Version Control with Subversion

For Subversion 1.7

(Compiled from r4287)

Ben Collins-Sussman
Brian W. Fitzpatrick
C. Michael Pilato

Version Control with Subversion: For Subversion 1.7: (Compiled from r4287)
by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Filato

Copyright © 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael
Pilato

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://creativecommons.org/licenses/by/2.0/

Table of Contents

0111V o PR Xii
== ot PP Xiv
Wt 1S SUDVEISIONT ..ottt ettt et et e et b e ettt et aa e e e et e e et e e e bareeaa e een e eeebnaaeanaees Xiv
IS SUBVErSION the RIGNE TOOI?eeiee e e e e e e e e e et e e e eanes Xiv
W10 = o g] T (oY XV
SUBVEIrSION'S ATCIITECLUIE ...ttt e et e et e e e et e e e e et e e e e et eas XV
SUDVErSION'S COMPONENES ... eettieteett ettt ettt e e ettt et e et et e et e e et e bt e et et e et et e et et e e e eban s XVii
What's NEW IN SUDVEISIONeeniiieei e et e e et e e et e et e e e eb e e e e aeens XVii

F N E o 1= o To ST TUPPRPN Xviii
HOW t0 REAA TRIS BOOKttt ettt et e e e e et e e et e e eaaeaees XViii
(@0 114= (o] Jo N I £ = o o) Xix
I 0] 2700 S B o =PRI XX
ACKNOWIEAGMENES ...ttt e ettt e et e e et et e e e et b e e e e et e e e e et e e e e eba e XXi
1. FUNCAMENEEI CONCEPILS ... eeeet ettt ettt ettt ettt ettt ettt e et et ettt s e et e bt e et b e e et bb e et e b e et e b e e e eba e 1
VEISION CONIIOl BBSICS ...ttt ettt ettt e ettt ettt e et e et e e eh e e et e e et e et tareeeb e e et e e ebn e eeaneennns 1
B I LS (= 10 1 (o Y 1

LIS AT L o o VP 2

RV 2= £ o g aTo 1Y/ oo 1= 2
Version Control the SUDVEISION WEYiiiiii et et e e et e eeeaa e e eenes 7
SUDVEISION REPOSITONES ...ttt ettt ettt e et e e et b e e et et e e e e et e e e e era s 7
REVISIONS ...t et e e e e et e et et et et et a e et et e e e an e e et e eanaaees 7
AdAressing the REPOSITONYiieiiiiiiie e e e e e e e e e e e e et e e e e e e e et e e eenaeenees 8
SUBVErSION WOTKING COPIES ...evvueeeiieei et e et e e e e et e et e e e e e e e e e et e e et e e e et e e et e e et s e et e etn e eatneeennnes 9

S 010107 Y/ 14
2. BASIC USAOR ... eiti ittt et et e e e 15
= o PR 15
Getting Datainto Y OUIr REPOSITONY ... ettt ettt e ettt e et e e et e e e bt e et ettt e e e et e e et e e ebn e e eenaaanaaes 16
IMPOrting FileS and DITECLOMESieeii e e e e e e e e e e et e et e e e e e e e eaeees 16
Recommended REPOSITONY LAYOULceuuiiiiieiiieeis e e s e et e e e e e e e e e e et s e e e et e e et e e eaneeetn e eaneaannaees 17
WHEE'S IN@NGIMIE? ...t e ettt e e et et e e e e et e e e e et r e e e eataneeeeateneeeentnnaaeees 17
Creating @WOIKING CODPYeeeteeeeii ettt ettt e et e ettt e e ettt e e et et e e e e et e e et et e e e e et e e e e eban s 18
BaSICWOIK CYCIE ..ottt ettt et et e e e aaaas 19
Update Y OUF WOIKING COPY ... eeueeineeit ettt ettt e e e et e e e et e e et e e et e e e aa e e an e e et e eeanaaenns 20

= SR o TN [O o = 20
Y= YA o 0| GO - o L= 22

FIX Y OUN MISEBKES ...ttt ettt e e et e e e et n e e e et n e e e et aeeeaeens 25
RESOIVE ANY CONFIICES ...ttt et e e et et et e e e et e e eaaans 26
COMMIT Y OUI CRBNGES ... ettt ettt e et e e et e e et et e e et et e e et et e e e e ebaas 33
s 01T T 0o [T (o] o PP 34
Examining the Details of HiStorical Changesocuuiiiiiii e e e e 34
Generating aList of HIStOrical ChanQEScvvuiiiiiieii e e e e e e e e e e e e an s 36
BrowWSING the REPOSITONY ... iieuiieiii e e e e e s e e e e e e et e e e e an e e eet e e et e eetn s eeaneaenaees 38
Fetching Older REPOSITOrY SNEPSNOLSiiiiiieieiii ettt et et e e e e e e eaaens 39
Sometimes You JUSE NER 10 CleBN UP ..iiiiiiiiiii ettt e e e 40
DispoSing Of @WOIKING COPY .. .eeeniitieiteeei et e ettt e e e et e et e e aa e e et e e et e e ebn e e eanaaenaaes 40
Recovering from an INtEITUPLIONiiuiii e e e e e e e e e e e et e e e e e eaeees 40
Dealing With SErUCTUral CONFIICESiuvuiiiiii e e e e e e e e e et e et e e et e e e e eanas 41
AN EXamPle Tre@ CONFIICEvvu i e e e e e e e e e e e e e et e e e e eanes 41
SUMIMIBIY ettt ettt ettt ettt et e e ettt e et e et n et e e e e e e et et e e e e e e e an e 46
Yo 1V Lo o B e o s ST P T PP SOPPTTRN 47
REVISION SPECITIENS ...ttt et e et et e e et et e et e et ta e e et e e et e e et e ean e eanas 47
e V7S Ko L T =AY 0 {0 47
S Y S Lo [D - =SSP UPPPR 48

Version Control with Subversion

Peg and OPErativVe REVISIONSiiiiiiii e e e e e et e e e e e e e e e et e e et e e e e e e aa e e et e e aan e eetn e eaneennnas 49
0] =S 53
QY 00 = = PP ROUPPTPRUPRIN 54
ManipUIBLING PrOPEITIESeeuiiiiit ettt ettt ettt ettt et e e et e e et et e e e et e e e aab e e ennans 55
Properties and the SUDVErSioN WOTKFIOW e e e e 58
AULOMELIC PrOPEItY SEITING ...ceeuietieetie ittt et e et e et e et e et et et e e et e e et e ean e ean s 60

= o 7= o] 1) Y SRS 61
X 0] 1= A I o= S 61

FIlE EXECULBIIITY ...eeetieeeeei ettt et et e e e e e e eaaans 62
ENd-0f-Line CharaCter SEOUENCESccouuuieiiiii ettt ettt ettt ettt ettt e e et ettt et e et e e e ene e e eanens 62
1gNOrNG UNVEIrSIONEA TTEIMS ...ttt ettt et e et e et e et e e ta e e et e e et e e et e ean e ennnns 63
[VATV (0 S 1= 11 oo 67
S 0= TS <l I T 1= ot (] =S 70
0o (1 o 75
CrealiNg LOCKS ... et 76
DiISCOVEITNG LOCKS ..ettieeiittii ettt ettt ettt ettt ettt e et e et e et et e et e n e e e e e e e e e anb e e e ennans 78
Breaking and StEaliNG LOCKSceuuiitiieiii ettt et e et e e e et e et e e et e e et e e e e e an e 79

LOCK COMMIUNICELION ...ttt ettt ettt ettt e et e ettt et et e e et e e et e e et e e e baaeeeaeeenaaes 81
EXErNalS DEFINITIONSiiiiiiiiiiiii et ettt et et e e e e et e e e e et e e e e et e e e e aanaeeenenns 82
L1371 10 T T £ 88
Creating and Modifying ChangeliStSuuioiiiiiiie e 88
Changelists AS OPEration FIITEIS it e e 90
Changelist LIMITAIIONSiietieii ettt et e et e et e et e et e e e ta e e et e e ea e e et e ean e eenas 92

L= o4 Q1Y e o = PP 92
S0 [0 LCs Y= 00 === o 0] 15 = S 92
ClIENE CrEOENLIAlS ... ettt e e e e et e e e et e e e et e e et e e e et 93
SUMIMIBIY ettt ettt ettt ettt e ettt e et e et r et e e e e et et e e e e e e e e an e 95
4. Branching @0 IMEIGINGuoeeeetnieeiiite ettt ettt e e ettt e e ettt e e et et e e ettt r e e et et e e et ee bt e et eebeteeees bt e e e eebnreeeentnaaeeee 96
What'S @BIranCR? ... e e ettt e e et et e et et e e e eaas 96
L ES o = 7= = 96
(0= 1o 1= 1 2 = 1o o 98
WOrKing With YOUF BIanCRu.iii et e e e eean s 99

The Key Concepts Behind BranChingcooouueiiiiiiie et 102

= S Lol 1V = o] oo PP OPPP TP PPPPTTRPPPIN 102
(014 1010 1= (PP PTPPPRN 102
Keeping aBranCh iN SYNC et e et e e e an s 103
ReEINtEGrating @BranCh oo e e e 108
MErgEINTO AN PrEVIEIWS ... iie et e e e e e e e e e e e e e e e e e e s e et e e e e e et a e e e eean s 110
(8T To ol oo @ P>l L= PSPPI 113
ReSUITeCting DElEtE [TEIMSt ettt e e et e e et e e e e ab e e e enta e eeee 114

F o\ g (oo 1Y L= (0T o PP 116
10101 1 07/ o TTo! (] oo TR PP UPPTPPTRPPN 116
Merge Syntax: FUIL DISCIOSUIEiiii et e e e e e e e e e e e e et e et e e e e e et e e e e ean s 118
Merges WithOUt MEIGEINTOiiieici e e e e e e e e e e e e e et e e e ean s 119

MOrE 0N MENGE CONFIICES ..ottt et et e e et e et e e e e et e e e eaaa e eeens 120
BIOCKING CRANGESoeiiieiiie et ettt ettt e e ettt e e e e et t e et e abareeeentanaeeee 122
Keeping aReintegrated BranCh AlIVEco. i e 123
Merge-Sensitive Logs and ANNOLELIONSccuiiiuiiiiiei e e e e e e e e e e e e e e e et e eaeeanns 124

[\ o1 T qTe o g Ko laTo ghaTe [N o o= i o 126

Y 0 oS3 o Y Y= 127
Blocking Merge-UnNaWare CHENESo.uuiiiiiiiiee ettt e e et e e e e ab e e e enta e eeens 127

The Final Word 0N Merge TraCKiNgcc.uuieiiiiiieeiit ettt ettt e e e e e e 128
TraVerSiNG BranChES ... i e et e et e et e e e e et e e et e e et e e et e e ea e eeaaaes 129
=0 = T PRSPPI 131
(O L To T S T] o) L= I PP 131
(@ Lo Jr= @] 1oL I [P 131
2= 1o ATV = T 1= 7= o= 132
REPOSITONY LBYOUL ...ttt ittt ettt ettt ettt e e ettt e e et et r e e et et neeeenbe s e e eentnneeeee 132

Version Control with Subversion

DL = I = (0= PPRTRPPPIN 133
Common BranChing PatternSoiiieiiiii e e e e e e e e e e e et e e et e et e e et e e et e eanneean s 134
REIEESE BIraNChESceiiiiiieii et e 134
s 01 Lol 2 =T o == PP 135
V4= 00 (o g = = 14 = PP PTPPTN 135
General Vendor Branch Management ProCEAUNEcouuviuiiiniii i e e e e ees 136

Y T o= o o1 £ o PP 138

R 010107 Y/ 139
5. REPOSITONY AQMINISITAIION ...ttt et et e ettt s ettt e et e b e e et b e e e e bb e e e e b s 141
The Subversion REPOSITOrY, DEFINEiiiiiii et 141
Strategies for RepOSItOry DEPIOYMENT it e et e e e et e e et e e e e ean s 142
Planning Y our REPOSITOry OrganiZationceeusoieuneeie ettt e e e et e e e et e e e et e eaa e een s 142
Deciding Where and How t0 HOSt YOUr REPOSITONYvvvuiieiieii i e e e s e e e e e e e eanes 144
(01910701 T o[- WD = S (o = T 145
Creating and Configuring Y OUF REDOSITONYceeuuuieiiii ettt ettt e et e e e et e e e eaa s 148
Creating the REPOSITONY ... iieiiee ittt ettt ettt et a ettt e et et e e e et e e e eaa s 148
Implementing REPOSITONY HOOKSiiuiiiie ettt e e e e e een s 149
Berkeley DB ConfigUIaionveeiiiiieie et e e e e e e e e e e et e e e et e et e eneeanns 150
S ST @0 1o U= o] o 150

S 01015 10 VALY, = 1= 7= (o 150
F N AN [0 T T (= o) T oo 150
Commit LOG MESSAGE COMECIION ...eevtueiiiit et ettt ettt ettt e et et e et et e ettt e et et e e e eaa s 154
MaNAGING DISK SPACE ... ctuiiiieiit ettt et et e e et et e et e e e e e e ean s 155
BEIKEIEY DB RECOVEIY ..vuiiiiiiiit ettt ettt e e e e e e e e e e et e e e e et e e e et e et e et e et eenaeanns 158
Migrating Repository Data EISBWHEIEcovniiiii e e e 159
Filtering REPOSITONY HIStOYccueiiiiiiei e et e e e e e e e e e et e et e e e e e et a e e eeen s 164
REPOSITONY REDIICAIION ...ttt e et e et e et e e et e e e e ab e e e eata e eeees 167
REPOSITONY BACKUD ...ttt ettt ettt e ettt e e et et r e e ettt r e e e enbeneeeentaneeeee 174
Managing REPOSITONY UUIDSttt e e e et e e e e e et e e e e ean s 175
Moving and REMOVING REPOSITONESuuiiiieiiiie ettt e e et et et e et e e et e e et e e eanaaeens 176
S 0] 0107 Y/ 176
LSS V7= B Oo 011 To 0 =1 o o 178
L@ < Y 178
Choosing @ Server CONFIGUIBLIONieeee et eett ettt ettt et e et b e e e et e et e e e e e b e e e ene s 179
BRSNS S A RS = AV PP 179
SVNSEIVE OVEN SSH ...ttt ettt ettt ettt et et et e et e et e e et e et et e e a e e e e e eees 179

BTN = o 1] I I RS = Y= 180
RECOMMENTELIONSeve et et e et e e e e e e bt e e et et r e e e eatereeeeabn s e eeeatnneeeees 180

S g S A S L O s (0] 1 (1S~ Y= S 181
INVOKING ThE SEIVET .ttt e et e et e e et et e e e e abreeeenba e eeees 181
Built-in Authentication and AULNOMTZBEIONc..uiiiti e e an s 185
USING SVNSENVE WITN SA S oot e e e et e et e e e e e e e et e e e e e neaneeanns 187

LI 101 = 1T o 0LV /= S 189

S o I Oe 1 1Te 0= o g T N PR 191
httpd, the APAChE HT TP SEIVEY ... ettt e et e et e e e e e eaaans 192
PrEIEOUISITES ..ottt e et ettt et e et e et e e e ab e e eab e aaee 193

BasiC APache CONFIQUIELIONiie e ettt e e et e et e e e e e et e e e e ean s 193
AULNENTICEEION OPLIONS ...ttt et ettt e e e et et e e et e e et e e e e et tn e e e et e eeaneaenas 195

W11 gz (0] @ o1 o] = 198
Protecting network traffic With SSLoiiiiii e e 201
= 0o o == 203
Path-Based AULNOIIZAIONiiueiii et e et e et e e et e e et e e ea e e et e e eaneeenns 210
(Lo g B T= Y I oo o1 1o RSP PPRPT 215
S 4V S @ 1111 114 o] o I PP 217
D= = O o o1 1o [217
Network ComMpPreSSION OF D@LAcvvvuieiiieii e e e e e e e e e e e e e e e e e een s 218
Supporting Multiple Repository ACCESS MENOUSuuiiiiiiiciii e 218
7. Customizing Y our SUDVErSION EXPEITENCEcevuuiiiiii ettt ettt ettt ettt e e et e e e e e e b s 220

