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Many existing practical sand transport formulae for the coastal marine environment are restricted to a limited
range of hydrodynamic and sand conditions. This paper presents a new practical formula for net sand transport
induced by non-breaking waves and currents. The formula is especially developed for cross-shore sand transport
under wave-dominated conditions and is based on the semi-unsteady, half wave-cycle concept, with bed shear
stress as the main forcing parameter. Unsteady phase-lag effects between velocities and concentrations, which
are especially important for rippled bed and fine sand sheet-flow conditions, are accounted for through

Keywords: Y - )
Sediment transport formula parameterisations. Recently-recognised effects on the net transport rate related to flow acceleration skewness
Sheet flow and progressive surface waves are also included. To account for the latter, the formula includes the effects of
Ripples boundary layer streaming and advection effects which occur under real waves, but not in oscillatory tunnel

Bed shear stress
Phase lag effects
Advection effects

flows. The formula is developed using a database of 226 net transport rate measurements from large-scale oscil-
latory flow tunnels and a large wave flume, covering a wide range of full-scale flow conditions and uniform and
graded sands with median diameter ranging from 0.13 mm to 0.54 mm. Good overall agreement is obtained be-
tween observed and predicted net transport rates with 78% of the predictions falling within a factor 2 of the mea-
surements. For several distinctly different conditions, the behaviour of the net transport with increasing flow
strength agrees well with observations, indicating that the most important transport processes in both the rip-
pled bed and sheet flow regime are well captured by the formula. However, for some flow conditions good quan-
titative agreement could only be obtained by introducing separate calibration parameters. The new formula has
been validated against independent net transport rate data for oscillatory flow conditions and steady flow
conditions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years a substantial body of field- and laboratory-based
research has been devoted to measuring sand transport processes
induced by waves and currents, and predictive approaches for the net,
wave-averaged sand transport have been developed. Generally, these
approaches can be classified as process-based numerical models or
parameterised (engineering) formulae. Process-based models represent
many of the detailed physical processes involved in sand transport by
waves and currents, and resolve the vertical and sometimes also the
horizontal structure of the time-dependent, intra-wave velocity and
sand concentration fields. Such models (see e.g. Henderson et al.,
2004; Holmedal and Myrhaug, 2009; Hassan and Ribberink, 2010) are
often restricted to specific flow and sand conditions, require relatively
long computation times and are therefore generally not implemented
in coastal morphodynamic models. Parameterised sand transport
formulae on the other hand, consist of a set of relatively simple
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equations often covering a wide range of flow and sand conditions,
require short computation times and can be implemented easily in
coastal morphodynamic models.

Practical sand transport formulae for the coastal marine environ-
ment are generally semi-empirical formulae which can be classified as
time-averaged, quasi-steady or semi-unsteady. Based on approaches
used for fluvial sediment transport, time-averaged formulae predict
sand transport at a timescale that is much longer than the wave period,
using wave-averaged values of velocity and sand concentration. The
Bijker (1971) formula is an example of a widely-used time-averaged
transport formula, in which waves act as stirring agent for the
current-related transport (suspended load and bed load). In time-
averaged formulae, the total net transport is always in the direction of
the mean current and the wave-related transport component is not
taken into account.

Quasi-steady formulae calculate intra-wave sand transport, with the
assumption that the instantaneous sand transport relates only to the
instantaneous forcing parameter, either the flow velocity or bed shear
stress. Commonly-used quasi-steady formulae predict non-zero net
transport resulting from velocity skewness, as occurs under Stokes-type
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waves (e.g. Bailard, 1981; Ribberink, 1998; Soulsby and Damgaard, 2005;
Wang, 2007), but most do not account for transport resulting from accel-
eration skewness, as occurs under sawtooth-shaped waves (Van der A et
al., 2010; Watanabe and Sato, 2004). Formulae that do account for both
velocity and acceleration skewness have mostly been developed for
sheet-flow conditions (e.g. Gonzalez-Rodriguez and Madsen, 2007;
Nielsen, 2006; Suntoyo et al., 2008) and do not apply to lower energy
conditions when the bed is generally covered with ripples.

The assumption of quasi-steadiness only holds for conditions for
which the reaction time of sand particles is short relative to the wave pe-
riod. In other words, the pick-up and settling of sand particles must take
place in a much shorter time than the wave period. This assumption is
not the case for fine sand sheet-flow conditions (Dohmen-Janssen et
al., 2002; O'Donoghue and Wright, 2004; Van der A et al., 2009) and rip-
pled bed conditions (Van der Werf et al., 2007), where phase lag effects
can significantly affect the magnitude and sometimes even the direction
of the net transport rate. Semi-unsteady formulae have been developed
to account for phase lag effects in sheet-flow conditions (Camenen and
Larson, 2007; Dibajnia and Watanabe, 1992), rippled bed conditions
(Nielsen, 1988; Van der Werf et al., 2006) and for both sheet-flow and
ripple conditions (Silva et al., 2006; Van Rijn, 2007a,b,c).

