOC(ID,IS)+ & !COH & SPCSIG(IS-1)*ACLOC(ID,IS-1))*DS !COH EAD = EAD + EDI !COH ENDDO !COH IF (MSC .GT. 3) THEN !COH !Contribution of tail to total energy density !COH EHFR = ACLOC(ID,MSC) * SPCSIG(MSC) !COH EAD = EAD + EHFR * SPCSIG(MSC) * EFTAIL !COH ENDIF !COH EAD = EAD * DDIR !COH ETOT = ETOT + EAD !COH EEX = EEX + EAD * SPCDIR(ID,2) !COH EEY = EEY + EAD * SPCDIR(ID,3) !COH ENDDO !COH IF (ETOT.GT.0.) THEN !COH DIRDEG = ATAN2(EEY,EEX) * 180./PI !COH IF (DIRDEG.LT.0.) DIRDEG = DIRDEG + 360. !COH ELSE !COH DIRDEG = 0.0 !COH ENDIF !COH DIRMEAN(IP,1)=DIRDEG*PI/180 !COH DIRMEAN(IP,2)=cos(DIRMEAN(IP,1)) !COH DIRMEAN(IP,3)=sin(DIRMEAN(IP,1)) !COH dirm2COH(IX,IY) =DIRDEG*PI/180 !COH hs2COH(IX,IY) = hsimp(IP) !COH ENDIF !COH ENDIF !COH ENDDO !COH ENDDO !COH !COH ENDIF !COH !COH ! near bed orbital velocity, excursion amplitude !COH !COH IF (b2h) THEN !COH !COH EFTAIL = 1. / (PWTAIL(1) - 1.) !COH DO IX = 1,MXC !COH DO IY = 1,MYC !COH IP = KGRPNT(IX,IY) !COH IF(IP.GT.1) THEN !COH ubot2COH(IX,IY) = ubot(IP) !COH botexcur2COH(IX,IY) = tbot(IP)*ubot(IP) !COH ELSE !COH ubot2COH(IX,IY) = 0.0 !COH botexcur2COH(IX,IY) = 0.0 !COH ENDIF !COH ENDDO !COH ENDDO !COH !COH ENDIF !COH !COH ! Depth averaged Stokes drift !COH !COH IF (us2h) THEN !COH !COH ACLOC = 0. !COH ACS2=0. !COH ACS3=0. !COH SVx=0. !COH SVy=0. !COH SMS_x=0. !COH SMS_y=0. !COH DO IX = 1,MXC !COH DO IY = 1,MYC !COH ustx2COH(IX,IY)=0. !COH usty2COH(IX,IY)=0. !COH IP = KGRPNT(IX,IY) !COH IF (IP.GT.1) THEN !COH DEPLOC=DEP2(IP) !COH IF(DEPLOC.GT.DEPMIN) THEN !COH CALL KSCIP1 (MSC, SPCSIG, DEPLOC, WK, CG, NE, NED) !COH ACLOC = AC2(:,:,IP) !COH ! For depth integrated Stokes velocity !COH IF ( hsimp(IP) .LE. 1.0E-3 ) THEN !COH ustx2COH(IX,IY)=0. !COH usty2COH(IX,IY)=0. !COH ELSE !COH SMS_x=0. !COH SMS_y=0. !COH DO IS = 1, MSC !COH X = MIN(2.0*DEPLOC*WK(IS),EPSMAX) !COH DO ID = 1, MDC !COH SMS_x = SMS_x + SPCSIG(IS)**3 * ACLOC(ID,IS) * WK(IS) * SPCDIR(ID,2) & !COH & / (DEPLOC * WK(IS) * tanh(X)) !COH SMS_y = SMS_y + SPCSIG(IS)**3 * ACLOC(ID,IS) * WK(IS) * SPCDIR(ID,3) & !COH & / (DEPLOC * WK(IS) * tanh(X)) !COH ENDDO !COH ENDDO !COH ustx2COH(IX,IY)=SMS_x * FRINTF * DDIR !COH usty2COH(IX,IY)=SMS_y * FRINTF * DDIR !COH ENDIF !COH ENDIF !COH ENDIF !COH ENDDO !COH ENDDO !COH ENDIF !COH !COH ! Wave induced pressure !COH !COH IF (p2h) THEN !COH !COH wavpres2COH = 0.0 !COH ACLOC = 0. !COH DO IX = 1,MXC !COH DO IY = 1,MYC !COH IP = KGRPNT(IX,IY) !COH IF (IP.GT.1) THEN !COH DEPLOC=DEP2(IP) !COH IF(DEPLOC.GT.DEPMIN) THEN !COH CALL KSCIP1 (MSC, SPCSIG, DEPLOC, WK, CG, NE, NED) !COH ACLOC = AC2(:,:,IP) !COH IF ( hsimp(IP) .LE. 1.0E-3 ) THEN !COH ustx2COH(IX,IY)=0. !COH usty2COH(IX,IY)=0. !COH ELSE !COH SME_P = 0.0 !COH DO ID = 1, MDC !COH DO IS = 1, MSC !COH X = MIN(2.0*DEPLOC*WK(IS),EPSMAX) !COH SME_P = SME_P + SPCSIG(IS)**2*ACLOC(ID,IS)*WK(IS)/SINH(X) !COH ENDDO !COH ENDDO !COH wavpres2COH(IX,IY) = SME_P * GRAV * FRINTF * DDIR !COH ENDIF !COH ENDIF !COH ENDIF !COH ENDDO !COH ENDDO !COH ENDIF !COH !COH ! wave dissipation forcings !COH !COH IF (f2h) THEN !COH !COH fsurx2COH=0. !COH fsury2COH=0. !COH fbotx2COH=0. !COH fboty2COH=0. !COH DO IX = 1,MXC !COH DO IY = 1,MYC !COH IP = KGRPNT(IX,IY) !COH IF (IP.GT.1) THEN !COH DEPLOC=DEP2(IP) !COH IF(DEPLOC.GT.DEPMIN) THEN !COH CALL KSCIP1 (MSC, SPCSIG, DEPLOC, WK, CG, NE, NED) !COH !Based on dissipation from the max of spectra !COH SME_D = WK(SIGMAXID(IP))*GRAV/SPCSIG(SIGMAXID(IP)) !COH fsurx2COH(IX,IY)=(DISSURF(IP)+DISWCAP(IP))*SME_D*DIRMEAN(IP,2) !COH fsury2COH(IX,IY)=(DISSURF(IP)+DISWCAP(IP))*SME_D*DIRMEAN(IP,3) !COH fbotx2COH(IX,IY)=DISBOT(IP)*SME_D*DIRMEAN(IP,2) !COH fboty2COH(IX,IY)=DISBOT(IP)*SME_D*DIRMEAN(IP,3) !COH ENDIF !COH ENDIF !COH ENDDO !COH ENDDO !COH !COH ENDIF !COH !COH END SUBROUTINE wavecalculator