Vi

Version Control with Subversion

gL =X @0 g Lo U= o) AN == P 220
Configuration ATEALEAYOULciueeiiiieii et et e e et e e e e et e e e e e et e e et e e ea e eetn e eaneeaneees 220
Configuration and the WINdOWS REGISIIYciieuiiiii e 221
CoNfiGUIATION OPLIONS ...ttt ettt ettt ettt et e e e e et et e et et e e et be e e e et eeeena s 222

(o To= T2 1 o] o PSPPI 227
L0010 = 6= =T To [F o T o= | =S 228
SUBVErSION'SUSE Of LOCAIESvvuiiiiiii ettt ettt e et e e et e e et e e e eaan s 228

L LS T g0 g = o T o 229

Using External Differencing and Merge TOOISuuiiiiiitiiiiiii ettt e et e e e e 230
= o [PP 231
= = o T TP 232
L 7= 11 (0T 233

S 0] 107/ 234

S 1070 (o T 1o TS T 0177 £ T o 235

Layered Library DESION .. .cceui ettt et ettt e ettt e e ettt e e et et e e et et e e e et e e e e a b e e eaba e aee 235
S Lo (oY I = PP TPPPPTRTPPPIN 236
REPOSITONY ACCESS LAY O ... ittt ettt et e e et e e e et e et e e et e e e e ean s 239
L0 1= | B - 1Y 240

L LS T 0T I 1T 241
The Apache Portable RUNIME LIDIaryocoouiiiiii i e e e e eaes 241
g Tox 0] 1SR g To [== o] 242
URL and Path REQUITEIMENTSeuuiiiiiii ettt ettt ettt ettt e e ettt e e e e et e e e rne e e eneens 242
Using Languages Other Than € and CHoueiiii ettt et e e e e e e e e 242
1000 [0] o] = PP UPPTPPTRN 243

S 0] 0107 Y/ 249

9. SUBVErSioN COMPIELE REFEIENCE ... ivvuiiiii et ee e e et e e e e e e e e e e e e e et e e et e e et s e e e e an s e aetneeeaneeenns 250

svn—Subversion Command-Line CHENtooiiiii e e e e e e e e et e e e e eneees 250
SV OPLIONS ...ttt ettt ettt oottt et e ettt e e et e e et e e e eaa s 250
SVN SUBCOMIMANGS ...t e ettt e e et e e et e e et e e et e e aaeeanaees 257

svnadmin—Subversion Repository AAMINISIFLIONco..iiiiie e 334
Y=o L0 0T T KO o140 PR 334
SVNAAMIN SUDCOMIMANSeeitiee ettt ettt e et e ettt e e ettt e e e e bb e e e et e eeeaan s 335

SvNlook—Subversion REPOSItOrY EXAMINGLIONcccouuiiiiiiii it 358
SVNTOOK OPIONS ...ttt ettt ettt ettt e ettt e ettt e e et et e e et et e e et e b e e e e et e e e e eaa s 358
SVNIOOK SUDCOMIMANGS ...t ettt e e e et e e et e e et e e et e e e aneeanaaes 360

SVNSyNC—SUbVErsion REPOSITOrY MITTOITNGuuiiiieiii ettt et et e e e et e e e e ean s 379
Y0157 0w o1 o) 1 PP 379
SVNSYNC SUDCOMIMBINAS ... eevueeieeiit e e e e e e e e et s e et e e e e e et e e e e e et e e et reean e e e tn s e e et e e eanaeetn s eeanneeannaees 381

svnrdump—Remote Subversion RepoSitory Data Migrationocoieueieeiiiiieeeiiie et 389
SVNIAUMP OPLIONS ...ttt ettt et e et e e et e e et et e e ettt e e et et e e e e et e e e e enan s 389
SVNIAUMP SUDCOMIMENGS ...ttt ettt e et e ettt e et e e e ta e e e et e e et e e ebn e e eaneaenaaes 390

SVNSErVE—CUSIOM SUDVEISION SEIVEY ...ttt ettt et e e e e et e e et e e e e ean s 393
Y10 =YL= Y o)1) PP 394

svndumpfilter—Subversion History FIITErNGcveueiiii e e e e e e 395
SVNAUMPFITTEr OPLIONS ...ttt e e et e e et e e e et e e e eaa s 395
SVNAUMPFITtEr SUDCOMIMEANAScceite ettt e e ettt e e e e e e e s 396

svnversion—Subversion Working Copy Version INfOiiiiiii e 401

mod_dav_svn—Subversion Apache HTTP Server MoaUIEoouniiiiiii e 403

mod_authz_svn—Subversion Apache HTTP Authorization Modulecooviiiiiiiiiiii e, 406

ST o)== o I 0] 0= =S 407
VErSIONEA PrOPEITIES ...t e et e et e e et e eeeaa s 407
UNVErSIONE PrOPEITIESee ittt et ettt ettt e e e et e e e nae e e eneans 408

S 00 L0 Y (070 G PSPPI 409

A. SUbVErSION QUICK-SEA GUITEieiiiieiiie et e e e e e e e e e e e et e et e et e e e et e et e aneanns 419

TS = T 1o TS W01/ £ T o 419

L T T =0 I)4 T 420

B. SUDVEISION FOr CV S USEIS ...iiiiiiiiiieiie ettt ettt e e e e et e e et e e e e e e e e et e e et e e e tn e e e eaeean e e et neeanneeenns 423
Revision NUmMbers Are DIfferEnt NOWoooue e et e e e e e e eees 423

Vii

Version Control with Subversion

DR = o (0 VALY A= £ o] 1= 423

More DiSCONNECIE OPEIELIONScveeuieeueiei et e e e e e e e e e et e e e e e et e e et e e et e e et e e ean e eetnaeeaneeenaeeetneeennaaenns 424
Distinction Between StatuS and UPAEEEuuuiiiiiiiiieiii et e et e e et e e eaa e eees 424
= LU PSPPI 424

L]0 - 1= SRR 425

BranChES @GN0 TAOS ..ivuiiiniii it e et et e et e e e e et e et e e e e e et e et e e e e e e a e e anas 425

Y 0 = W 0 0= 1= 426

L0000 [Tor a2 =-=o [o PP 426
Binary FI1eS and TranSIationooiouiiiiiii e ettt 426

V4= 5 Mol a= o 1Y, oo (U1 = PR 426

F T 1107 01T or= 1 o o PP 427
Converting a Repository from CV S 10 SUDVEISIONc.uuiitiiiiee et e e e e s 427

C. WEDDAYV QN0 AULOVEISIONING ..vvnirtnereteetteeetnaestneeetnsesatesaseeetaaeetnaeetneeaneeanaeetnaeeanaeetneeaneeaneretnaernnaesnns 428
WL ISWEDDAV ? .ot e ettt e e e et e e et et e e e e et e e ettt e e e e et e e e e eaa s 428

FN 0 10V = Yo] oo PSPPSR 429
Client INEErOPEIaITITYttt et et et e e et e e e e e e 430
Standalone WEDDAY APPIICALTIONSceuuiiiieeie et e et e e e e e et e e e e eaa e 431
File-EXplorer WEDDAV EXIENSIONSccuuiiiiiiii ettt et et e et e et e e et e et e e e e ean s 432

WEebDAV Filesystem IMPlEMENtELiONiiiiiieiii e e e e e e e e e e e et e e e ean s 433

D 20 @70 Y/ o | 435
T 440

viii

List of Figures

ST Y = o g R o)= o (1 = PP XV
O N Y o o o T 017 = Y= S = o 1
1.2. The ProbIEM tO QYOI ... oo ettt ettt e e et e et e b e e e et e e e et e 2
1.3. The [ock-mOodify-UNIOCK SOIULIONcuuiieiiiii e ettt e et e e et e e e e e e 3
1.4. The copy-mOdify-Merge SOIULIONcuu e e et e et et e e et e e et e e ea e e et e eanaaeenns 5
1.5. The copy-modify-merge solution (CONtINUE)couiiiiiiiii i e e e e e e 5
G = = 7= 010 TS0 V= (0 1= 7
A I 0 TC T = oot (0 VAR =S (= 11
4.1, Branches Of DeVEIOPIMENLcootuiiiiii e ettt e e et e e ettt e et ea b e e e et b e e e eeta e e eeabnaaeeees 96
4.2, SEArtiNG FEPOSITONY TAYOULceeetteeeiit ettt ettt ettt e e et et e e et et e e e eebar e e e estareeeeetnreeeentnnaeeee 97
4.3. REPOSITONY WIth NMEW COPY ... ettt ettt et ettt e et e et e ettt e et e e e et e e et e e et e e ean e e ebnneeenaeennaaes 98
4.4. The branching of ONE fIlESNISIONYuuiiii e e e aaas 100
8.1. Filesand directorieS in tWo GiMENSIONSc.uuuiiiii et e e et e e et e e et e e e et e e e et aas 237
8.2. Versioning time—the third dimension!coiiiiiiii e e e e e e e e e eans 238

List of Tables

O = o0 (0] V= oot == U 8
225 I @)1 T 40 T oo [=0 0TS 36
4.1. Branching and merging COMIMANTSccouuuuiiiiiite ittt et e e e et e et e e et et e e e e et e e e e et e e e aenenas 139
5.1. RePOSItOry data StOre COMPAITSONceuuueteettneteeti ettt e e e et e et et e et e eb e et e tb e ettt e et e bb e et e b e e e e ebb e e e ebeees 145
6.1. Comparison Of SUDVErSION SEIVEN OPLIONSc.uuieii ittt ettt e e e et e e et e e e e e e et e e aa e e an e aetneaeanaaenns 178
C.1. CommON WEBDAYV CHIENES ...ttt ettt e et e e e e e e rere s 430

List of Examples

4.1. Merge-tracking gatekeeper start-Commit hOOK SCHPLcovuiiiiiiiiii e e e e e e eaes 128
5.1. txn-info.sh (reporting outstanding traNSACtIONS)vvueiiii e e e e e e e e e e e e e e e eeans 156
5.2. Mirror repository's pre-revprop-change hoOK SCHIPLuu i 168
5.3. Mirror repository's start-Commit NOOK STc.uuuiiiiii et e e e e e 169
6.1. A sample svnserve launchd job definition ... e 184
6.2. A sample configuration fOr @aNONYMOUS BCCESScvuiineiieit ettt e e e e e e e et e e et e et e et e et e et e an e e e eaneeaneeaeees 199
6.3. A sample configuration for authentiCated GCCESSiuvuiii e e e e e e e e eaes 200
6.4. A sample configuration for mixed authenti Cated/anonNyMOUS @CCESSu.vvveririueeiiieeeiiee e e e e e e e e e et e e eeans 200
6.5. Disabling path CheCKS AlTOGEINENo e e et e e et e b s 201
7.1. Sample registration entrieS (.reg) TIlE e e e 221
Ao L1 = o oY PP 231
2 T 1 AT = 1 o - 232
o T 7T/ = 1 232
8 30 L7/ = 1« - 233
LA 0= (0 =T = o PP 233
T A (= (e =T = o o PSP PPPTTR 234
8.1. USING the FEPOSITONY [BYEN ... ittt et e et et e et e e et e e et e e e e e e et e e e et e e eanaaenes 243
8.2. Using the repository layer With PYthON ... e e e e 245
G AN Y1 10 TS = [0S - 11 = 247

Xi

Foreword

Karl Fogel
Chicago, March 14, 2004.

A bad Frequently Asked Questions (FAQ) sheet is one that is composed not of the questions people actually ask, but of the ques-
tions the FAQ's author wishes people would ask. Perhaps you've seen the type before:

Q: How can | use Glorbosoft XY Z to maximize team productivity?

A: Many of our customers want to know how they can maximize productivity through our patented office group-
ware innovations. The answer is simple. First, click on the File menu, scroll down to In-
crease Productivity,then...

The problem with such FAQs isthat they are not, in aliteral sense, FAQs at al. No one ever called the tech support line and asked,
“How can we maximize productivity?’ Rather, people asked highly specific questions, such as “How can we change the calendar-
ing system to send reminders two days in advance instead of one?’ and so on. But it'salot easier to make up imaginary Frequently
Asked Questions than it is to discover the real ones. Compiling a true FAQ sheet requires a sustained, organized effort: over the
lifetime of the software, incoming questions must be tracked, responses monitored, and all gathered into a coherent, searchable
whole that reflects the collective experience of usersin the wild. It calls for the patient, observant attitude of afield naturalist. No
grand hypothesizing, no visionary pronouncements here—open eyes and accurate note-taking are what's needed most.

What | love about this book is that it grew out of just such a process, and shows it on every page. It is the direct result of the au-
thors' encounters with users. It began with Ben Collins-Sussman's observation that people were asking the same basic questions
over and over on the Subversion mailing lists: what are the standard workflows to use with Subversion? Do branches and tags work
the same way asin other version control systems? How can | find out who made a particular change?

Frustrated at seeing the same questions day after day, Ben worked intensely over a month in the summer of 2002 to write The Sub-
version Handbook, a 60-page manual that covered all the basics of using Subversion. The manual made no pretense of being com-
plete, but it was distributed with Subversion and got users over that initial hump in the learning curve. When O'Rellly decided to
publish afull-length Subversion book, the path of least resistance was obvious: just expand the Subversion handbook.

The three coauthors of the new book were thus presented with an unusual opportunity. Officially, their task was to write a book
top-down, starting from a table of contents and an initial draft. But they also had access to a steady stream—indeed, an uncontrol-
lable geyser—of bottom-up source material. Subversion was aready in the hands of thousands of early adopters, and those users
were giving tons of feedback, not only about Subversion, but also about its existing documentation.

During the entire time they wrote this book, Ben, Mike, and Brian haunted the Subversion mailing lists and chat rooms incessantly,
carefully noting the problems users were having in real-life situations. Monitoring such feedback was part of their job descriptions
at CollabNet anyway, and it gave them a huge advantage when they set out to document Subversion. The book they produced is
grounded firmly in the bedrock of experience, not in the shifting sands of wishful thinking; it combines the best aspects of user
manual and FAQ sheet. This duality might not be noticeable on afirst reading. Taken in order, front to back, the book is smply a
straightforward description of a piece of software. There's the overview, the obligatory guided tour, the chapter on administrative
configuration, some advanced topics, and of course, a command reference and troubleshooting guide. Only when you come back to
it later, seeking the solution to some specific problem, does its authenticity shine out: the telling details that can only result from
encounters with the unexpected, the examples honed from genuine use cases, and most of all the sensitivity to the user's needs and
the user's point of view.

Of course, no one can promise that this book will answer every question you have about Subversion. Sometimes the precision with
which it anticipates your questions will seem eerily telepathic; yet occasionaly, you will stumble into a hole in the community's
knowledge and come away empty-handed. When this happens, the best thing you can do is emall
<user s@ubver si on. apache. or g> and present your problem. The authors are still there and still watching, and the authors
include not just the three listed on the cover, but many others who contributed corrections and original material. From the com-
munity's point of view, solving your problem is merely a pleasant side effect of a much larger project—namely, slowly adjusting
this book, and ultimately Subversion itself, to more closely match the way people actualy use it. They are eager to hear from you,
not only because they can help you, but because you can help them. With Subversion, as with all active free software projects, you

Xii

Foreword

are not alone.

L et this book be your first companion.

Xiii

Preface

“It isimportant not to let the perfect become the enemy of the good, even when you can agree on what perfect is.
Doubly so when you can't. As unpleasant as it isto be trapped by past mistakes, you can't make any progress by
being afraid of your own shadow during design.”

—Greg Hudson, Subversion devel oper

In the world of open source software, the Concurrent Versions System (CVS) was the tool of choice for version control for many
years. And rightly so. CVS was open source software itself, and its nonrestrictive modus operandi and support for networked oper-
ation allowed dozens of geographically dispersed programmers to share their work. It fit the collaborative nature of the open source
world very well. CVS and its semi-chaotic devel opment model have since become cornerstones of open source culture.