Existing transport formulae are based for the most part on experi-
mental data from oscillatory flow tunnels, in which the flow is horizon-
tal and horizontally uniform. However, net transport rate experiments
carried out in large wave flumes (Dohmen-Janssen and Hanes, 2002;
Ribberink et al., 2000; Schretlen et al., 2011) indicate that the added
complexities in the hydrodynamics of surface waves compared to tun-
nel flows can be important in determining the net sand transport.
Kranenburg et al. (2013) use a detailed advection-diffusion boundary
layer sand transport model and the above mentioned tunnel and flume
data to quantify the importance of progressive wave, streaming-related,
bed shear stress (wave Reynolds stress) and, at least for fine sand, of ver-
tical advection of sand by vertical orbital velocities and horizontal ad-
vection of sand by gradients in the horizontal sediment flux. Existing
transport models do not account for these real wave effects, although
Nielsen (2006) does incorporate a streaming-related bed shear stress
in his formulation, while Van Rijn (2007a) incorporates streaming by
adding a small steady current at the edge of the wave boundary layer.
Nielsen (2006) has shown that the net transport of medium sand is bet-
ter predicted when a streaming-related mean bed shear stress is added
to the instantaneous oscillatory bed shear stress in a ‘quasi-steady’
Meyer-Peter and Miiller type sand transport formula.

This paper presents a new semi-unsteady formula for predicting net
sand transport under waves and currents. Based on an extensive dataset
of measurements of net sand transport rates from large-scale laboratory
experiments, covering a wide range of hydraulic conditions and trans-
port regimes, the formula can be applied to rippled bed and sheet-flow
conditions, incorporates phase lag and flow acceleration effects, and
can be applied to both oscillatory flow and surface wave conditions.
The new sand transport formula is presented in Section 2 of the paper.
Section 3 presents a comparison of calculated net transport rates with
measured transport rates from the large scale-experiments. The general
behaviour of predicted net transport rates across a range of flow condi-
tions is examined in Section 4. Section 5 presents the results of valida-
tion tests against independent data for oscillatory flow and steady flow
conditions. A discussion of results and conclusions from the paper are
presented in Sections 6 and 7 respectively.

2. Sand transport formula for oscillatory flows and
progressive waves

The new transport formula is based on a modified version of the
semi-unsteady “half-cycle” concept originally proposed by Dibajnia
and Watanabe (1992). In this concept the wave-averaged total net
sand transport rate (bedload and suspended load) as taking place in
the oscillatory boundary layer is essentially described as the difference

between the two gross amounts of sand transported during the posi-
tive “crest” half-cycle and during the negative “trough” half-cycle. Un-
steady phase lag effects are taken into account via two contributions
to the amount of sand transported during each half-cycle: sand
entrained and transported during the present half-cycle and sand
entrained during the previous half-cycle which is transported during
the present half-cycle; the latter is the phase lag contribution. The
present formula differs from Dibajnia and Watanabe (1992) in the fol-
lowing ways: (i) bed shear stress rather than near-bed velocity is used
as the main forcing parameter; (ii) the effects of flow unsteadiness
(phase lag effects) are incorporated in a different way; (iii) the effects
of acceleration skewness are incorporated; (iv) it covers graded sands
and (v) the formula distinguishes between oscillatory flows and pro-
gressive surface waves. The present formula distinguishes itself from
other half-cycle-type formulae (Dibajnia and Watanabe, 1996, 1998;
Silva et al., 2006; Watanabe and Sato, 2004) through (v), as well
as through the calculation of the detailed sub-processes and the extent
of experimental data used to inform formula development and
calibration.

In the new formula, the non-dimensional net transport rate is given
by the following “velocity-load” equation:

=
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where ES is the volumetric net transport rate per unit width, s=
(ps—p)/p where ps and p are the densities of sand and water respec-
tively, g is acceleration due to gravity and ds is the sand median diam-
eter; 6 is the non-dimensional bed shear stress (Shields parameter),
with subscripts “c” and “t” implying “crest” and “trough” half cycle
respectively; T is wave period; T. is the duration of the crest (posi-
tive) half cycle and T, is the duration of accelerating flow within
the crest half cycle (Fig. 1); similarly T, is the duration of the trough
(negative) half cycle and Ty, the period of accelerating flow within
the trough half cycle.
There are four contributions to the net sand transport:

* O represents the sand load that is entrained during the wave crest
period and transported during the crest period;

» Q. represents the sand load that is entrained during the wave crest
period and transported during the trough period;

* O represents the sand load that is entrained during the wave
trough period and transported during the trough period;

* O represents the sand load that is entrained during the wave
trough period and transported during the crest period.

u 4

Iuﬁ\cos [}
0

v .

Fig. 1. Definition sketch of near-bed velocity time-series in wave direction. The parameters T.
and T, are the positive (crest) and negative (trough) flow durations. Similarly, T, and T, are
the durations of flow acceleration in positive and negative x-directions.
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The total sand load in each half-cycle is multiplied by /6; (with
subscript “i” either “c” for crest or “t” for trough), representing the
non-dimensional friction velocity, to obtain the non-dimensional
half-cycle transport rate. Both half-cycle transport rates are weighted
with their duration relative to the wave period (T/T and T/T, respec-
tively). The multipliers 2%.1 and 25—; on O and Q respectively account
for the effect of acceleration skewness on the travel distance of
the fraction of sand remaining in suspension after flow reversal,
since suspended sand is transported further when followed by a
steep front half-wave cycle compared to a gradual front half-wave
cycle (Watanabe and Sato, 2004).

The sand load entrained in the flow during each half-cycle is related
to the Shields parameter as follows:

0 if 6, <0
-(24 — . 1 cr 2
! {m<|6i|—ecr>" if [6] > 0 @)

where the critical Shields number, 6., is calculated following Soulsby
(1997). The proportionality constant m and power of the excess Shields
parameter n are two of the three main calibration coefficients of the
transport formula.