But CVSwas not without its flaws, and simply fixing those flaws promised to be an enormous effort. Enter Subversion. Subversion
was designed to be a successor to CV'S, and its originators set out to win the hearts of CV S users in two ways—by creating an open
source system with a design (and “look and feel”) similar to CVS, and by attempting to avoid most of CVS's noticeable flaws.
While the result wasn't—and isn't—the next great evolution in version control design, Subversion is very powerful, very usable,
and very flexible.

This book is written to document the 1.7 series of the Apache Subversi on™? version control system. We have made every attempt
to be thorough in our coverage. However, Subversion has a thriving and energetic development community, so already a number of
features and improvements are planned for future versions that may change some of the commands and specific notes in this book.

What Is Subversion?

Subversion is a free/open source version control system (VCS). That is, Subversion manages files and directories, and the changes
made to them, over time. This allows you to recover older versions of your data or examine the history of how your data changed.
In this regard, many people think of aversion control system as a sort of “time machine.”

Subversion can operate across networks, which allows it to be used by people on different computers. At some level, the ability for
various people to modify and manage the same set of data from their respective locations fosters collaboration. Progress can occur
more quickly without a single conduit through which all modifications must occur. And because the work is versioned, you need
not fear that quality is the trade-off for losing that conduit—if some incorrect change is made to the data, just undo that change.

Some version control systems are aso software configuration management (SCM) systems. These systems are specifically tailored
to manage trees of source code and have many features that are specific to software development—such as natively understanding
programming languages, or supplying tools for building software. Subversion, however, is not one of these systems. It is a genera
system that can be used to manage any collection of files. For you, those files might be source code—for others, anything from
grocery shopping liststo digital video mixdowns and beyond.

Is Subversion the Right Tool?

If you're a user or system administrator pondering the use of Subversion, the first question you should ask yourself is: "Is this the
right tool for the job?" Subversion is a fantastic hammer, but be careful not to view every problem asanail.

If you need to archive old versions of files and directories, possibly resurrect them, or examine logs of how they've changed over
time, then Subversion is exactly the right tool for you. If you need to collaborate with people on documents (usually over a net-
work) and keep track of who made which changes, then Subversion is also appropriate. This is why Subversion is so often used in
software development environments—working on a development team is an inherently social activity, and Subversion makes it
easy to collaborate with other programmers. Of course, there's a cost to using Subversion as well: administrative overhead. Y ou'll
need to manage a data repository to store the information and all its history, and be diligent about backing it up. When working

Iwell refer to it simply as“ Subversion” throughout this book. Y ou'll thank us when you realize just how much space that saves!

Xiv

Preface

with the data on a daily basis, you won't be able to copy, move, rename, or delete files the way you usually do. Instead, you'll have
to do all of those things through Subversion.

Assuming you're fine with the extra workflow, you should still make sure you're not using Subversion to solve a problem that other
tools solve better. For example, because Subversion replicates data to all the collaborators involved, a common misuse isto treat it
as a generic distribution system. People will sometimes use Subversion to distribute huge collections of photos, digital music, or
software packages. The problem is that this sort of data usually isn't changing at all. The collection itself grows over time, but the
individual files within the collection aren't being changed. In this case, using Subversion is “overkill 2 Therearesi mpler tools that
efficiently replicate data without the overhead of tracking changes, such asrsync or unison.

Subversion's History

In early 2000, CollabNet, Inc. (http://www.collab.net) began seeking developers to write a replacement for CVS. CollabNet
offereds a collaboration software suite called CollabNet Enterprise Edition (CEE), of which one component was version control.
Although CEE used CVS asiits initia version control system, CVS's limitations were obvious from the beginning, and CollabNet
knew it would eventually have to find something better. Unfortunately, CV'S had become the de facto standard in the open source
world largely because there wasn't anything better, at least not under a free license. So CollabNet determined to write a new ver-
sion control system from scratch, retaining the basic ideas of CV'S, but without the bugs and misfeatures.

In February 2000, they contacted Karl Fogel, the author of Open Source Development with CVS (Coriolis, 1999), and asked if he'd
like to work on this new project. Coincidentally, at the time Karl was already discussing a design for a new version control system
with his friend Jim Blandy. In 1995, the two had started Cyclic Software, a company providing CVS support contracts, and al-
though they later sold the business, they still used CV'S every day at their jobs. Their frustration with CV'S had led Jim to think
carefully about better ways to manage versioned data, and he'd already come up with not only the Subversion name, but also the
basic design of the Subversion data store. When CollabNet called, Karl immediately agreed to work on the project, and Jim got his
employer, Red Hat Software, to essentially donate him to the project for an indefinite period of time. CollabNet hired Karl and Ben
Collins-Sussman, and detailed design work began in May 2000. With the help of some well-placed prods from Brian Behlendorf
and Jason Rabbins of CollabNet, and from Greg Stein (at the time an independent developer active in the WebDAV/DeltaV spe-
cification process), Subversion quickly attracted a community of active developers. It turned out that many people had encountered
the same frustrating experiences with CV S and welcomed the chance to finally do something about it.

The original design team settled on some simple goals. They didn't want to break new ground in version control methodol ogy, they
just wanted to fix CVS. They decided that Subversion would match CV S's features and preserve the same development model, but
not duplicate CVS's most obvious flaws. And athough it did not need to be a drop-in replacement for CVS, it should be similar
enough that any CV S user could make the switch with little effort.

After 14 months of coding, Subversion became “self-hosting” on August 31, 2001. That is, Subversion developers stopped using
CV S to manage Subversion's own source code and started using Subversion instead.

While CollabNet started the project, and still funds a large chunk of the work (it pays the salaries of a few full-time Subversion de-
velopers), Subversion is run like most open source projects, governed by a loose, transparent set of rules that encourage merito-
cracy. In 2009, CollabNet worked with the Subversion developers towards the goal of integrating the Subversion project into the
Apache Software Foundation (ASF), one of the most well-known collectives of open source projects in the world. Subversion's
technical roots, community priorities, and development practices were a perfect fit for the ASF, many of whose members were
already active Subversion contributors. In early 2010, Subversion was fully adopted into the ASF's family of top-level projects,
moved its project web presence to http://subversion.apache.org, and was rechristened “ Apache Subversion”.

Subversion's Architecture

Figure 1, “ Subversion's architecture” illustrates a “mile-high” view of Subversion's design.

Figure 1. Subversion's ar chitecture

20r asafriend putsit, “swatting afly with aBuick.”
3CollabNet Enterprise Edition has since been replaced by a new product line called CollabNet TeamForge.

XV

http://www.collab.net
http://subversion.apache.org

Preface

commandling
cllant app GUI client apps

__ Citant
‘.«"d’- intertace
Cliant Library
Working Gopy /
Managament

Library #
Aepository Access
Dav VN Local

#
#

4
/ Ye Olde Internet
{Ary TCPAP Matwork)

Apache
miod daw EVNESBE

mod_dav_swn

Reposiony
Intertace

Subwversion Repository

' !

Berkeley DB FSFS

diagram by Brian 'W. Fitzpatnck «fitz & red-bean.comes

On one end is a Subversion repository that holds all of your versioned data. On the other end is your Subversion client program,
which manages local reflections of portions of that versioned data. Between these extremes are multiple routes through a Reposit-
ory Access (RA) layer, some of which go across computer networks and through network servers which then access the repository,

XVi

Preface

others of which bypass the network altogether and access the repository directly.

Subversion's Components

Subversion, once installed, has a number of different pieces. The following is a quick overview of what you get. Don't be alarmed
if the brief descriptions leave you scratching your head—plenty more pagesin this book are devoted to aleviating that confusion.

svn
The command-line client program

svnversion
A program for reporting the state (in terms of revisions of the items present) of aworking copy

svnlook
A tool for directly inspecting a Subversion repository

svnadmin
A tool for creating, tweaking, or repairing a Subversion repository

mod_dav_svn
A plug-in module for the Apache HTTP Server, used to make your repository available to others over a network

svnserve
A custom standalone server program, runnable as a daemon process or invokable by SSH; another way to make your reposit-
ory available to others over a network

svndumpfilter
A program for filtering Subversion repository dump streams

svnsync
A program for incrementally mirroring one repository to another over a network

svnrdump
A program for performing repository history dumps and loads over a network

What's New in Subversion

The first edition of this book was published by O'Reilly Media in 2004, shortly after Subversion had reached 1.0. Since that time,
the Subversion project has continued to release new major releases of the software. Here's a quick summary of major new changes
since Subversion 1.0. Note that this is not a complete list; for full details, please visit Subversion's web site at ht-
tp://subversion.apache.org.

Subversion 1.1 (September 2004)
Release 1.1 introduced FSFS, a flat-file repository storage option for the repository. While the Berkeley DB backend is still
widely used and supported, FSFS has since become the default choice for newly created repositories due to its low barrier to
entry and minimal maintenance requirements. Also in this release came the ability to put symbolic links under version control,
auto-escaping of URLS, and alocalized user interface.

Subversion 1.2 (May 2005)
Release 1.2 introduced the ability to create server-side locks on files, thus serializing commit access to certain resources.
While Subversion is still a fundamentally concurrent version control system, certain types of binary files (e.g. art assets) can-
not be merged together. The locking feature fulfills the need to version and protect such resources. With locking also came a
complete WebDAV auto-versioning implementation, allowing Subversion repositories to be mounted as network folders. Fi-
nally, Subversion 1.2 began using a new, faster binary-differencing algorithm to compress and retrieve old versions of files.

XVii

http://subversion.apache.org
http://subversion.apache.org

Preface

Subversion 1.3 (December 2005)
Release 1.3 brought path-based authorization controls to the svnserve server, matching a feature formerly found only in the
Apache server. The Apache server, however, gained some new logging features of its own, and Subversion's API bindings to
other languages also made great leaps forward.

Subversion 1.4 (September 2006)
Release 1.4 introduced a whole new tool—svnsync—for doing one-way repository replication over a network. Major parts of
the working copy metadata were revamped to no longer use XML (resulting in client-side speed gains), while the Berkeley DB
repository backend gained the ability to automatically recover itself after a server crash.

Subversion 1.5 (June 2008)
Release 1.5 took much longer to finish than prior releases, but the headliner feature was gigantic: semi-automated tracking of
branching and merging. This was a huge boon for users, and pushed Subversion far beyond the abilities of CVS and into the
ranks of commercial competitors such as Perforce and ClearCase. Subversion 1.5 also introduced a bevy of other user-focused
features, such asinteractive resolution of file conflicts, sparse checkouts, client-side management of changelists, powerful new
syntax for externals definitions, and SASL authentication support for the svnserve server.

Subversion 1.6 (March 2009)
Release 1.6 continued to make branching and merging more robust by introducing tree conflicts, and offered improvements to
several other existing features: more interactive conflict resolution options; de-telescoping and outright exclusion support for
sparse checkouts; file-based externals definitions; and operational logging support for svnserve similar to what mod_dav_svn
offered. Also, the command-line client introduced a new shortcut syntax for referring to Subversion repository URLS.

Subversion 1.7 (October 2011)
Release 1.7 was primarily a delivery vehicle for two big plumbing overhauls of existing Subversion components. The largest
and most impactful of these was the so-called “WC-NG”"—a complete rewrite of the libsvn_wc working copy management
library. The second change was the introduction of a sleeker HTTP protocol for Subversion client/server interaction. Subver-
sion 1.7 delivered a handful of additional features, many bug fixes, and some notable performance improvements, too.

Audience

This book iswritten for computer-literate folk who want to use Subversion to manage their data. While Subversion runs on a num-
ber of different operating systems, its primary user interface is command-line-based. That command-line tool (svn), and some ad-
ditional auxiliary programs, are the focus of this book.

For consistency, the examples in this book assume that the reader is using a Unix-like operating system and is relatively comfort-
able with Unix and command-line interfaces. That said, the svn program also runs on non-Unix platforms such as Microsoft Win-
dows. With afew minor exceptions, such as the use of backward slashes (\) instead of forward slashes (/) for path separators, the
input to and output from this tool when run on Windows are identical to that of its Unix counterpart.

Most readers are probably programmers or system administrators who need to track changes to source code. This is the most com-
mon use for Subversion, and therefore it is the scenario underlying al of the book's examples. But Subversion can be used to man-
age changes to any sort of information—images, music, databases, documentation, and so on. To Subversion, all dataisjust data.

While this book is written with the assumption that the reader has never used a version control system, we've aso tried to make it
easy for users of CVS (and other systems) to make a painless leap into Subversion. Specia sidebars may mention other version
control systems from time to time, and Appendix B, Subversion for CVS Users summarizes many of the differences between CVS
and Subversion.

Note also that the source code examples used throughout the book are only examples. While they will compile with the proper

compiler incantations, they are intended to illustrate a particular scenario and not necessarily to serve as examples of good pro-
gramming style or practices.

How to Read This Book

XViii

Preface

Technical books always face a certain dilemma: whether to cater to top-down or to bottom-up learners. A top-down learner prefers
to read or skim documentation, getting a large overview of how the system works; only then does she actually start using the soft-
ware. A bottom-up learner isa“learn by doing” person—someone who just wants to dive into the software and figure it out as she
goes, referring to book sections when necessary. Most books tend to be written for one type of person or the other, and this book is
undoubtedly biased toward top-down learners. (And if you're actually reading this section, you're probably already a top-down
learner yourself!) However, if you're a bottom-up person, don't despair. While the book may be laid out as a broad survey of Sub-
version topics, the content of each section tends to be heavy with specific examples that you can try-by-doing. For the impatient
folks who just want to get going, you can jump right to Appendix A, Subversion Quick-Start Guide.

Regardless of your learning style, this book aims to be useful to people of widely different backgrounds—from those with no pre-
vious experience in version control to experienced system administrators. Depending on your own background, certain chapters
may be more or less important to you. The following can be considered a “recommended reading list” for various types of readers:

Experienced system administrators
The assumption here is that you've probably used version control before and are dying to get a Subversion server up and run-
ning ASAP. Chapter 5, Repository Administration and Chapter 6, Server Configuration will show you how to creste your first
repository and make it available over the network. After that's done, Chapter 2, Basic Usage and Appendix B, Subversion for
CVSUsers are the fastest routes to learning the Subversion client.

New users
Y our administrator has probably set up Subversion aready, and you need to learn how to use the client. If you've never used a
version control system, then Chapter 1, Fundamental Concepts is a vital introduction to the ideas behind version control.
Chapter 2, Basic Usage is a guided tour of the Subversion client.

Advanced users
Whether you're a user or administrator, eventually your project will grow larger. Y ou're going to want to learn how to do more
advanced things with Subversion, such as how to use Subversion's property support (Chapter 3, Advanced Topics), how to use
branches and perform merges (Chapter 4, Branching and Merging), how to configure runtime options (Chapter 7, Customizing
Your Subversion Experience), and other things. These chapters aren't critical at first, but be sure to read them once you're com-
fortable with the basics.

Developers
Presumably, you're already familiar with Subversion, and now want to either extend it or build new software on top of its
many APIs. Chapter 8, Embedding Subversion isjust for you.

The book ends with reference material—Chapter 9, Subversion Complete Reference is a reference guide for al Subversion com-
mands, and the appendixes cover a number of useful topics. These are the chapters you're mostly likely to come back to after
you've finished the book.

Organization of This Book

The chapters that follow and their contents are listed here:

Chapter 1, Fundamental Concepts
Explains the basics of version control and different versioning models, along with Subversion's repository, working copies,
and revisions.

Chapter 2, Basic Usage
Walks you through aday in the life of a Subversion user. It demonstrates how to use a Subversion client to obtain, modify, and
commit data.

Chapter 3, Advanced Topics
Covers more complex features that regular users will eventually come into contact with, such as versioned metadata, file lock-
ing, and peg revisions.