Application of Eq. (1) to calculate the net sand transport rate in os-
cillatory flow or under progressive surface waves requires the following
three main steps: (i) establish the “representative” crest half-cycle and
trough half-cycle water particle velocities, as well as the representative
full-cycle orbital velocity and excursion; (ii) calculate the bed shear
stress (Shields parameter) for each flow half cycle; (iii) calculate the
sediment load entrained during each flow half-cycle and determine
the sharing of the entrained load between the half-cycles.

2.1. Input water particle kinematics

The formula is designed to predict the net sand transport for given
sand characteristics and given current and wave-generated oscillatory
flow at the top of the wave boundary layer (z=4). In general, the
bed-parallel velocity due to combined wave and current motion is:

—

U () = Uy (t) + Uy (3)

where U, (t) is the time-varying free-stream orbital velocity vector and
il is the steady current velocity vector. For a wave propagating in the
x-direction and an obliquely-incident current making an angle ¢ with
the wave direction (Fig. 2), the velocity in the x- and y-directions are:

Uy(£) = Uy(t) + [ug| cOS @ (4)

u

Us

y = |Uug| sing ®)

respectively. With reference to Fig. 1, the velocity vectors at moments of
maximum positive and maximum negative orbital velocity are:

u.= {ucx 3 ucy} = {ﬂc + ‘uﬁ‘ COs ©, ‘u8| Sin(P} (6)

ﬁt = {utx ) uty} = {—1U, + |ug| cos @, |ug|sinp} )

where il and i, are the peak crest and peak trough orbital velocities as
indicated in Fig. 2. We define the representative orbital velocity ampli-
tude @ and the representative orbital excursion amplitude a for the
whole flow cycle as follows:

2t
i= T{u‘”(t)dt (8)

v

<—< N 0 >/
U i, (1) ¢

Fig. 2. Wave and current velocity vectors i, (t) and Ui, under an angle ¢. The vector
illustrates the resultant velocity vector at maximum positive orbital velocity.

The representative half-cycle orbital velocity for the wave crest,
1., and for the wave trough, i1, is then:

fle, = 22l (10)
iy, = 2v2i,. (11)

(Note thatii. equates to the root mean square velocity of a sinusoi-
dal flow with amplitude ii; i, equates to the root-mean square orbital
velocity for a sinusoidal flow with amplitude ii.) The representative
combined wave-current velocity vectors for each half-cycle are then:

ﬂc,r = {uc,rx ) uc,ry} = {ac,r + ‘uﬁl COsQ, ‘uﬁ‘ Sil‘l(p} (12)

e = {uen o ey p = { e + U5l cos@, [ug] sing}. (13)

The degree of velocity skewness is expressed through the velocity
skewness parameter R = il /(¢ + U); similarly, the degree of accelera-
tion skewness is expressed through 3 = flc / ﬁc + ﬁt , Where ﬁc andﬁt
are the amplitudes of the horizontal flow acceleration in the crest and
trough directions respectively. Orbital velocity for a sinusoidal flow is
vertically and horizontally symmetrical, with R=0.5 and 3=0.5. A typ-
ical shoaling wave close to the breaker point (like that schematised in
Fig. 1), has higher onshore orbital velocity under the wave crest than
offshore velocity under the wave trough, leading to R>0.5, and a
forward-leaning wave crest with higher acceleration under the crest
compared to the trough, resulting in 3>0.5.

In the case of irregular wave conditions we adopt the representative
wave approach, in which the input water particle kinematics are those
for a regular wave with time-series based on 1 = iigg, T=T, R=Rsjg
and 3= 3, Where i is the significant orbital velocity amplitude, T,
is peak spectral period, Rsig and f3s; are the significant values of velocity
and accelerations skewness parameter respectively.

2.2. Bed shear stress

The non-dimensional bed shear stress (Shields parameter) vector
is:

0;= {Oz‘x . Oy (14)

“w

where subscript “i” is either “c” for crest or “t” for trough. The x and y
components of the Shields parameter are:

u; T
0, =0, % y __ "wRe 15
ix | 1| }ui‘r‘ (S—l)gd50 ( )
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u.
0, = [0 2 (16)
iy i ui‘r|

where T,re iS a stress contribution associated with progressive sur-
face waves, which is not present in the case of tunnel-type oscillatory
flows, and is explained further below. The magnitude of the Shields
parameter is given by:

Mot
0 :2 woi | “i.r 17
1 (s—1)gdso {an

in which f,,s is the wave-current friction factor. While the transport for-
mula applies to oscillatory flow and current under any angle following
the notations, throughout the remainder of this paper the oscillatory
flow and current conditions are always collinear, and the presented
transport rates based on Eq. (1) are always the x-direction transport
rates.

Following Ribberink (1998), the wave—current friction factor at crest
and trough are calculated as the linear combination of the wave friction
factor (at crest and trough) and the current friction factor (see also
Madsen and Grant, 1976):

fwoi = of s + (1—)f (18)
with:

_ lug

NTETS 1

The current-related friction factor is calculated assuming a loga-
rithmic velocity profile:

04 2
e (20)
where the current-related roughness ks is calculated as detailed in
Appendix A.