XiX

Preface

Chapter 4, Branching and Merging
Discusses branches, merges, and tagging, including best practices for branching and merging, common use cases, how to undo
changes, and how to easily swing from one branch to the next.

Chapter 5, Repository Administration
Describes the basics of the Subversion repository, how to create, configure, and maintain a repository, and the tools you can
useto do all of this.

Chapter 6, Server Configuration
Explains how to configure your Subversion server and offers different ways to access your repository: HTTP, the svn pro-
tocol, and local disk access. It also covers the details of authentication, authorization and anonymous access.

Chapter 7, Customizing Your Subversion Experience
Explores the Subversion client configuration files, the handling of internationalized text, and how to make external tools co-
operate with Subversion.

Chapter 8, Embedding Subversion
Describes the internals of Subversion, the Subversion filesystem, and the working copy administrative areas from a program-
mer's point of view. It also demonstrates how to use the public APIs to write a program that uses Subversion.

Chapter 9, Subversion Complete Reference
Explainsin great detail every subcommand of svn, svnadmin, and svnlook with plenty of examples for the whole family!

Appendix A, Subversion Quick-Sart Guide
For the impatient, awhirlwind explanation of how to install Subversion and start using it immediately. Y ou have been warned.

Appendix B, Subversion for CVSUsers
Covers the similarities and differences between Subversion and CV'S, with numerous suggestions on how to break all the bad
habits you picked up from years of using CVS. Included are descriptions of Subversion revision numbers, versioned director-
ies, offline operations, update versus status, branches, tags, metadata, conflict resolution, and authentication.

Appendix C, WebDAYV and Autoversioning
Describes the details of WebDAV and DeltaVv and how you can configure your Subversion repository to be mounted read/
writeasa DAV share.

Appendix D, Copyright
A copy of the Creative Commons Attribution License, under which this book is licensed.

This Book Is Free

This book started out as bits of documentation written by Subversion project developers, which were then coalesced into a single
work and rewritten. As such, it has always been under a free license (see Appendix D, Copyright). In fact, the book was written in
the public eye, originally as part of the Subversion project itself. This means two things:

* You will alwaysfind the latest version of this book in the book's own Subversion repository.

* You can make changes to this book and redistribute it however you wish—it's under a free license. Your only obligation is to
maintain proper attribution to the original authors. Of course, we'd much rather you send feedback and patches to the Subversion
developer community, instead of distributing your private version of this book.

The online home of this book's development and most of the volunteer-driven trandation efforts regarding it is ht-
tp://svnbook.red-bean.com. There you can find links to the latest releases and tagged versions of the book in various formats, as
well as instructions for accessing the book's Subversion repository (where its DocBook XML source code lives). Feedback is wel-
comed—encouraged, even. Please submit al comments, complaints, and patches against the book sources to
<svnbook- dev@ ed- bean. conp.

XX

http://svnbook.red-bean.com
http://svnbook.red-bean.com

Preface

Acknowledgments

This book would not be possible (nor very useful) if Subversion did not exist. For that, the authors would like to thank Brian
Behlendorf and CollabNet for the vision to fund such arisky and ambitious new open source project; Jim Blandy for the origina

SubvePi on name and design—we love you, Jim; and Karl Fogel for being such a good friend and a great community leader, in that
order.

Thanks to O'Rellly and the team of professional editors who have helped us polish this text at various stages of its evolution:
Chuck Toporek, Linda Mui, Tatiana Apandi, Mary Brady, and Mary Treseler. Y our patience and support has been tremendous.

Finally, we thank the countless people who contributed to this book with informal reviews, suggestions, and patches. An exhaust-
ive listing of those folks' names would be impractical to print and maintain here, but may their names live on forever in this book's
version control history!

40h, and thanks, Karl, for being too overworked to write this book yourself.

XXi

Chapter 1. Fundamental Concepts

This chapter is ashort, casual introduction to Subversion and its approach to version control. We begin with a discussion of general
version control concepts, work our way into the specific ideas behind Subversion, and show some simple examples of Subversion
inuse.

Even though the examples in this chapter show people sharing collections of program source code, keep in mind that Subversion
can manage any sort of file collection—it's not limited to hel ping computer programmers.

Version Control Basics

A version control system (or revision control system) is a system that tracks incremental versions (or revisions) of files and, in
some cases, directories over time. Of course, merely tracking the various versions of a user's (or group of users) files and director-
iesisn't very interesting in itself. What makes a version control system useful is the fact that it allows you to explore the changes
which resulted in each of those versions and facilitates the arbitrary recall of the same.

In this section, well introduce some fairly high-level version control system components and concepts. Well limit our discussion

to modern version control systems—in today's interconnected world, there is very little point in acknowledging version control sys-
tems which cannot operate across wide-area networks.

The Repository

At the core of the version control system is a repository, which is the central store of that system's data. The repository usually
stores information in the form of a filesystem tree—a hierarchy of files and directories. Any number of clients connect to the repos-
itory, and then read or write to these files. By writing data, a client makes the information available to others; by reading data, the
client receivesinformation from others. Figure 1.1, “A typical client/server system” illustrates this.

Figure 1.1. A typical client/server system
Repository

EDD

Client Client

Why is this interesting? So far, this sounds like the definition of a typical file server. And indeed, the repository is a kind of file
server, but it's not your usual breed. What makes the repository special isthat as the files in the repository are changed, the reposit-
ory remembers each version of those files.

When a client reads data from the repository, it normally sees only the latest version of the filesystem tree. But what makes a ver-
sion control client interesting isthat it also has the ability to request previous states of the filesystem from the repository. A version
control client can ask historical questions such as “What did this directory contain last Wednesday?' and “Who was the last person
to change thisfile, and what changes did he make?’ These are the sorts of questions that are at the heart of any version control sys-

1

Fundamental Concepts

tem.

The Working Copy

A version control system's value comes from the fact that it tracks versions of files and directories, but the rest of the software uni-
verse doesn't operate on “versions of files and directories’. Most software programs understand how to operate only on a single
version of a specific type of file. So how does a version control user interact with an abstract—and, often, remote—repository full
of multiple versions of various files in a concrete fashion? How does his or her word processing software, presentation software,
source code editor, web design software, or some other program—all of which trade in the currency of simple data files—get ac-
cess to such files? The answer is found in the version control construct known as aworking copy.

A working copy is, quite literally, alocal copy of a particular version of a user's VCS-managed data upon which that user isfreeto
work. Working copies™ appear to other software just as any other local directory full of files, so those programs don't have to be
“version-control-aware” in order to read from and write to that data. The task of managing the working copy and communicating
changes made to its contents to and from the repository falls squarely to the version control system's client software.

Versioning Models

If the primary mission of aversion control system isto track the various versions of digital information over time, a very close sec-
ondary mission in any modern version control system is to enable collaborative editing and sharing of that data. But different sys-
tems use different strategies to achieve this. It's important to understand these different strategies, for a couple of reasons. First, it
will help you compare and contrast existing version control systems, in case you encounter other systems similar to Subversion.
Beyond that, it will also help you make more effective use of Subversion, since Subversion itself supports a couple of different
ways of working.

The problem of file sharing

All version control systems have to solve the same fundamental problem: how will the system allow usersto share information, but
prevent them from accidentally stepping on each other's feet? It's all too easy for users to accidentally overwrite each other's
changes in the repository.

Consider the scenario shown in Figure 1.2, “The problem to avoid”. Suppose we have two coworkers, Harry and Sally. They each
decide to edit the same repository file at the same time. If Harry saves his changes to the repository firgt, it's possible that (a few
moments later) Sally could accidentally overwrite them with her own new version of the file. While Harry's version of the file
won't be lost forever (because the system remembers every change), any changes Harry made won't be present in Sally's newer ver-
sion of the file, because she never saw Harry's changes to begin with. Harry's work is still effectively lost—or at least missing from
the latest version of the file—and probably by accident. Thisis definitely a situation we want to avoid!

Figure 1.2. The problem to avoid

Theterm “working copy” can be generally applied to any one file version's local instance. When most folks use the term, though, they are referring to a whole dir-
ectory tree containing files and subdirectories managed by the version control system.

2

Fundamental Concepts

Iwo users read the same file

Repository
A

I_ Red Read —1
2]

Harry Sally

Haery pubiishes his version first
Repository

They both begin fo edit their copies
Repository

b

Harry Sally
Sally accidentally averwrites Harry'S version
Repasitary

Whrite —J‘

£]

Harry Sally Harry

The lock-modify-unlock solution

Many version control systems use a lock-modify-unlock model to address the problem of many authors clobbering each other's
work. In this model, the repository allows only one person to change afile at a time. This exclusivity policy is managed using
locks. Harry must “lock” a file before he can begin making changes to it. If Harry has locked a file, Sally cannot also lock it, and
therefore cannot make any changes to that file. All she can do is read the file and wait for Harry to finish his changes and release
his lock. After Harry unlocks the file, Sally can take her turn by locking and editing the file. Figure 1.3, “The lock-modify-unlock
solution” demonstrates this simple solution.

Figure 1.3. Thelock-modify-unlock solution

Fundamental Concepts

Harey “lacks” file 4, then copies While Harry edits, Sally's lack
it for editing attempt faits
Repository Repository

A A

Lock |
I tend Lock
]

Harry Sally Harry Sally
Harry writes his version, then Nowe Sally can lock, read, and
releases his lock edit the lotest version
Repository Repository

. :%l
5

Harry Sally Harry Sally

The problem with the lock-modify-unlock model is that it's a bit restrictive and often becomes a roadblock for users:

Locking may cause administrative problems. Sometimes Harry will lock a file and then forget about it. Meanwhile, because
Saly is till waiting to edit the file, her hands are tied. And then Harry goes on vacation. Now Sally has to get an administrator
to release Harry's lock. The situation ends up causing alot of unnecessary delay and wasted time.

Locking may cause unnecessary serialization. What if Harry is editing the beginning of atext file, and Sally simply wants to edit
the end of the same file? These changes don't overlap at all. They could easily edit the file simultaneously, and no great harm
would come, assuming the changes were properly merged together. There's no need for them to take turns in this situation.

Locking may create a false sense of security. Suppose Harry locks and edits file A, while Sally simultaneously locks and edits
file B. But what if A and B depend on one ancther, and the changes made to each are semantically incompatible? Suddenly A
and B don't work together anymore. The locking system was powerless to prevent the problem—yet it somehow provided afalse
sense of security. It's easy for Harry and Sally to imagine that by locking files, each is beginning a safe, insulated task, and thus
they need not bother discussing their incompatible changes early on. Locking often becomes a substitute for real communication.

The copy-modify-merge solution

Subversion, CVS, and many other version control systems use a copy-modify-merge model as an aternative to locking. In this
model, each user's client contacts the project repository and creates a persona working copy. Users then work simultaneously and

)

Fundamental Concepts

independently, modifying their private copies. Finally, the private copies are merged together into a new, final version. The version
control system often assists with the merging, but ultimately, a human being is responsible for making it happen correctly.

Here's an example. Say that Harry and Sally each create working copies of the same project, copied from the repository. They work
concurrently and make changes to the same file A within their copies. Sally saves her changes to the repository first. When Harry
attempts to save his changes later, the repository informs him that his file A is out of date. In other words, file A in the repository
has somehow changed since he last copied it. So Harry asks his client to merge any new changes from the repository into his work-
ing copy of file A. Chances are that Sally's changes don't overlap with his own; once he has both sets of changes integrated, he
saves his working copy back to the repository. Figure 1.4, “The copy-modify-merge solution” and Figure 1.5, “The copy-modi-
fy-merge solution (continued)” show this process.

Figure 1.4. The copy-modify-merge solution

Twio users copy the same file They bath begin fa edit their copies

Repository Repository

A A
Read Reod j

)]
Harry Sally Harry Sally
Sally publishes her version first Harry gelrs an “oul-of-dale " error

Repaository Repository

Harry Sally Harry Sally

Figure 1.5. The copy-modify-mer ge solution (continued)

Fundamental Concepts

Harry compares the \atest version A mew merged version is created
T his oum
Repository Repository

™
A
Feod
[~ [™= [
GINE b

Harry Sally Harry Sally
[he merged version is published Now both wsers have each
others” changes
Repository Repository
[,

— Wnte —] wead

Sally Harry Sally

But what if Sally's changes do overlap with Harry's changes? What then? This situation is called a conflict, and it's usually not
much of a problem. When Harry asks his client to merge the latest repository changes into his working copy, his copy of file A is
somehow flagged as being in a state of conflict: he'll be able to see both sets of conflicting changes and manually choose between
them. Note that software can't automatically resolve conflicts; only humans are capable of understanding and making the necessary
intelligent choices. Once Harry has manually resolved the overlapping changes—perhaps after a discussion with Sally—he can
safely save the merged file back to the repository.

The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely smoothly. Users can work in parallel,
never waiting for one another. When they work on the same files, it turns out that most of their concurrent changes don't overlap at
all; conflicts are infrequent. And the amount of time it takes to resolve conflicts is usually far less than the time lost by a locking
system.

In the end, it al comes down to one critical factor: user communication. When users communicate poorly, both syntactic and se-
mantic conflicts increase. No system can force users to communicate perfectly, and no system can detect semantic conflicts. So
there's no point in being lulled into a false sense of security that alocking system will somehow prevent conflicts; in practice, lock-
ing seemsto inhibit productivity more than anything else.

When Locking Is Necessary
While the lock-madify-unlock model is considered generally harmful to collaboration, sometimes locking is appropriate.

The copy-modify-merge model is based on the assumption that files are contextually mergeable—that is, that the majority of
the files in the repository are line-based text files (such as program source code). But for files with binary formats, such as

Fundamental Concepts

artwork or sound, it's often impossible to merge conflicting changes. In these situations, it really is necessary for users to take
strict turns when changing the file. Without serialized access, somebody ends up wasting time on changes that are ultimately
discarded.

While Subversion is primarily a copy-modify-merge system, it still recognizes the need to lock an occasional file, and thus
provides mechanisms for this. We discuss this feature in the section called “Locking”.

Version Control the Subversion Way

We've mentioned already that Subversion is a modern, network-aware version control system. As we described in the section
called “Version Control Basics’ (our high-level version control overview), a repository serves as the core storage mechanism for
Subversion's versioned data, and it's via working copies that users and their software programs interact with that data. In this sec-
tion, we'll begin to introduce the specific ways in which Subversion implements version control.

Subversion Repositories

Subversion implements the concept of a version control repository much as any other modern version control system would. Un-
like aworking copy, a Subversion repository is an abstract entity, able to be operated upon almost exclusively by Subversion's own
libraries and tools. As most of a user's Subversion interactions involve the use of the Subversion client and occur in the context of a
working copy, we spend the majority of this book discussing the Subversion working copy and how to manipulate it. For the finer
details of the repository, though, check out Chapter 5, Repository Administration.

Revisions

A Subversion client commits (that is, communicates the changes made to) any number of files and directories as a single atomic
transaction. By atomic transaction, we mean simply this: either all of the changes are accepted into the repository, or none of them
is. Subversion tries to retain this atomicity in the face of program crashes, system crashes, network problems, and other users' ac-
tions.

Each time the repository accepts a commit, this creates a new state of the filesystem tree, called a revision. Each revision is as-
signed a unique natural number, one greater than the number assigned to the previous revision. Theinitial revision of afreshly cre-
ated repository is numbered 0 and consists of nothing but an empty root directory.

Figure 1.6, “Tree changes over time” illustrates a nice way to visualize the repository. Imagine an array of revision numbers, start-

ing at 0, stretching from left to right. Each revision number has a filesystem tree hanging below it, and each tree is a “ snapshot” of
the way the repository looked after a commit.

Figure 1.6. Tree changes over time

Fundamental Concepts

L/~ LsLsLs

F |) -
| AL LAl

Global Revision Numbers

Unlike most version control systems, Subversion's revision numbers apply to entire trees, not individual files. Each revision
number selects an entire tree, a particular state of the repository after some committed change. Another way to think about it
is that revision N represents the state of the repository filesystem after the Nth commit. When Subversion users talk about
“revision 5 of f 00. ¢,” they readly mean “f 00. c asit appearsin revision 5.” Notice that in general, revisions N and M of a
file do not necessarily differ! Many other version control systems use per-file revision numbers, so this concept may seem
unusual at first. (Former CV'S users might want to see Appendix B, Subversion for CVS Users for more details.)

Addressing the Repository

Subversion client programs use URL s to identify versioned files and directories in Subversion repositories. For the most part, these
URL s use the standard syntax, allowing for server names and port numbersto be specified as part of the URL.

* http://svn.example.com/svn/project
* http://svn.example.com:9834/repos

Subversion repository URLs aren't limited to only the ht t p: / / variety. Because Subversion offers several different ways for its
clients to communicate with its servers, the URLs used to address the repository differ subtly depending on which repository ac-
cess mechanism is employed. Table 1.1, “Repository access URLS’ describes how different URL schemes map to the available re-
pository access methods. For more details about Subversion's server options, see Chapter 6, Server Configuration.

Table1.1. Repository access URL s

Schema Access method
file:/1/ Direct repository access (on local disk)

8

Fundamental Concepts

Schema Access method

http:// Access via WebDAV protocol to Subversion-aware Apache
server

https:// Sameashtt p: //, but with SSL encryption

svn:// Access via custom protocol to an svnser ve server

svn+ssh:// Sameassvn: //, but through an SSH tunnel

Subversion's handling of URLSs has some notable nuances. For example, URLs containing thefi | e: // access method (used for
local repositories) must, in accordance with convention, have either a server name of | ocal host or no server name at all:

« file//Ivar/svn/repos
« file://localhost/var/svn/repos

Also, users of thefi | e: // scheme on Windows platforms will need to use an unofficially “standard” syntax for accessing repos-
itories that are on the same machine, but on a different drive than the client's current working drive. Either of the two following
URL path syntaxes will work, where X is the drive on which the repository resides:

« file/lIX:Ivarlsvn/repos
« file///X|/var/svn/repos

Note that a URL uses forward slashes even though the native (non-URL) form of a path on Windows uses backslashes. Also note
that whenusingthefil e: /// X|/ form at the command line, you need to quote the URL (wrap it in quotation marks) so that the
vertical bar character is not interpreted as a pipe.

you attempt to view afil e: // URL in aregular web browser, it reads and displays the contents of the file at that
location by examining the filesystem directly. However, Subversion's resources exist in a virtua filesystem (see the
section called “Repository Layer”), and your browser will not understand how to interact with that filesystem.

<> You cannot use Subversion'sfi | e: // URLsin aregular web browser the way typical fi |l e: // URLs can. When

The Subversion client will automatically encode URLSs as necessary, just like a web browser does. For example, the URL ht -
tp://host/path with space/ project/ espafia — which contains both spaces and upper-ASCII characters — will be
automatically interpreted by Subversion as if you'd provided ht -
tp: // host/ pat h%20w t h920space/ pr oj ect/ espa¥%3¥Bla. If the URL contains spaces, be sure to place it within
guotation marks at the command line so that your shell treats the whole thing as a single argument to the program.

There is one notable exception to Subversion's handling of URLs which also appliesto its handling of local pathsin many contexts,
too. If the final path component of your URL or local path contains an at sign (@, you need to use a specia syntax—described in
the section called “Peg and Operative Revisions’—in order to make Subversion properly address that resource.

In Subversion 1.6, a new caret (") notation was introduced as a shorthand for “the URL of the repository's root directory”. For ex-
ample, you can usethe/ t ags/ bi gsandwi ch/ to refer to the URL of the/ t ags/ bi gsandwi ch directory in the root of the
repository. Note that this URL syntax works only when your current working directory is a working copy—the command-line cli-
ent knows the repository's root URL by looking at the working copy's metadata. Also note that when you wish to refer precisely to
the root directory of the repository, you must do so using */ (with the trailing slash character), not merely *.

Subversion Working Copies

A Subversion working copy is an ordinary directory tree on your local system, containing a collection of files. You can edit these

Fundamental Concepts

files however you wish, and if they're source code files, you can compile your program from them in the usual way. Y our working
copy is your own private work area: Subversion will never incorporate other people's changes, nor make your own changes avail-
able to others, until you explicitly tell it to do so. Y ou can even have multiple working copies of the same project.

After you've made some changes to the files in your working copy and verified that they work properly, Subversion provides you
with commands to “publish” your changes to the other people working with you on your project (by writing to the repository). If
other people publish their own changes, Subversion provides you with commands to merge those changes into your working copy
(by reading from the repository).

A working copy also contains some extra files, created and maintained by Subversion, to help it carry out these commands. In par-
ticular, each working copy contains a subdirectory named . svn, also known as the working copy's administrative directory. The
files in the administrative directory help Subversion recognize which of your versioned files contain unpublished changes, and
which files are out of date with respect to others work.

Prior to version 1.7, Subversion maintained . svn administrative subdirectories in every versioned directory of your

/ working copy. Subversion 1.7 offers a completely new approach to how working copy metadata is stored and main-
tained, and chief among the visible changes to this approach is that each working copy now has only one . svn sub-
directory which is an immediate child of the root of that working copy.

How the working copy works

For each file in aworking directory, Subversion records (among other things) two essential pieces of information:

» What revision your working fileis based on (thisis called the file's working revision)

A timestamp recording when the local copy was last updated by the repository
Given thisinformation, by talking to the repository, Subversion can tell which of the following four states aworking fileisin:

Unchanged, and current
The file is unchanged in the working directory, and no changes to that file have been committed to the repository since its
working revision. An svn commit of the file will do nothing, and an svn update of the file will do nothing.

Locally changed, and current
The file has been changed in the working directory, and no changes to that file have been committed to the repository since
you last updated. There are local changes that have not been committed to the repository; thus an svn commit of the file will
succeed in publishing your changes, and an svn update of the file will do nothing.

Unchanged, and out of date
The file has not been changed in the working directory, but it has been changed in the repository. The file should eventually be
updated in order to make it current with the latest public revision. An svn commit of the file will do nothing, and an svn up-
date of thefile will fold the latest changes into your working copy.

Locally changed, and out of date
The file has been changed both in the working directory and in the repository. An svn commit of the file will fail with an
“out-of-date” error. The file should be updated first; an svn update command will attempt to merge the public changes with
the local changes. If Subversion can't complete the merge in a plausible way automatically, it leavesit to the user to resolve the
conflict.

Fundamental working copy interactions

A typical Subversion repository often holds the files (or source code) for several projects; usually, each project is a subdirectory in

10

Fundamental Concepts

the repository's filesystem tree. In this arrangement, a user's working copy will usually correspond to a particular subtree of the re-
pository.

For example, suppose you have a repository that contains two software projects, pai nt and cal c. Each project livesin its own
top-level subdirectory, as shown in Figure 1.7, “The repository's filesystem”.

Figure1.7. Therepository'sfilesystem

[
b

- Makefile

¥

p

L 3

integer.c

L L

button.c

Makefile

/Lol

fanvas.C

- brush.c

To get aworking copy, you must check out some subtree of the repository. (The term check out may sound like it has something to
do with locking or reserving resources, but it doesn't; it smply creates a working copy of the project for you.) For example, if you
check out / cal ¢, you will get aworking copy like this:

$ svn checkout http://svn.exanpl e.comrepos/calc
A cal ¢/ Makefile

A calc/integer.c

A cal c/button.c

Checked out revision 56.

$1s -Acalc

g/akefi le button.c integer.c .svn/

11

Fundamental Concepts

Thelist of letter Asin the left margin indicates that Subversion is adding a number of items to your working copy. Y ou now have a
personal copy of the repository's/ cal ¢ directory, with one additional entry—. svn—uwhich holds the extra information needed
by Subversion, as mentioned earlier.

Suppose you make changesto but t on. c. Sincethe . svn directory remembers the file's original modification date and contents,
Subversion can tell that you've changed the file. However, Subversion does not make your changes public until you explicitly tell it
to. The act of publishing your changes is more commonly known as committing (or checking in) changes to the repository.

To publish your changes to others, you can use Subversion's svn commit command:

$ svn commit button.c -m"Fixed a typo in button.c."
Sendi ng button.c

Transmitting file data .

Committed revision 57.

Now your changes to but t on. ¢ have been committed to the repository, with a note describing your change (namely, that you
fixed atypo). If another user checks out aworking copy of / cal ¢, shewill see your changes in the latest version of thefile.

Suppose you have a collaborator, Sally, who checked out a working copy of / cal ¢ at the same time you did. When you commit
your changeto but t on. c, Sally'sworking copy isleft unchanged; Subversion modifies working copies only at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using the svn update command. This will
incorporate your changes into her working copy, as well as any others that have been committed since she checked it out.

$ pwd

/ hone/sal | y/ cal c

$1s -A

Makefile button.c integer.c .svn/
$ svn update

Updating '.":

U button.c

gpdat ed to revision 57.

The output from the svn update command indicates that Subversion updated the contents of but t on. c. Note that Sally didn't
need to specify which files to update; Subversion uses the information in the . svn directory as well as further information in the
repository, to decide which files need to be brought up to date.

Mixed-revision working copies

Asageneral principle, Subversion tries to be as flexible as possible. One special kind of flexibility is the ability to have a working
copy containing files and directories with a mix of different working revision numbers. Subversion working copies do not always
correspond to any single revision in the repository; they may contain files from several different revisions. For example, suppose
you check out aworking copy from a repository whose most recent revision is 4:

calc/
Makefile:4
integer.c:4
button.c:4

12

Fundamental Concepts

At the moment, this working directory corresponds exactly to revision 4 in the repository. However, suppose you make a change to
but t on. ¢, and commit that change. Assuming no other commits have taken place, your commit will create revision 5 of the re-
pository, and your working copy will now look like this:

calc/
Makefile:4
integer.c:4
button.c:5

Suppose that, at this point, Sally commits achangetoi nt eger . c, creating revision 6. If you use svn update to bring your work-
ing copy up to date, it will look likethis:

cac/
Makefile:6
integer.c.6
button.c:6

Sally's change to i nt eger . ¢ will appear in your working copy, and your change will still be present in but t on. c. In this ex-
ample, the text of Makef i | e isidentical in revisions 4, 5, and 6, but Subversion will mark your working copy of Makef i | e with
revision 6 to indicate that it is still current. So, after you do a clean update at the top of your working copy, it will generally corres-
pond to exactly one revision in the repository.

Updates and commits are separate

One of the fundamental rules of Subversion isthat a*“push” action does not cause a“pull” nor vice versa. Just because you're ready
to submit new changes to the repository doesn't mean you're ready to receive changes from other people. And if you have new
changes till in progress, svn update should gracefully merge repository changes into your own, rather than forcing you to publish
them.

The main side effect of thisrule isthat it means aworking copy has to do extra bookkeeping to track mixed revisions as well as be
tolerant of the mixture. It's made more complicated by the fact that directories themselves are versioned.

For example, suppose you have aworking copy entirely at revision 10. Y ou edit thefilef 0o. ht M and then perform an svn com-
mit, which creates revision 15 in the repository. After the commit succeeds, many new users would expect the working copy to be
entirely at revision 15, but that's not the case! Any number of changes might have happened in the repository between revisions 10
and 15. The client knows nothing of those changes in the repository, since you haven't yet run svn update, and svn commit doesn't
pull down new changes. If, on the other hand, svn commit were to automatically download the newest changes, it would be pos-
sible to set the entire working copy to revision 15—but then we'd be breaking the fundamental rule of “push” and “pull” remaining
separate actions. Therefore, the only safe thing the Subversion client can do is mark the one file—f 0o0. ht m —as being at revi-
sion 15. The rest of the working copy remains at revision 10. Only by running svn update can the latest changes be downloaded
and the whole working copy be marked asrevision 15.

Mixed revisions are normal

The fact is, every time you run svn commit your working copy ends up with some mixture of revisions. The things you just com-
mitted are marked as having larger working revisions than everything else. After several commits (with no updates in between),
your working copy will contain a whole mixture of revisions. Even if you're the only person using the repository, you will still see

13

Fundamental Concepts

this phenomenon. To examine your mixture of working revisions, use the svn status command with the - - ver bose (- v) option
(see the section called “ See an overview of your changes’ for more information).

Often, new users are completely unaware that their working copy contains mixed revisions. This can be confusing, because many
client commands are sensitive to the working revision of the item they're examining. For example, the svn log command is used to
display the history of changes to a file or directory (see the section called “Generating a List of Historical Changes’). When the
user invokes this command on a working copy object, he expects to see the entire history of the object. But if the object's working
revision is quite old (often because svn update hasn't been run in a long time), the history of the older version of the object is
shown.

Mixed revisions are useful

If your project is sufficiently complex, you'll discover that it's sometimes nice to forcibly backdate (or update to a revision older
than the one you already have) portions of your working copy to an earlier revision; you'll learn how to do that in Chapter 2, Basic
Usage. Perhaps you'd like to test an earlier version of a submodule contained in a subdirectory, or perhaps you'd like to figure out

when a bug first came into existence in a specific file. Thisis the “time machine” aspect of a version control system—the feature
that allows you to move any portion of your working copy forward and backward in history.

Mixed revisions have limitations
However you make use of mixed revisionsin your working copy, there are limitations to this flexibility.

First, you cannot commit the deletion of afile or directory that isn't fully up to date. If a newer version of the item existsin the re-
pository, your attempt to delete will be rejected to prevent you from accidentally destroying changes you've not yet seen.

Second, you cannot commit a metadata change to adirectory unlessit's fully up to date. You'll learn about attaching “ properties’ to
items in Chapter 3, Advanced Topics. A directory's working revision defines a specific set of entries and properties, and thus com-
mitting a property change to an out-of-date directory may destroy properties you've not yet seen.

Finally, beginning in Subversion 1.7, you cannot by default use a mixed-revision working copy as the target of a merge operation.
(This new requirement was introduced to prevent common problems which stem from doing so.)

Summary

We covered a number of fundamental Subversion conceptsin this chapter:

« Weintroduced the notions of the central repository, the client working copy, and the array of repository revision trees.

* We saw some simple examples of how two collaborators can use Subversion to publish and receive changes from one another,
using the “ copy-modify-merge” model.

» Wetalked ahit about the way Subversion tracks and manages information in aworking copy.

At this point, you should have a good idea of how Subversion works in the most general sense. Armed with this knowledge, you
should now be ready to move into the next chapter, which is a detailed tour of Subversion's commands and features.

14

Chapter 2. Basic Usage

Theory isuseful, but its application isjust plain fun. Let's move now into the details of using Subversion. By the time you reach the
end of this chapter, you will be able to perform al the tasks you need to use Subversion in a normal day's work. You'll start with
getting your files into Subversion, followed by an initial checkout of your code. Well then walk you through making changes and
examining those changes. You'll also see how to bring changes made by others into your working copy, examine them, and work
through any conflicts that might arise.

This chapter will not provide exhaustive coverage of al of Subversion's commands—rather, it's a conversational introduction to the
most common Subversion tasks that you'll encounter. This chapter assumes that you've read and understood Chapter 1, Funda-
mental Concepts and are familiar with the general model of Subversion. For a complete reference of all commands, see Chapter 9,
Subversion Complete Reference.

Also, this chapter assumes that the reader is seeking information about how to interact in a basic fashion with an existing Subver-
sion repository. No repository means no working copy; no working copy means not much of interest in this chapter. There are
many Internet sites which offer free or inexpensive Subversion repository hosting services. Or, if you'd prefer to set up and admin-
ister your own repositories, check out Chapter 5, Repository Administration. But don't expect the examples in this chapter to work
without the user having access to a Subversion repository.

Finally, any Subversion operation that contacts the repository over a network may potentially require that the user authenticate. For
the sake of simplicity, our examples throughout this chapter avoid demonstrating and discussing authentication. Be aware that if
you hope to apply the knowledge herein to an existing, rea-world Subversion instance, you'll probably be forced to provide at |east
a username and password to the server. See the section called “Client Credentials’ for a detailed description of Subversion's hand-
ling of authentication and client credentials.