The wave friction factor, calculated separately for the crest and
trough half-cycles, is based on Swart (1974), modified to allow for
enhanced/reduced bed shear stress in acceleration-skewed flow fol-
lowing the approach of Silva et al. (2006):

c —0.19
2Tiu ]ﬁ

fui = 000251 exp|5.21 | A1 for &> 1587
fui=03 for 4 <1587

where ks, is the wave-related bed roughness and is detailed in
Appendix A. Higher flow acceleration leads to higher peak bed shear
stress; as shown in fixed bed (Suntoyo et al., 2008; Van der A et al.,
2011) and mobile bed experiments (Ruessink et al., 2011). The term
2% in Eq. (21) accounts for the effect of acceleration skewness on
the bed shear stress. It has the effect of increasing f,,; for the flow
half-cycle with higher acceleration (2%‘“<1) and decreasing f,; for
the half-cycle with lower acceleration (2% > 1); the term is equal to
unity for sinusoidal or pure velocity—skev'ved flow and Eq. (21) then
reduces to the standard Swart equation. Optimisation of ¢; against
the measurements of bed shear stress by Van der A et al. (2011) for
a range of acceleration-skewed oscillatory flows resulted in ¢; = 2.6.
Fig. 3 shows the calculated values of the ratio of maximum crest
bed shear stress to maximum through bed shear stress using ¢; =
2.6 and the corresponding measured values of the same ratio from
the Van der A et al. experiments.

For progressive surface waves, the vertical orbital water particle
motions transfer horizontal momentum in and out of the wave

2
ak =123
— swW (e}
=
S °©
g
8
I &
05 055 06 065 07 075 08
2
ak =214 8
_ swW
=
S, 15
=4
8
1 8 ) ) ) )
05 055 06 065 07 075 08
2
ak ~1563
— SwW
= 15 o
£ [¢]
[e]
1 8 o
05 055 06 065 07 075 08
2
Ak =2671
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=
S, 15 .
g
e
1 e
05 055 06 065 07 075 08

p

Fig. 3. Onshore/offshore bed shear stress ratio as function of 3: closed circles: fixed bed
measurements of Van der A et al. (2011); open circles: prediction based on Eq. (21)
with ¢; =2.6. Bed shear stress is calculated as |7;| = 0.50fiu;,|*

boundary layer, leading to a wave-averaged (Reynolds) stress
—p(uw) (Longuet-Higgins, 1953, 1958). The vertical gradient of this
stress drives a positive mean flow (boundary layer streaming) in the
direction of the wave propagation. Following Nielsen (2006), we
account for the wave Reynolds stress, as present at the edge of the
wave boundary layer, by adding a wave Reynolds stress T,ge to the
x-component bed shear stress, as per Eq. (15). This has the effect of in-
creasing the total Shields stress under the wave crest and decreasing
the stress under the wave trough. The wave Reynolds stress is estimat-
ed as follows (Fredsge and Deigaard, 1992; Nielsen, 2006):

f 3
TuRe = p%awu (22)
w

with @t determined according to Eq. (8), o,y =4/(3m) =0.424 and ¢,y is
the wave speed, calculated from c,=L/T, with L obtained from
Soulsby's (1997, p. 71) explicit approximation of the dispersion relation.
Here f,.s is the full-cycle wave-current friction factor, fiys = ofs + (1 — @)
fw, with f; calculated as before and f,, is Swart's friction factor calculated
as per Appendix A.

2.3. Distributing sediment load between half cycles: phase lag parameter

The sand load entrained during each half-cycle, Q;, is calculated
using Eq. (2). How much of that sand is transported within the
half-cycle and how much remains in suspension to be transported
in the following half-cycle is determined by the value of the phase
lag parameter for the half-cycle, P;, as follows:

Q. if P.<1
Q%e=yLg it p.>1 (23)
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0 if P.<1
Ot = (1—131)(4 if P> 1 (24)
C
o if P <1
Qe=11g it p 1 (25)
Pt
0 if P <1
O <1—Pl>gt if P>1° (26)
t

Thus, when the phase lag parameter P; exceeds 1, there is an ex-
change of sand from the present half-cycle to the following half-cycle.
The phase lag parameter is given by:

()
pP.— w 2(Tc_:rcu)wsc
¢ a 17§ﬁc Ogc

w 2(Te =Ty )Wy

o (1+ §ﬂt> Ui
G ) 2(Ti—Ty )Wy

a <l+ gﬁt) 65'[
G ) 2T =Ty )Wy

if 7> 0 (ripple regime)

if 1=0 (sheet flow regime)
(27)

if 1> 0 (ripple regime)

if =0 (sheet flow regime)
(28)

where «is a calibration coefficient, 7 is ripple height (Appendix B), d; is
sheet flow layer thickness for the half cycle (Appendix C) and wy; is the
sediment settling velocity within the half cycle. The term ”7
represents the ratio of a representative sediment stirring helgh‘t (ri= =
ripple height 1) or sheet flow layer thickness &;) and the sediment set-
tling distance within the half cycle. In the ripple regime, the generation
and ejection of sediment laden vortices on the ripple sides result in un-
steady phase lag effects. The relative importance of the vortex shedding
process depends on the size of the vortices and their entrainment
height, which scale with the ripple height 1 (Van der Werf et al,
2006). In the sheet flow regime, where phase lag effects occur predom-
inantly for fine sands, the characteristic entrainment height of the sand
scales with the thickness of the sheet flow layer 6. The above approach
for ripple conditions is different from previous half-cycle formulae of
Dibajnia and Watanabe (1996) and Silva et al. (2006) in which the ef-
fect of ripples on the phase lag parameter is accounted for through a
modification of the critical value of P; for rippled beds.