Help!

It goes without saying that this book exists to be a source of information and assistance for Subversion users new and old. Conveni-
ently, though, the Subversion command-line is self-documenting, aleviating the need to grab a book off the shelf (wooden, virtual,
or otherwise). The svn help command is your gateway to that built-in documentation:

$ svn hel p

Subversion command-line client, version 1.7.0.

Type 'svn hel p <subcommand>' for help on a specific subcomand.

Type 'svn --version' to see the program version and RA nodul es
or 'svn --version --quiet' to see just the version number.

Mbst subcommands take file and/or directory argunents, recursing
on the directories. |If no argunments are supplied to such a
comand, it recurses on the current directory (inclusive) by default.

Avai | abl e subcomuands:
add
bl ame (praise, annotate, ann)
cat

As described in the previous output, you can ask for help on a particular subcommand by running svn hel p SUBCOVIVAND.
Subversion will respond with the full usage message for that subcommand, including its syntax, options, and behavior:

$ svn help help
help (?, h): Describe the usage of this programor its subcomrands.

15

Basic Usage

usage: hel p [SUBCOMVAND. . .]

A obal options:
--user name ARG : specify a usernane ARG
--password ARG : specify a password ARG

Options and Switches and Flags, Oh My!

The Subversion command-line client has numerous command modifiers. Some folks refer to such things as “switches’ or
“flags’—in this book, we'll call them “options’. Y ou'll find the options supported by a given svn subcommand, plus a set of
options which are globally supported by all subcommands, listed near the bottom of the built-in usage message for that sub-
command.

Subversion's options have two distinct forms: short options are a single hyphen followed by a single letter, and long options
consist of two hyphens followed by several letters and hyphens (e.g., -s and - -t hi s-i s-a-1 ong-opti on, respect-
ively). Every option has at least one long format. Some, such as the - - changel i st option, feature an abbreviated long-
format alias (- - cl , in this case). Only certain options—generally the most-used ones—have an additional short format. To
maintain clarity in this book, we usually use the long form in code examples, but when describing options, if there's a short
form, we'll provide the long form (to improve clarity) and the short form (to make it easier to remember). Use the form
you're more comfortable with when executing your own Subversion commands.

Many Unix-based distributions of Subversion include manual pages of the sort that can be invoked using the man program, but
those tend to carry only pointers to other sources of real help, such as the project's website and to the website which hosts this
book. Also, several companies offer Subversion help and support, too, usually via a mixture of web-based discussion forums and
fee-based consulting. And of course, the Internet holds a decade's worth of Subversion-related discussions just begging to be loc-
ated by your favorite search engine. Subversion help is never too far away.

Getting Data into Your Repository

You can get new files into your Subversion repository in two ways. svn import and svn add. We'll discuss svn import now and
will discuss svn add later in this chapter when we review atypical day with Subversion.

Importing Files and Directories

The svn import command is a quick way to copy an unversioned tree of filesinto arepository, creating intermediate directories as
necessary. svn import doesn't require a working copy, and your files are immediately committed to the repository. Y ou typically
use this when you have an existing tree of files that you want to begin tracking in your Subversion repository. For example:

$ svn inport /path/to/mytree \
http://svn. exanpl e. conl svn/ repo/ sone/ proj ect \
-m*"lnitial inmport”

Addi ng nytree/ foo.c
Addi ng nytree/ bar.c
Addi ng nytree/ subdir
Addi ng nmyt r ee/ subdi r/ quux. h

Conmitted revision 1.

16

Basic Usage

The previous example copied the contents of the local directory nyt r ee into the directory sone/ pr oj ect in the repository.
Note that you didn't have to create that new directory first—svn import does that for you. Immediately after the commit, you can
see your datain the repository:

$ svn list http://svn.exanpl e.conl svn/repo/ sone/ proj ect
bar. c

foo.c

subdir/

$

Note that after the import is finished, the original local directory is not converted into a working copy. To begin working on that
datain aversioned fashion, you still need to create a fresh working copy of that tree.

Recommended Repository Layout

Subversion provides the ultimate flexibility in terms of how you arrange your data. Because it simply versions directories and files,
and because it ascribes no particular meaning to any of those objects, you may arrange the data in your repository in any way that
you choose. Unfortunately, this flexibility also means that it's easy to find yourself “lost without aroadmap” as you attempt to nav-
igate different Subversion repositories which may carry completely different and unpredictable arrangements of the data within
them.

To counteract this confusion, we recommend that you follow a repository layout convention (established long ago, in the nascency
of the Subversion project itself) in which a handful of strategically named Subversion repository directories convey valuable mean-
ing about the data they hold. Most projects have a recognizable “main ling”, or trunk, of development; some branches, which are
divergent copies of development lines; and some tags, which are named, stable snapshots of a particular line of development. So
we first recommend that each project have a recognizable project root in the repository, a directory under which al of the ver-
sioned information for that project—and only that project—Ilives. Secondly, we suggest that each project root contain at r unk
subdirectory for the main development line, abr anches subdirectory in which specific branches (or collections of branches) will
be created, and at ags subdirectory in which specific tags (or collections of tags) will be created. Of course, if arepository houses
only asingle project, the root of the repository can serve as the project root, too.

Here are some examples:

$ svn list file:///var/svn/single-project-repo

trunk/

branches/

t ags/

$ svn list file:///var/svn/multi-project-repo
proj ect- A

proj ect - B

$ svn list file:///var/svn/multi-project-repo/project-A
t runk/

branches/

t ags/

$

We talk much more about tags and branches in Chapter 4, Branching and Merging. For details and some advice on how to set up
repositories when you have multiple projects, see the section called “Repository Layout”. Finally, we discuss project roots morein
the section called “Planning Y our Repository Organization”.

What's In a Name?

17

Basic Usage

Subversion tries hard not to limit the type of data you can place under version control. The contents of files and property values are
stored and transmitted as binary data, and the section called “File Content Type” tells you how to give Subversion a hint that
“textual” operations don't make sense for a particular file. There are afew places, however, where Subversion places restrictions on
information it stores.

Subversion internally handles certain bits of data—for example, property names, pathnames, and log messages—as UTF-
8-encoded Unicode. This is not to say that all your interactions with Subversion must involve UTF-8, though. As a general rule,
Subversion clients will gracefully and transparently handle conversions between UTF-8 and the encoding system in use on your
compurter, if such a conversion can meaningfully be done (which is the case for most common encodings in use today).

In WebDAV exchanges and older versions of some of Subversion's administrative files, paths are used as XML attribute values,
and property namesin XML tag names. This means that pathnames can contain only legal XML (1.0) characters, and properties are
further limited to ASCII characters. Subversion also prohibits TAB, CR, and LF characters in path names to prevent paths from be-
ing broken up in diffs or in the output of commands such as svn log or svn status.

While it may seem like a lot to remember, in practice these limitations are rarely a problem. As long as your locale settings are
compatible with UTF-8 and you don't use control characters in path names, you should have no trouble communicating with Sub-
version. The command-line client adds an extra bit of help—to create “legally correct” versions for internal use it will automatic-
ally escapeillegal path characters as needed in URL s that you type.

Creating a Working Copy

Most of the time, you will start using a Subversion repository by performing a checkout of your project. Checking out a directory
from a repository creates a working copy of that directory on your local machine. Unless otherwise specified, this copy contains
the youngest (that is, most recently created or modified) versions of the directory and its children found in the Subversion reposit-
ory:

$ svn checkout http://svn.exanpl e.conm svn/repo/trunk
A t r unk/ READVE

A t runk/ I NSTALL

A trunk/src/ main.c

A trunk/ src/ header. h

Ch
$

ecked out revision 8810.

Although the preceding example checks out the trunk directory, you can just as easily check out a deeper subdirectory of areposit-
ory by specifying that subdirectory's URL as the checkout URL:

$ svn checkout http://svn.exanpl e.com svn/repo/trunk/src
A src/main.c

A src/ header. h

A src/lib/hel pers.c

'C':ﬁecked out revision 8810.
$

Since Subversion uses a copy-modify-merge model instead of lock-modify-unlock (see the section called “Versioning Models’),
you can immediately make changes to the files and directories in your working copy. Y our working copy is just like any other col-
lection of files and directories on your system. You can edit the files inside it, rename it, even delete the entire working copy and
forget about it.

18

Basic Usage

Q While your working copy is “just like any other collection of files and directories on your system,” you can edit files

at will, but you must tell Subversion about everything else that you do. For example, if you want to copy or move an
item in aworking copy, you should use svn copy or svn move instead of the copy and move commands provided by
your operating system. Wel'l talk more about them later in this chapter.

Unless you're ready to commit the addition of a new file or directory or changes to existing ones, there's no need to further notify
the Subversion server that you've done anything.

What Is This .svn Directory?

The topmost directory of aworking copy—and prior to version 1.7, every versioned subdirectory thereof—contains a special
administrative subdirectory named . svn. Usually, your operating system's directory listing commands won't show this sub-
directory, but it is nevertheless an important directory. Whatever you do, don't delete or change anything in the administrat-
ive areal Subversion uses that directory and its contents to manage your working copy.

Notice that in the previous pair of examples, Subversion chose to create a working copy in adirectory named for the final compon-
ent of the checkout URL. This occurs only as a convenience to the user when the checkout URL is the only bit of information
provided to the svn checkout command. Subversion's command-line client gives you additional flexibility, though, allowing you
to optionally specify the local directory name that Subversion should use for the working copy it creates. For example:

®Q: >>r>>%

svn checkout http://svn.exanpl e. com svn/repo/trunk my-worki ng-copy
ny - wor ki ng- copy/ READVE
ny-wor ki ng- copy/ | NSTALL
my-wor ki ng- copy/ src/ mai n. c
my-wor ki ng- copy/ src/ header . h

ecked out revision 8810.

If thelocal directory you specify doesn't yet exist, that's okay—svn checkout will create it for you.

Basic Work Cycle

Subversion has numerous features, options, bells, and whistles, but on a day-to-day basis, odds are that you will use only a few of
them. In this section, we'll run through the most common things that you might find yourself doing with Subversion in the course
of aday'swork.

The typical work cycle looks like this:

. Update your working copy. Thisinvolves the use of the svn update command.

. Make your changes. The most common changes that you'll make are edits to the contents of your existing files. But sometimes

you need to add, remove, copy and move files and directories—the svn add, svn delete, svn copy, and svn move commands
handle those sorts of structural changes within the working copy.

. Review your changes. The svn status and svn diff commands are critical to reviewing the changes you've made in your working

copy.

. Fix your mistakes. Nobody's perfect, so as you review your changes, you may spot something that's not quite right. Sometimes

the easiest way to fix a mistake is start al over again from scratch. The svn revert command restores a file or directory to its

19

Basic Usage

unmodified state.

5. Resolve any conflicts (merge others changes). In the time it takes you to make and review your changes, others might have
made and published changes, too. You'll want to integrate their changes into your working copy to avoid the potential out-
of -dateness scenarios when you attempt to publish your own. Again, the svn update command is the way to do this. If thisres-
ultsin local conflicts, you'll need to resolve those using the svn resolve command.

6. Publish (commit) your changes. The svn commit command transmits your changes to the repository where, if they are accepted,
they create the newest versions of all the things you modified. Now others can see your work, too!

Update Your Working Copy

When working on a project that is being modified via multiple working copies, you'll want to update your working copy to receive
any changes committed from other working copies since your last update. These might be changes that other members of your
project team have made, or they might smply be changes you've made yourself from a different computer. To protect your data,
Subversion won't allow you commit new changes to out-of-date files and directories, so it's best to have the latest versions of all
your project's files and directories before making new changes of your own.

Use svn update to bring your working copy into sync with the latest revision in the repository:

$ svn update

Updating '."':
U foo. c
] bar.c

Updated to revision 2.

In this case, it appears that someone checked in modifications to both f 00. ¢ and bar . ¢ since the last time you updated, and Sub-
version has updated your working copy to include those changes.

When the server sends changes to your working copy via svn update, a letter code is displayed next to each item to let you know
what actions Subversion performed to bring your working copy up to date. To find out what these letters mean, run svn hel p
updat e or see svn update (up) in Chapter 9, Subversion Complete Reference.

Make Your Changes

Now you can get to work and make changes in your working copy. Y ou can make two kinds of changes to your working copy: file
changes and tree changes. Y ou don't need to tell Subversion that you intend to change a file; just make your changes using your
text editor, word processor, graphics program, or whatever tool you would normally use. Subversion automatically detects which
files have been changed, and in addition, it handles binary files just as easily as it handles text files—and just as efficiently, too.
Tree changes are different, and involve changes to a directory's structure. Such changes include adding and removing files, renam-
ing files or directories, and copying files or directories to new locations. For tree changes, you use Subversion operations to
“schedule” files and directories for removal, addition, copying, or moving. These changes may take place immediately in your
working copy, but no additions or removals will happen in the repository until you commit them.

Versioning Symbolic Links

On non-Windows platforms, Subversion is able to version files of the special type symbolic link (or “symlink™). A symlink is
afile that acts as a sort of transparent reference to some other object in the filesystem, allowing programs to read and write to
those objects indirectly by performing operations on the symlink itself.

When a symlink is committed into a Subversion repository, Subversion remembers that the file was in fact a symlink, as well

20

Basic Usage

as the object to which the symlink “points.” When that symlink is checked out to another working copy on a non-Windows
system, Subversion reconstructs a real filesystem-level symbolic link from the versioned symlink. But that doesn't in any
way limit the usability of working copies on systems such as Windows that do not support symlinks. On such systems, Sub-
version simply creates a regular text file whose contents are the path to which the original symlink pointed. While that file
can't be used as a symlink on a Windows system, it also won't prevent Windows users from performing their other Subver-
sion-related activities.

Hereis an overview of the five Subversion subcommands that you'll use most often to make tree changes:

svn add FOO

Use this to schedule the file, directory, or symbolic link FOOto be added to the repository. When you next commit, FOO will
become a child of its parent directory. Note that if FOOis a directory, everything underneath FOOwill be scheduled for addi-
tion. If you want only to add FOOitself, passthe - - dept h=enpt y option.

svn del ete FOO

Use this to schedule the file, directory, or symbolic link FOOto be deleted from the repository. If FOOis afile or link, itisim-
mediately deleted from your working copy. If FOO is a directory, it is not deleted, but Subversion schedules it for deletion.
When you commit your changes, FOOwill be entirely removed from your working copy and the repository.l

svn copy FOO BAR

Create a new item BAR as a duplicate of FOO and automatically schedule BAR for addition. When BAR is added to the reposit-
ory on the next commit, its copy history is recorded (as having originally come from FQO). svn copy does not create interme-
diate directories unless you passthe - - par ent s option.

svn nove FOO BAR

This command is exactly the same asrunning svn copy FOO BAR; svn del ete FOO That is, BAR is scheduled for
addition as a copy of FOO, and FOO s scheduled for removal. svn move does not create intermediate directories unless you
passthe - - par ent s option.

svn nkdir FOO

This command is exactly the same as running mkdi r FOO, svn add FOO. That is, a new directory named FOOis created
and scheduled for addition.

Changing the Repository Without a Working Copy

Subversion does offer ways to immediately commit tree changes to the repository without an explicit commit action. In par-
ticular, specific uses of svn mkdir, svn copy, svh move, and svn delete can operate directly on repository URLs as well as
on working copy paths. Of course, as previously mentioned, svn import always makes direct changes to the repository.