The sediment settling time is related to the deceleration time with-
in each half cycle, 2(T;-T;,), thus recognising that with increasing (for-
ward leaning) acceleration skewness the settling time during the crest
half-cycle increases, leading to a smaller P.; analogously the settling
time during the trough half-cycle decreases, leading to a larger P..
This effect was seen in the fine sand sheet flow experiments of Van
der A et al. (2009) and in the 1DV model simulations of Ruessink et
al. (2009), both for acceleration-skewed flows, but the process is
also expected to play a significant role for rippled bed conditions. In
the absence of acceleration skewnesss T;,=T;/2 and the settling
time reduces to the half-cycle period since 2(T;-T;,) =T

Calculation of the sediment settling velocity is based on Soulsby
(1997), assuming a suspended sediment size ds=0.8dsy (Van Rijn,
2007c). However, for the case of progressive surface waves (not
tunnel-type oscillatory flow) we include an allowance for possible
vertical advection of sediment due to vertical orbital water particle
velocities (Kranenburg et al., 2013). Although wave-induced vertical
velocities are small near the bed, they can be of the same order of mag-
nitude as the (still-water) sediment settling velocity, especially for
fine sand and high waves. In the deceleration phase of the crest half
cycle, wave-induced vertical water particle velocities are increasing

and are directed downwards, aiding the sediment settling process;
in contrast, the settling of sediment during the trough half cycle is
reduced due to increasing, upwards-directed wave-induced water
particle velocities. Sand settling velocities during the crest and trough
half cycles are accordingly adjusted as follows:

_Wmin(rc) (29)

Wy = max(ws —W max (rt)v 0) (30)

where ws is the (still-water) settling velocity as determined using
Soulsby (1997), Wmin(1¢) is the peak negative vertical water particle ve-
locity at elevation r. and wax (1) is the peak positive vertical water par-
ticle velocity at elevation r.. W, and W, are estimated using Stokes 2nd
order wave theory and the selected elevation is r;=1) in the ripple re-

gime and ;= &g in the sheet-flow regime. For tunnel-type oscillatory
flow wee =wg =
The terms (! Cﬁ"c and (1£8%) in Eqgs. (27) and (28) (where ¢, =

wave speed, { = calibration factor) account for a second effect of pro-
gressive waves on the phase lag behaviour: that of horizontal sediment
advection caused by horizontal non-uniformity in the wave field. The
wave non-uniformity produces horizontal gradients in the horizontal
sediment flux, with the result that sediment concentration is no longer
controlled by local vertical sediment fluxes alone (i.e. pick-up from and
deposition to the bed). Kranenburg et al. (2013) show how this
intra-wave horizontal sediment advection leads to a “compression” of
sand (increased concentration) under the wave crest and a “dilution”
(decreased concentration) under the wave trough, causing a net trans-
port rate in the direction of wave propagation, even for sinusoidal
waves. The importance of this transport mechanism for progressive sur-
face waves is shown with a numerical boundary layer model (based on
advection—diffusion for the sediment) applied to the large wave flume
experimental conditions of Schretlen et al. (2011). Kranenburg et al.
(2013) show that the effect of horizontal sediment advection can
be accounted for via correction of the phase-lag parameter through
the adjustment time scale Ta:

T, :A(l_w) (31)

Wy Cw

where A/ws is the ratio of sediment stirring height and settling velocity,
representing the settling time of sediment; u,,(t) is the free-stream hor-
izontal flow velocity in the transport layer near the bed; and § is a coef-
ficient accounting for the shape of the velocity and concentration
profile. A short description of the analytical background of this time
scale is presented in Appendix D (see Kranenburg et al., 2013 for
more details). The factor (1— M represents the influence of hori-
zontal sediment advection. It 1s <1 under the wave crest and >1
under the wave trough and therefore represents a decrease of the ad-
justment time scale under the wave crest (i.e. a quicker reaction of
the concentration to changes in the velocity) and an increase of adjust-
ment time scale under the wave trough. The factor is significant only
when waves are large with relatively high orbital flow velocities u,(t)
compared to the wave speed c,,. Moreover, it can only become effective
if phase-lag effects are important, or in other words, the adjustment
timescale T, should not be negligible compared to the wave period T.
Based on this result, the effect of horizontal sediment advection is incor-
porated in the sand transport formula through a correction of the
phase-lag parameters P; for the wave crest and trough, using a factor

<1 Sl ) for the settling time of the crest load and a factor (p;—gul) for

the settling time of the trough load as per Egs. (27) and (28). We use co-
efficient § as calibration parameter in this simplified parameterisation
(see below).
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2.4. Graded sands

For graded sand conditions a fractional approach is used to calcu-
late the net sand transport as follows:
G
= Z Pt ; (32)
(s—Dgdd, =1 " 4/(s—1)gd;

G0 _¥

where ¢s; is the net transport rate of fraction j with diameter dj, and
percentage p; of that fraction in the bed material, and M is the number
of size fractions in the bed material.