There are pros and cons to performing URL-based operations. One obvious advantage to doing so is speed: sometimes,
checking out a working copy that you don't already have solely to perform some seemingly simple action is an overbearing
cost. A disadvantage is that you are generally limited to a single, or single type of, operation at a time when operating dir-
ectly on URLSs. Finaly, the primary advantage of aworking copy isin its utility as a sort of “staging area’ for changes. You
can make sure that the changes you are about to commit make sense in the larger scope of your project before committing
them. And, of course, these staged changes can be as complex or as a simple as they need to be, yet result in but asingle new
revision when committed.

ot course, nothi ng is ever totally deleted from the repository—just from its HEAD revision. You may continue to access the deleted item in previous revisions.
Should you desire to resurrect the item so that it is again present in HEAD, see the section called “ Resurrecting Deleted Items’.

21

Basic Usage

Review Your Changes

Once you've finished making changes, you need to commit them to the repository, but before you do so, it's usually a good idea to
take alook at exactly what you've changed. By examining your changes before you commit, you can compose a more accurate log
message (a human-readable description of the committed changes stored alongside those changes in the repository). Y ou may also
discover that you've inadvertently changed afile, and that you need to undo that change before committing. Additionaly, thisis a
good opportunity to review and scrutinize changes before publishing them. You can see an overview of the changes you've made
by using the svn status command, and you can dig into the details of those changes by using the svn diff command.

Look Ma! No Network!

Y ou can use the commands svn status, svn diff, and svn revert without any network access even if your repository is across
the network. This makes it easy to manage and review your changes-in-progress when you are working offline or are other-
wise unable to contact your repository over the network.

Subversion does this by keeping private caches of pristine, unmodified versions of each versioned file inside its working
copy administrative area (or prior to version 1.7, potentially multiple administrative areas). This allows Subversion to re-
port—and revert—loca modifications to those files without network access. This cache (called the text-base) also allows
Subversion to send the user's local modifications during a commit to the server as a compressed delta (or “difference”)
against the pristine version. Having this cache is a tremendous benefit—even if you have a fast Internet connection, it's gen-
erally much faster to send only afil€e's changes rather than the whole file to the server.

See an overview of your changes

To get an overview of your changes, use the svn status command. You'll probably use svn status more than any other Subversion
command.

Because the cvs status command's output was so noisy, and because cvs update not only performs an update, but
also reports the status of your local changes, most CV'S users have grown accustomed to using cvs update to report
their changes. In Subversion, the update and status reporting facilities are completely separate. See the section called
“Distinction Between Status and Update” for more details.

If yourun svn st at us at the top of your working copy with no additional arguments, it will detect and report all file and tree
changes you've made.

$ svn status

? scratch. c

A stuff/I oot

A stuff/l oot/ new. c
D stuff/old.c

M bar.c

$

In its default output mode, svn status prints seven columns of characters, followed by several whitespace characters, followed by a
file or directory name. The first column tells the status of afile or directory and/or its contents. Some of the most common codes
that svn status displays are:

? item
Thefile, directory, or symbolic link i t emis not under version control.

22

Basic Usage

Aitem
Thefile, directory, or symbolic link i t emhas been scheduled for addition into the repository.

Citem
Thefilei t emisin a state of conflict. That is, changes received from the server during an update overlap with local changes
that you have in your working copy (and weren't resolved during the update). Y ou must resolve this conflict before committing
your changes to the repository.

Ditem
Thefile, directory, or symbolic link i t emhas been scheduled for deletion from the repository.

Mitem
The contents of thefilei t emhave been modified.

If you pass a specific path to svn status, you get information about that item alone:

$ svn status stuff/fish.c
D stuff/fish.c

svn status also hasa - - ver bose (- v) option, which will show you the status of every item in your working copy, even if it has
not been changed:

$ svn status -v

M 44 23 sally README
44 30 sally | NSTALL
M 44 20 harry bar. c
44 18 ira stuff
44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
44 21 sally stuff/things
A 0 ? ? stuff/things/bloo.h
44 36 harry stuff/things/gloo.c

Thisisthe “long form” output of svn status. The lettersin the first column mean the same as before, but the second column shows
the working revision of the item. The third and fourth columns show the revision in which the item last changed, and who changed
it.

None of the prior invocations to svn status contact the repository—they merely report what is known about the working copy
items based on the records stored in the working copy administrative area and on the timestamps and contents of modified files.
But sometimes it is useful to see which of the items in your working copy have been modified in the repository since the last time
you updated your working copy. For this, svn status offersthe - - show updat es (- u) option, which contacts the repository and
adds information about items that are out of date:

$ svn status -u -v
M * 44 23 sal ly READVE
M 44 20 harry bar. c
* 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
A 0 ? ? stuf f/things/bloo.h
St at us agai nst revi sion: 46

23

Basic Usage

Notice in the previous example the two asterisks: if you were to run svn updat e at this point, you would receive changes to
README and t r out . c. Thistells you some very useful information—because one of those itemsis also one that you have locally
modified (the file READVE), you'll need to update and get the servers changes for that file before you commit, or the repository
will reject your commit for being out of date. We discuss thisin more detail later.

svn status can display much more information about the files and directories in your working copy than we've shown here—for an
exhaustive description of svn status and its output, run svn hel p st at us or see svn status (stat, st) in Chapter 9, Subversion
Complete Reference.

Examine the details of your local modifications

Another way to examine your changes is with the svn diff command, which displays differences in file content. When you run
svn diff atthetop of your working copy with no arguments, Subversion will print the changes you've made to human-readable
files in your working copy. It displays those changes in unified diff format, a format which describes changes as “hunks’ (or
“snippets’) of afile's content where each line of text is prefixed with a single-character code: a space, which means the line was
unchanged; aminus sign (-), which means the line was removed from the file; or a plus sign (+), which means the line was added
to the file. In the context of svn diff, those minus-sign- and plus-sign-prefixed lines show how the lines looked before and after
your modifications, respectively.

Here's an example:

$ svn diff
| ndex: bar.c

--- bar.c (revision 3)
+++ bar.c (working copy)
@a@-1,7 +1,12 @@

+#i ncl ude <sys/types. h>
+#i ncl ude <sys/stat. h>
+#i ncl ude <uni std. h>

+

+#i ncl ude <stdio. h>

int main(void) {

- printf("Sixty-four slices of Anmerican Cheese...\n");
+ printf("Sixty-five slices of Anerican Cheese...\n");
return O;

}
| ndex: README

--- README (revision 3)

+++ README (wor ki ng copy)

@ -193,3 +193,4 @@

+Note to self: pick up laundry.

I ndex: stuff/fish.c

--- stuff/fish.c (revision 1)

+++ stuff/fish.c (working copy)
-Welcone to the file known as 'fish'.
-Information on fish will be here soon.

I ndex: stuff/things/bloo.h

Basic Usage

--- stuff/things/bloo.h (revision 8)
+++ stuff/things/bloo.h (working copy)
+Here is a new file to describe

+t hi ngs about bl oo.

The svn diff command produces this output by comparing your working files against its pristine text-base. Files scheduled for ad-
dition are displayed as files in which every line was added; files scheduled for deletion are displayed as if every line was removed
from those files. The output from svn diff is somehwat compatible with the patch program—more so with the svn patch subcom-
mand introduced in Subversion 1.7. Patch processing commands such as these read and apply patch files (or “patches’), which are
files that describe differences made to one or more files. Because of this, you can share the changes you've made in your working
copy with someone else without first committing those changes by creating a patch file from the redirected output of svn diff:

$ svn diff > patchfile
$

Subversion uses its internal diff engine, which produces unified diff format, by default. If you want diff output in a different
format, specify an external diff program using - - di f f - cnd and pass any additional flags that it needs via the - - ext ensi ons
(- X) option. For example, you might want Subversion to defer its difference calculation and display to the GNU diff program, ask-
ing that program to print local modifications made to the file f 00. ¢ in context diff format (another flavor of difference format)
while ignoring changes made only to the case of the letters used in the file's contents:

$ svn diff --diff-cnd /usr/bin/diff -x "-i" foo.c

Fix Your Mistakes

Suppose while viewing the output of svn diff you determine that all the changes you made to a particular file are mistakes. Maybe
you shouldn't have changed the file at all, or perhaps it would be easier to make different changes starting from scratch. Y ou could
edit the file again and unmake all those changes. You could try to find a copy of how the file looked before you changed it, and
then copy its contents atop your modified version. You could attempt to apply those changes to the file again in reverse using
pat ch - R And there are probably other approaches you could take.

Fortunately in Subversion, undoing your work and starting over from scratch doesn't require such acrobatics. Just use the svn re-
vert command:

$ svn status READVE
M READVE

$ svn revert README
Revert ed ' READVE

% svn status READVE

In this example, Subversion has reverted the file to its premodified state by overwriting it with the pristine version of the file
cached in the text-base area. But note that svn revert can undo any scheduled operation—for example, you might decide that you

25

Basic Usage

don't want to add a new file after all:

$ svn status newfile.txt

? newfile.txt
$ svn add newfile.txt
A newfile.txt

$ svn revert newfile.txt
Reverted 'newfile.txt'
$ svn status newfile.txt
? newfile.txt

$

Or perhaps you mistakenly removed afile from version control:

$ svn status READVE
$ svn del ete READVMVE
D READVE
$ svn revert README
Reverted ' READVE
% svn st atus READVE

The svn revert command offers salvation for imperfect people. It can save you huge amounts of time and energy that would other-
wise be spent manually unmaking changes or, worse, disposing of your working copy and checking out a fresh one just to have a
clean slate to work with again.

Resolve Any Conflicts

We've already seen how svn st at us - u can predict conflicts, but dealing with those conflictsis still something that remains to
be done. Conflicts can occur any time you attempt to merge or integrate (in a very general sense) changes from the repository into
your working copy. By now you know that svn update creates exactly that sort of scenario—that command's very purpose is to
bring your working copy up to date with the repository by merging all the changes made since your last update into your working
copy. So how does Subversion report these conflicts to you, and how do you deal with them?

Supposeyou run svn updat e and you see this sort of interesting output:

$ svn update

Updating '.":
U I NSTALL
G README

Conflict discovered in "bar.c'.

Sel ect: (p) postpone, (df) diff-full, (e) edit,
(nmc) mine-conflict, (tc) theirs-conflict,
(s) show all options:

The U (which stands for “Updated”) and G (for “merGed”) codes are no cause for concern; those files cleanly absorbed changes
from the repository. A file marked with U contains no local changes but was updated with changes from the repository. One
marked with G had local changes to begin with, but the changes coming from the repository didn't overlap with those local
changes.

26

Basic Usage

It's the next few lines which are interesting. First, Subversion reports to you that in its attempt to merge outstanding server changes
into the file bar . c, it has detected that some of those changes clash with local modifications you've made to that file in your
working copy but have not yet committed. Perhaps someone has changed the same line of text you also changed. Whatever the
reason, Subversion instantly flags this file as being in a state of conflict. It then asks you what you want to do about the problem,
allowing you to interactively choose an action to take toward resolving the conflict. The most commonly used options are dis-
played, but you can see all of the options by typing s:

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,
(s) show all options: s

(e) edit - change nerged file in an editor

(df) diff-full - show all changes made to nerged file

(r) resolved - accept nerged version of file

(dc) display-conflict - show all conflicts (ignoring merged version)
(rmc) mine-conflict - accept ny version for all conflicts (sane)
(tc) theirs-conflict - accept their version for all conflicts (sane)
(rmf) mne-full - accept ny version of entire file (even non-conflicts)
(tf) theirs-full - accept their version of entire file (sane)
(p) postpone - mark the conflict to be resolved |ater

(1) Tlaunch - launch external tool to resolve conflict

(s) show all - show this |ist

Select: (p) postpone, (df) diff-full, (e) edit,
(nmc) nmine-conflict, (tc) theirs-conflict,
(s) show all options:

Let's briefly review each of these options before we go into detail on what each option means.

(e) edit
Open thefile in conflict with your favorite editor, as set in the environment variable EDI TOR.

(df) diff-full
Display the differences between the base revision and the conflicted file itself in unified diff format.

(r) resolved
After editing a file, tell svn that you've resolved the conflicts in the file and that it should accept the current con-
tents—basically that you've “resolved” the conflict.

(dc) display-conflict
Display all conflicting regions of the file, ignoring changes which were successfully merged.

(nt) mne-conflict
Discard any newly received changes from the server which conflict with your local changes to the file under review. However,
accept and merge all non-conflicting changes received from the server for that file.

(tc) theirs-conflict
Discard any local changes which conflict with incoming changes from the server for the file under review. However, preserve
al non-conflicting local changesto that file.

(nf) mne-full
Discard al newly received changes from the server for the file under review, but preserve al your local changesfor that file.

27

Basic Usage

(tf) theirs-full
Discard al your local changes to the file under review and use only the newly received changes from the server for that file.

(p) postpone
Leave thefilein aconflicted state for you to resolve after your update is complete.

(1) launch
Launch an external program to perform the conflict resolution. This requires a bit of preparation beforehand.

(s) show all
Show the list of all possible commands you can use in interactive conflict resolution.

Well cover these commands in more detail now, grouping them together by related functionality.

Viewing conflict differences interactively

Before deciding how to attack a conflict interactively, odds are that you'd like to see exactly what is in conflict. Two of the com-
mands available at the interactive conflict resolution prompt can assist you here. The first is the “diff-full” command (df), which
displays al the local modifications to the file in question plus any conflict regions:

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) mne-conflict, (tc) theirs-conflict,
(s) show all options: df

--- .svn/text-base/sandw ch. txt.svn-base Tue Dec 11 21:33:57 2007
+++ .svn/tnp/tenpfile. 32. tnp Tue Dec 11 21:34:33 2007
@-1 +1,5 @

-Just buy a sandwi ch.
+<<<<<<< . m ne

+Go pi ck up a cheesest eak.

+Bring ne a taco!
+>>>>>>> [r 32

The first line of the diff content shows the previous contents of the working copy (the BASE revision), the next content line is your
change, and the last content line is the change that was just received from the server (usually the HEAD revision).

The second command is similar to the first, but the “display-conflict” (dc) command shows only the conflict regions, not all the
changes made to the file. Additionally, this command uses a dightly different display format for the conflict regions which allows
you to more easily compare the file's contents in those regions as they would appear in each of three states: original and unedited;
with your local changes applied and the server's conflicting changes ignored; and with only the server's incoming changes applied
and your local, conflicting changes reverted.

After reviewing the information provided by these commands, you're ready to move on to the next action.

Resolving conflict differences interactively

There are several different ways to resolve conflicts interactively—two of which allow you to selectively merge and edit changes,
the rest of which allow you to simply pick aversion of the file and move along.

If you wish to choose some combination of your local changes, you can use the “edit” command (e) to manually edit the file with
conflict markersin atext editor (configured per the instructions in the section called “Using External Editors’). After you've edited
thefile, if you're satisfied with the changes you've made, you can tell Subversion that the edited file is no longer in conflict by us-
ing the “resolved” command (r).

28

Basic Usage

Regardless of what your local Unix snob will likely tell you, editing the file by hand in your favorite text editor is a somewhat [ow-
tech way of remedying conflicts (see the section called “Merging conflicts by hand” for a walkthrough). For this reason, Subver-
sion provides the “launch” resolution command (1) to fire up afancy graphical merge tool instead (see the section called “External
merge’).

If you decide that you don't need to merge any changes, but just want to accept one version of the file or the other, you can either
choose your changes (ak.a. “min€”) by using the “mine-full” command (nf) or choose theirs by using the “theirs-full” command

tf).

Finally, there is aso a pair of compromise options available. The “mine-conflict” (nt) and “theirs-conflict” (t ¢) commands in-
struct Subversion to select your local changes or the server'sincoming changes, respectively, asthe “winner” for al conflictsin the
file. But, unlike the “mine-full” and “theirs-full” commands, these commands preserve both your local changes and changes re-
ceived from the server in regions of the file where no conflict was detected.

Postponing conflict resolution

This may sound like an appropriate section for avoiding marital disagreements, but it's actually still about Subversion, so read on.
If you're doing an update and encounter a conflict that you're not prepared to review or resolve, you can type p to postpone resolv-
ing a conflict on afile-by-file basis when you run svn updat e. If you know in advance that you don't want to resolve any con-
flicts interactively, you can passthe - - non- i nt er act i ve option to svn update, and any file in conflict will be marked with a
Cautomatically.