Van Rijn (2007c) discussed whether the roughness of each fraction
should be based on the grain diameter of the fraction (ks~d;), or wheth-
er for each fraction the same roughness (and hence bed shear stress T)
based on the median grain diameter of the mixture (ks~dso) should
apply. The first approach assumes segregation of the fractions during
the experiment, while in the second approach the bed is assumed to
remain well-mixed. Using a multi-fraction approach (including hiding/
exposure effects discussed below), Van Rijn (2007¢) compared predict-
ed net transport rates from his quasi-steady formulae using both ap-
proaches with the medium sand results of Hassan (2003). Best results
were obtained with k;~d;, in agreement with the observed segregation
processes during the majority of Hassan's (2003) graded sand experi-
ments. In the present formula, assuming ks;~d; in the transport rate
calculations for each fraction also lead to best agreement with the mea-
sured net transport rates. In calculating the fractional transport rate,
the phase lag parameter also depends on the grain size of the fraction,
therefore:

if >0 (ripple regime)

ch _ gA 5 scj
: 1-cu sc ; .
« < if =0 (sheet flow regime
< Gw )2(TC_TCU)WSCJ L ( & )
i (33)
1+ §Ut> Ui . . .
o if 1> 0 (ripple regime
. (M%) 2Ty 1f 1> 0 (vl regime)
v a(” gﬁt) O if 1=0 (sheet flow regime)v
o ) 2(T—Ty) Wy
(34)

In which the settling velocity is based on the particle settling ve-
locity for each fraction individually. The representative entrainment
height (either 7} or ég;) is the same for each fraction and is based on
the overall ds.

It is well known that for beds consisting of different size fractions,
the finer particles tend to “hide” between the larger particles and there-
fore have reduced mobility compared to a uniform sand of the same
diameter. At the same time coarser particles become more exposed to
the flow and are more easily mobilized. These grain sorting effects can
be accounted for by applying a correction factor, often as a function of
d;/dso, to the critical Shields parameter and/or the effective Shields pa-
rameter (see e.g. Hassan, 2003; Van Rijn, 2007c). Correcting the critical
Shields parameter only has significant influence on conditions near the
threshold of motion. For relatively large Shields parameters, such as for
the present sheet flow conditions, an adjustment to the Shields param-
eter has a greater impact. We apply the correction &.; to calculate the
effective Shields parameter for the fraction with grain size d; as follows:

)Oi.jﬁeff gejf.j‘ei‘i) (35)

where, as before, i=c (crest) or t (trough), and |6;j| is the Shields pa-
rameter for fraction j, which feeds into the calculation of the sediment
load as follows:

< Oy

0 it |61se
Qi = {m(‘ei.j.eff —9@>n if , (36)
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with 6. the critical Shields parameter, according to Soulsby (1997),
for fraction j. Following Van Rijn (2007c), the correction factor is
defined as:

d. \ 025
J

This simple correction factor is adapted here in preference to the
more commonly used correction factor of Day (1980) which requires
information on the gradation of the sand mixture.

2.5. Calibration

The limited applicability of many existing practical formulae is, to
some extent, the result of the limited range of flow and sand conditions
used to develop the formulae. For this reason Van der Werf et al. (2009)
brought together a large dataset of existing net transport rate measure-
ments from a number of facilities covering a wide range of sand sizes
and full-scale flow conditions (the “SANTOSS database”). The database
has recently been extended to include more recent net transport mea-
surements for acceleration-skewed oscillatory flows (Silva et al,, 2011;
Van der A et al,, 2010) and for progressive surface waves (Schretlen et
al,, 2011). The entire dataset contains 226 measured net transport rates
for a wide range of full-scale (T>4 s) conditions in both the rippled bed
and sheet flow regime, including regular and irregular oscillatory flows
with velocity skewness or acceleration skewness (or a combination of
both), oscillatory flows with superimposed collinear currents and
non-breaking (shoaling) surface waves. Table 1 presents an overview of
the range of hydraulic conditions covered by the data. In most of the os-
cillatory flow + current experiments (43 out of 50 cases), the current
was weak relative to the orbital velocity, |us|/11<0.5, so that in general
the experimental conditions for which measured net transport rates are
available are oscillatory flow-dominated, not current-dominated. The
extended database was used for the calibration of the present practical
sand transport formula.

The calibration procedure is an iterative procedure involving three
main calibration coefficients: (i) the coefficient o in the phase lag pa-
rameter (Egs. (27) and (28)) for sheet flow and rippled bed conditions;
(ii) the proportionality constant m in the sediment load formula
(Eq. (2)), and (iii) the power of the excess Shields parameter n in the
sediment load formula. In the calibration procedure, o was tuned to
find the highest correlation between the measured and predicted trans-
port rates; m was then found from least square fitting a straight line
with zero intercept to the measured and predicted net transport rate
values, repeating for different values of coefficient n. Once an initial
calibration was completed, several subsets of the data were examined
and calibration coefficients specific to each subset (p, 1 and §) were
tuned individually to obtain best agreement between measured and
predicted transport rates for each particular subset of data. After this
m, nand o were adjusted again to obtain best overall agreement. The en-
tire procedure was repeated several times, finally resulting in: «=8.2,
m=11.0and n=1.2.

3. Calculated and measured net transport rates

In this section we compare calculated net transport rates with
measured transport rates for particular sub-datasets (see Table 1) in
order to highlight i) the different transport mechanisms that are cap-
tured in the formula, and ii) the performance of the formula for each
sub-dataset.

3.1. Velocity-skewed oscillatory sheet flow with dsg > 0.20 mm
Fig. 4 shows a comparison of the measured and calculated transport

rates for the 32 pure velocity-skewed sheet flow conditions with
dsp > 0.20 mm contained in the SANTOSS database. Nearly all transport
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Table 1

Overview of dataset used for development and calibration of the formula. The number of conditions is divided per flow (regular, irregular) and per transport regime (sheet flow, rippled
bed). Here ds is the median grain diameter, T, the (peak) flow period, u,max the maximum orbital velocity, u; the net current velocity (negative indicates a current direction opposite
that of the implied wave direction) at level z= 6 computed from the measured or imposed current velocity by assuming a logarithmic velocity profile with §=0.2 m, ¥, is the mobility
number based on uy,max, and B and R represent the degree of velocity and acceleration skewness, respectively (see Section 2.1). The subscript (sig) applies to the irregular flow conditions

for which significant (i.e. average of the highest one-third) values are listed.

Flow condition dso Tip) Uw,max(sig)  Us Vinax(sie)  Psig) Risig) Number of conditions Reference(s)
(mm) (s) (m/s) (m/s) (=) (=) (=) reg. irreg. s.f. rip. total
Sinusoidal osc. flows 0.22 10.2 0.63 - 79 0.5 0.5 - 1 - 1 1 Van der Werf et al. (2006)
Velocity-skewed osc. 0.13-046 4-125 0.16-1.72 - 9-1427 0.5 052-0.70 70 22 40 52 92 Sato (1987), Dibajnia and Watanabe
flows (1992), Ribberink and Chen (1993),
Ribberink and Al-Salem (1994),
Ribberink and Al-Salem (1995), Clubb
(2001), Wright and O'Donoghue
(2002), Hassan (2003), O'Donoghue
and Wright (2004), Van der Werf
et al. (2006), Van der Werf et al.
(2007), Silva et al. (2011)
Acceleration-skewed 0.15-046 5-10 0.83-145 - 225-702 056-08 05 - - 47 - 47 Watanabe and Sato (2004), Van der A
osc. flows et al. (2010), Silva et al. (2011)
Acceleration +velocity 0.15;020 7-10 0.94-1.61 - 364-793  0.60-0.72 0.53-060 6 - 6 - 6 Van der A et al. (2010), Silva et al.
skewed osc. flows (2011)
Oscillatory flows with  0.13-032 4-12  094-1.69 —0.50- 269-841  0.5-0.7 05-070 50 - 50 - 50 Dibajnia and Watanabe (1992),
current 0.50 Katapodi et al. (1994), Ramadan
(1994), Dohmen-Janssen (1999), Silva
etal. (2011)
Graded sands 0.15-054 5-12  0.72-163 0.24;045 0.50 05-068 19 - 19 - 19 Inui et al. (1995), Hamm et al. (1998),
Hassan (2003), O'Donoghue and
Wright (2004)
Progressive surface 0.14-025 5-91 1.02-166 - 270-1079 046-056 055-067 11 - 1 - 11 Dohmen-Janssen and Hanes (2002),
waves Schretlen et al. (2011)
Total 0.13-054 4-125 0.16-1.72 —050-  9-1427 046-08 05-0.70 203 23 173 53 226
0.50

rates for velocity-skewed conditions are calculated within a factor 2 of
the measurements. In addition to the percentage of the data falling
within a factor 2, Table 2 lists the factor 5 percentage, the Brier skill
score, the bias and the squared correlation coefficient r? (see caption).
All performance criteria indicate the excellent agreement between the
measurements and prediction for these conditions. With the exception
of one of Ribberink and Al-Salem's (1994) conditions (indicated by the
arrow in Fig. 4), for all these experiments with medium and coarse sand
(ds0=0.20 mm) P;<1, which means unsteady phase lag effects do no
play a role in the predicted transport.
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Fig. 4. Comparison between measured and calculated net transport rates for velocity-
skewed oscillatory sheet flows with dso>0.20 mm. The solid diagonal indicates perfect
agreement, the dashed lines a factor 2 difference.

3.2. Acceleration-skewed oscillatory sheet flow with dso>0.20 mm

Fig. 5 shows a comparison between calculated and measured net
transport rates for the 32 pure acceleration-skewed oscillatory flow con-
ditions with dsp>0.20 mm. The calculated transport rates show good
agreement with the measurements, with 84% of the predictions fall
within a factor 2 of the measurements (also see Table 2 for further de-
tails). The formula incorrectly calculates the transport direction for one
of Watanabe and Sato's (2004) conditions. Due to its forward-leaning ac-
celeration skewness (3=10.6), a positive net transport rate is calculated,
in contrast to their measured negative net transport rate. The discrepan-
cy may be due to measurement error: Watanabe and Sato (2004) deter-
mine their net transport rate on the difference between the masses of
sand collected at the ends of the test section, a method that is more
prone to measurement error than the method based on mass conserva-
tion applied to the whole test section as used in most other studies. For
some of Watanabe and Sato's (2004) conditions (indicated with the
grey symbols), the relatively short flow period of T=5 s combined
with large orbital velocities (il max~1.45 m/s) results in phase lag ef-
fects contributing significantly to the net transport rates (i.e. P;>1).
Watanabe and Sato's own observations of the time-dependent sand con-
centrations confirm the occurrence of the unsteady behaviour. No phase
lag effects were observed for the same sand size and orbital velocities for
flow periods of 7 and 10 s, which provide longer settling times (Silva et
al., 2011). The transport formula is able to capture these processes.

3.3. Oscillatory sheet flow for fine sands (dsp<0.20 mm)

Fig. 6 shows the calculated net transport rates for the 29 oscillato-
ry sheet flow conditions with dsq<0.20 mm. The conditions include
the pure acceleration-skewed flows of Van der A et al. (2010), for
which the measured net transport rates are all onshore-directed,
while the remaining conditions are all pure velocity-skewed flows
for which the measured net transport rates are predominantly negative,
or “offshore”-directed. For both flow types, the experimental studies
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Table 2

Performance criteria for the various data subsets. N indicates the number of data points contained in the subset, BSS is the Brier Skill Score (Van der A et al.,2010; Van Rijn et al., 2003), here
BSS=1—(|qsprea — Qs meas|2)/{qZmeas) Which gives a measure of the formula accuracy (BSS = 1 means perfect agreement, BSS<0 means that the transport rate error is greater than when
zero transport is predicted for each condition, i.e. the “do-nothing” scenario), bias is the normalized mean bias defined as bias = {(qs pred — Gs,meas)/dsmeas’ and indicates the tendency of the
formula to over- (positive bias) or underestimate (negative bias) the measurements, r2 is the squared coefficient of correlation, and the last two columns indicate the percentage of the
predictions within factors 2 and 5 of the measurements. Van Rijn et al. (2003) proposed the following skill qualification: excellent: BSS=1.0-0.8; good: 0.8-0.6; fair: 0.6-0.3; poor: 0.3-0;

bad: <0.
Data (sub)set N BSS bias (%) 2 fac2 (%) fac5 (%)
Velocity-skewed sheet flow dso>0.20 mm 32 0.91 -8 0.78 97 100
Acceleration-skewed sheet flow dso>0.20 mm 32 0.92 2 0.87 84 97
Oscillatory sheet flow ds0<0.20 mm 29 0.73 —8 0.80 86 93
Oscillatory flow over rippled beds 53 0.72 4 0.65 62 89
Oscillatory flow with collinear current 50 0.72 61 0.84 70 86
Graded sands 19 0.83 45 0.91 89 100
Progressive surface waves 11 0.57 27 —1.05 82 100
Regular flows 203 0.76 18 0.76 81 94
Irregular flows 23 0.54 18 0.95 57 87
Sheet flow 173 0.76 22 0.73 83 94
Ripples 53 0.72 4 0.65 62 89
Fine sand (d5p<0.20 mm) 64 0.70 —16 0.72 77 89
Coarse sand (dsp>0.20 mm) 162 0.79 31 0.85 79 94
All 226 0.76 18 0.77 78 93
All with ripple predictor 226 0.76 10 0.76 69 86

have shown that unsteady phase lag effects dominate the transport rate
direction, which is calculated correctly by the formula for nearly all con-
ditions. Although the magnitudes of the net transport rates are some-
what underpredicted, they agree reasonably well with measurements:
86% of the calculated transport rates are falling within a factor 2 of the
measurements, with the exception of several of the velocity-skewed os-
cillatory flows. The scores for the various performance criteria listed in
Table 2, reinforce these conclusions. Note that not invoking the
sheet-flow enhancement to the fine sand roughness (i.e. setting u=1
in Eq. (A.1)) results in significant under-estimation of the net transport
rate, with only 38% of the calculated transport rates falling within a factor
2 of the measurements.

3.4. Oscillatory flow over rippled beds
When the bed is rippled, the bed roughness ks, can be expected to

scale with the ripple dimensions. Common practice is to scale the
roughness to the ripple height kg, ~1 (Humbyrd and Madsen, 2011;
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Fig. 5. Comparison between measured and calculated net transport rates for acceleration-
skewed oscillatory sheet flows with dsp>0.20 mm. The grey diamonds indicate conditions
of Watanabe and Sato (2004) for which phase lag effects are active. Note that in Figs. 5 to
10, data from the preceding figure is included to aid comparison (and is indicated by the
small light grey dots).

Van Rijn, 2007a) or to the product of ripple height and ripple steepness
as follows:

Ko = P15 (38)

where A is ripple length and p a constant. Values of p reported in the lit-
erature cover a wide range between 8 and 28 (e.g. Grant and Madsen,
1982; Nielsen, 1983; Raudkivi, 1988; Swart, 1976). p has no physical
meaning and its variability may be attributed to the choice of friction
factor formula as suggested by Humbyrd and Madsen (2011). For the
present formula p is used as a specific calibration factor for the net
transport rate prediction over rippled beds. Based on comparison of
the measured and calculated net transport rates for the rippled bed
conditions, an optimal value of p=0.4 was found (see Eq. (A.5)). Note
that in calibrating p the measured ripple dimensions from the experi-
ment have been used to avoid errors inherent in using an empirical
ripple predictor.

Fig. 7 shows the comparison of the measured and calculated net
transport rates, using measured ripple dimensions as input, with corre-
sponding performance criteria listed in Table 2. Despite the scatter in
these results, the net transport rates are considered to be reasonably
well calculated. It should be emphasised here that prediction of net
transport rates for rippled beds is notoriously difficult, due to the
unsteady effects associated with the complex flow structure over rip-
ples, and because the net transport rates are low. Van der Werf et al.
(2006) compared predicted net transport rates from the grab-and-
dump model of Nielsen (1988), the semi-unsteady formula of Dibajnia
and Watanabe (1996) and their own semi-unsteady formula with the
same ripple condition experimental data as used for Fig. 7 and found
that for the best model only 35% of the predictions fell within a factor
2 of the measurements. Similarly, Silva et al. (2006) found only 47% of
their predictions to fall within a factor 2, while 20% of their predictions
failed to determine the correct transport direction. In contrast, 62% of
the calculated net transport rates from the present formula are within
a factor 2 of the measurements and the correct direction is calculated
for 91% of the conditions. When the predicted ripple dimensions based
on O'Donoghue et al.'s (2006) predictor (s