The C (for “Conflicted”) means that the changes from the server overlapped with your own, and now you have to manually choose
between them after the update has completed. When you postpone a conflict resolution, svn typically does three things to assist
you in noticing and resolving that conflict:

» Subversion prints a C during the update and remembers that the file isin a state of conflict.

« |If Subversion considers the file to be mergeable, it places conflict markers—special strings of text that delimit the “sides’ of the
conflict—into the file to visibly demonstrate the overlapping areas. (Subversion uses the svn: m ne-t ype property to decide
whether afileis capable of contextual, line-based merging. See the section called “File Content Type” to learn more.)

 For every conflicted file, Subversion places three extra unversioned filesin your working copy:

filename. nmne
Thisisyour file asit existed in your working copy before you began the update process. This version of the file contains your
local madifications as well as conflict markers. (If Subversion considers the file to be unmergeable, the . mi ne file isn't cre-
ated, since it would be identical to the working file.)

fil ename. r OLDREV
Thisisthefile asit existed in the BASE revision—that is, the unmodified revision of the file in your working copy before you
began the update process—where OLDREV is that base revision humber.

fil ename. r NEWREV
Thisis the file that your Subversion client just received from the server via the update of your working copy, where NEWREV
corresponds to the revision number to which you were updating (HEAD, unless otherwise requested).

For example, Sally makes changes to the file sandwi ch. t xt , but does not yet commit those changes. Meanwhile, Harry com-
mits changes to that same file. Sally updates her working copy before committing and she gets a conflict, which she postpones:

$ svn update

Updating '.":

Conflict discovered in 'sandw ch.txt'.

Sel ect: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,

29

Basic Usage

(s) show all options: p

C sandw ch. t xt
Updated to revision 2.
Summary of conflicts:

Text conflicts: 1
$1s -1
sandwi ch. t xt
sandwi ch. t xt. m ne
sandwi ch.txt.r1l
sandwi ch. txt.r2

At this point, Subversion will not allow Sally to commit the file sandwi ch. t xt until the three temporary files are removed:

$ svn commit -m"Add a few nore things"
svn: E155015: Commit failed (details follow):
svn: E155015: Aborting conmit: '/hone/sally/svn-work/sandw ch.txt' remains in conflict

If you've postponed a conflict, you need to resolve the conflict before Subversion will allow you to commit your changes. Y ou'll do
this with the svn resolve command and one of several argumentsto the - - accept option.

If you want to choose the version of the file that you last checked out before making your edits, choose the base argument.
If you want to choose the version that contains only your edits, choose the i ne- f ul | argument.

If you want to choose the version that your most recent update pulled from the server (and thus discarding your edits entirely),
choosethet hei rs-ful | argument.

However, if you want to pick and choose from your changes and the changes that your update fetched from the server, merge the
conflicted text “by hand” (by examining and editing the conflict markers within the file) and then choose the wor ki ng argument.

svn resolve removes the three temporary files and accepts the version of the file that you specified with the - - accept option,
and Subversion no longer considers the file to be in a state of conflict:

$ svn resol ve --accept working sandwi ch. t xt
Resol ved conflicted state of 'sandw ch.txt'

Merging conflicts by hand

Merging conflicts by hand can be quite intimidating the first time you attempt it, but with a little practice, it can become as easy as
falling off abike.

Here's an example. Due to a miscommunication, you and Sally, your collaborator, both edit the file sandwi ch. t xt at the same
time. Sally commits her changes, and when you go to update your working copy, you get a conflict and you're going to have to edit
sandwi ch. t xt toresolvethe conflict. First, let'stake alook at thefile:

$ cat sandwi ch. t xt
Top piece of bread
Mayonnai se

30

Basic Usage

Lettuce

Tonmat o

Pr ovol one
<LK ., M he
Sal am

Mort adel | a
Prosciutto

Sauer kr aut

Gilled Chicken
SS>SS>S>S> 2

Creol e Mustard

Bott om pi ece of bread

The strings of less-than signs, equals signs, and greater-than signs are conflict markers and are not part of the actual datain con-
flict. You generally want to ensure that those are removed from the file before your next commit. The text between the first two
sets of markers is composed of the changes you made in the conflicting area:

<<<<<<< . m ne
Sal am

Mort adel | a
Prosciutto

Sauer kr aut
Gilled Chicken
>S>S>S>S>>S> 12

Usually you won't want to just delete the conflict markers and Sally's changes—she's going to be awfully surprised when the sand-
wich arrives and it's not what she wanted. This is where you pick up the phone or walk across the office and explain to Sally that
you can't get sauerkraut from an Italian deli.? Once you've agreed on the changes you will commit, edit your file and remove the
conflict markers:

Top piece of bread
Mayonnai se

Lettuce

Tonmat o

Pr ovol one

Sal am

Mort adel | a

Prosciutto

Creol e Mustard

Bott om pi ece of bread

2And if you ask them for it, they may very well ride you out of town on arail.

31

Basic Usage

Now use svn resolve, and you're ready to commit your changes:

$ svn resol ve --accept working sandwi ch. t xt
Resol ved conflicted state of 'sandw ch.txt'
$ svn commit -m " Go ahead and use ny sandwi ch, discarding Sally's edits."

Note that svn resolve, unlike most of the other commands we deal with in this chapter, requires that you explicitly list any file-
names that you wish to resolve. In any case, you want to be careful and use svn resolve only when you're certain that you've fixed
the conflict in your file—once the temporary files are removed, Subversion will let you commit the file even if it still contains con-
flict markers.

If you ever get confused while editing the conflicted file, you can always consult the three files that Subversion creates for you in
your working copy—including your file as it was before you updated. You can even use a third-party interactive merging tool to
examine those three files.

Discarding your changes in favor of a newly fetched revision

If you get a conflict and decide that you want to throw out your changes, you can run svn resol ve --accept theirs-
full CONFLI CTED- PATHand Subversion will discard your edits and remove the temporary files:

$ svn update

Updating '."':

Conflict discovered in 'sandw ch.txt'.

Select: (p) postpone, (df) diff-full, (e) edit,
(nmc) mine-conflict, (tc) theirs-conflict,
(s) show all options: p

C sandw ch. t xt

Updated to revision 2.

Summary of conflicts:

Text conflicts: 1

$ |I's sandwi ch.*

sandwi ch.txt sandwi ch.txt.mne sandwi ch.txt.r2 sandwich.txt.rl

$ svn resolve --accept theirs-full sandw ch.txt

Resol ved conflicted state of 'sandw ch.txt'

$

Punting: using svn revert

If you decide that you want to throw out your changes and start your edits again (whether this occurs after a conflict or anytime),
just revert your changes:

$ svn revert sandw ch. t xt
Reverted ' sandw ch. t xt'

$ |I's sandwi ch. *

sandw ch. t xt

Note that when you revert a conflicted file, you don't have to use svn resolve.

32

Basic Usage

Commit Your Changes

Finally! Your edits are finished, you've merged all changes from the server, and you're ready to commit your changes to the repos-
itory.

The svn commit command sends all of your changes to the repository. When you commit a change, you need to supply alog mes-
sage describing your change. Y our log message will be attached to the new revision you create. If your log message is brief, you
may wish to supply it on the command line using the - - nessage (-) option:

$ svn commit -m "Corrected nunber of cheese slices."
Sendi ng sandwi ch. t xt

Transmtting file data .

Conmitted revision 3.

However, if you've been composing your log message in some other text file as you work, you may want to tell Subversion to get
the message from that file by passing its filename asthe value of the- - f i | e (- F) option:

$ svn commit -F | ognsg
Sendi ng sandwi ch. t xt
Transmitting file data .
Committed revision 4.

If you fail to specify either the- - message (-nj or--fil e (- F) option, Subversion will automatically launch your favorite ed-
itor (seetheinformation on edi t or - cd in the section called “Config”) for composing alog message.

If you're in your editor writing a commit message and decide that you want to cancel your commit, you can just quit
_} your editor without saving changes. If you've already saved your commit message, simply delete all the text, save
again, and then abort:

$ svn conmit
Waiting for Emacs...Done

Log nessage unchanged or not specified
(a)bort, (c)ontinue, (e)dit
a

$

The repository doesn't know or care whether your changes make any sense as awhole; it checks only to make sure nobody else has
changed any of the same files that you did when you weren't looking. If somebody has done that, the entire commit will fail with a
message informing you that one or more of your files are out of date:

$ svn commit -m "Add another rule"

Sendi ng rul es.txt

svn: E155011: Commit failed (details follow):

svn: E155011: File '/home/sally/svn-work/sandwi ch.txt' is out of date

33

Basic Usage

(The exact wording of this error message depends on the network protocol and server you're using, but the idea is the same in all
cases.)

At this point, you need to run svn updat e, deal with any merges or conflicts that result, and attempt your commit again.
That covers the basic work cycle for using Subversion. Subversion offers many other features that you can use to manage your re-

pository and working copy, but most of your day-to-day use of Subversion will involve only the commands that we've discussed so
far in this chapter. We will, however, cover afew more commands that you'll use fairly often.

Examining History

Y our Subversion repository islike atime machine. It keeps arecord of every change ever committed and allows you to explore this
history by examining previous versions of files and directories as well as the metadata that accompanies them. With a single Sub-
version command, you can check out the repository (or restore an existing working copy) exactly as it was at any date or revision
number in the past. However, sometimes you just want to peer into the past instead of going into it.
Several commands can provide you with historical data from the repository:
svn diff
Shows line-level details of a particular change
svn log
Shows you broad information: 1og messages with date and author information attached to revisions and which paths changed
in each revision

svn cat
Retrieves afile asit existed in aparticular revision number and displaysit on your screen

svn list
Displaysthefilesin adirectory for any given revision

Examining the Details of Historical Changes

Weve aready seen svn diff before—it displays file differences in unified diff format; we used it to show the local modifications
made to our working copy before committing to the repository.

In fact, it turns out that there are three distinct uses of svn diff:

» Examining local changes
» Comparing your working copy to the repository

» Comparing repository revisions

Examining local changes

Aswe've seen, invoking svn di f f with no options will compare your working files to the cached “ pristine” copiesinthe. svn
area

Basic Usage

$ svn diff
| ndex: rul es. txt

--- rules.txt (revision 3)
+++ rul es.txt (working copy)
@-1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything in noderation
-Chew with your nouth open
+Chew wi th your mouth cl osed
+Li sten when ot hers are speaking

Comparing working copy to repository

If asingle- - r evi si on (- r) number is passed, your working copy is compared to the specified revision in the repository:

$ svn diff -r 3 rules.txt
| ndex: rul es.txt

--- rules.txt (revision 3)
+++ rul es. txt (working copy)
@a@-1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything i n noderation
-Chew with your nouth open
+Chew wi th your mouth cl osed
+Li sten when ot hers are speaking

Comparing repository revisions

If two revision numbers, separated by acolon, are passed via- - r evi si on (- r), the two revisions are directly compared:

$ svn diff -r 2:3 rules.txt
| ndex: rul es.txt

--- rules.txt (revision 2)
+++ rul es.txt (revision 3)
@@-1,4 +1,4 @@
Be kind to others
- Freedom = Chocol ate | ce Cream
+Freedom = Responsibility
Everything in noderation
Chew wi t h your nouth open

A more convenient way of comparing one revision to the previous revision isto usethe - - change (- ¢) option:

35

Basic Usage

$ svn diff -c 3 rules.txt
| ndex: rul es. txt

--- rules.txt (revision 2)
+++ rul es.txt (revision 3)
@@-1,4 +1,4 @@
Be kind to others
- Freedom = Chocol ate | ce Cream
+Freedom = Responsibility
Everything in noderation
$Chevvwith your mouth open

Lastly, you can compare repository revisions even when you don't have a working copy on your local machine, just by including
the appropriate URL on the command line:

$ svn diff -c 5 http://svn.exanpl e. conl repos/exanpl e/trunk/text/rul es.txt

$

Generating a List of Historical Changes

To find information about the history of afile or directory, use the svn log command. svn log will provide you with a record of
who made changes to a file or directory, a what revision it changed, the time and date of that revision, and—if it was
provided—the log message that accompanied the commit;

$ svn |l og

r3 | sally | 2008-05-15 23:09:28 -0500 (Thu, 15 May 2008) | 1 line

Added include |lines and corrected # of cheese slices.

r2 | harry | 2008-05-14 18:43:15 -0500 (Wed, 14 May 2008) | 1 line
Added nai n() nethods.

rl | sally | 2008-05-10 19:50:31 -0500 (Sat, 10 May 2008) | 1 line

Initial inport

Note that the log messages are printed in reverse chronological order by default. If you wish to see a different range of revisionsin
aparticular order or just asingle revision, passthe- - r evi si on (- r) option:

Table2.1. Common log requests

Command Description
svn log -r 5:19 Display logs for revisions 5 through 19 in chronological order

36

Basic Usage

Command Description

svn log -r 19:5 Display logs for revisions 5 through 19 in reverse chronological
order

svnh log -r 8 Display logsfor revision 8 only

Y ou can also examine the log history of asinglefile or directory. For example:

$ svn log foo.c

$ svn log http://foo.com svn/trunk/code/foo.c

These will display log messages only for those revisions in which the working file (or URL) changed.

Why Does svn log Not Show Me What | Just Committed?

If you make a commit and immediately type svn | og with no arguments, you may notice that your most recent commit
doesn't show up in thelist of log messages. Thisis due to a combination of the behavior of svn commit and the default beha-
vior of svn log. First, when you commit changes to the repository, svn bumps only the revision of files (and directories) that
it commits, so usually the parent directory remains at the older revision (See the section called “Updates and commits are
separate” for an explanation of why). svn log then defaults to fetching the history of the directory at its current revision, and
thus you don't see the newly committed changes. The solution here is to either update your working copy or explicitly
provide arevision number to svn log by using the - - r evi si on (- r) option.

If you want even more information about afile or directory, svn log also takesa- - ver bose (- v) option. Because Subversion al-
lows you to move and copy files and directories, it is important to be able to track path changes in the filesystem. So, in verbose
mode, svn log will include alist of changed pathsin arevision in its output:

$ svnlog -r 8 -v

r8 | sally | 2008-05-21 13:19:25 -0500 (Wed, 21 May 2008) | 1 line
Changed pat hs:

M /trunk/ code/ foo.c

M /trunk/ code/ bar. h

A /trunk/ code/ doc/ READVE

Frozzl ed the sub-space wi nch.

svn log also takes a - - qui et (- q) option, which suppresses the body of the log message. When combined with - - ver bose
(- v), it givesjust the names of the changed files.

Why Does svn log Give Me an Empty Response?

After working with Subversion for a bit, most users will come across something like this:

37

Basic Usage

$ svn log -r 2

At first glance, this seems like an error. But recall that while revisions are repository-wide, svn log operates on a path in the
repository. If you supply no path, Subversion uses the current working directory as the default target. As aresult, if you're
operating in a subdirectory of your working copy and attempt to see the log of arevision in which neither that directory nor
any of its children was changed, Subversion will show you an empty log. If you want to see what changed in that revision,
try pointing svn log directly at the topmost URL of your repository, asinsvn log -r 2 ~/.

As of Subversion 1.7, users of the Subversion command-line can aso take advantage of a specia output mode for svn log which
integrates a difference report such as is generated by the svn diff command we introduced earlier. When you invoke svn log with
the - - di f f option, Subversion will append to each revision log chunk in the log report a diff-style difference report. Thisis a
very convenient way to see both the high-level, semantic changes and the line-based modifications of a revision al at the same
time!

Browsing the Repository

Using svn cat and svn list, you can view various revisions of files and directories without changing the working revision of your
working copy. In fact, you don't even need aworking copy to use either one.

svn cat

If you want to examine an earlier version of afile and not necessarily the differences between two files, you can use svn cat:

$ svn cat -r 2 rules.txt

Be kind to others

Freedom = Chocol ate I ce Cream
Everything in noderation

$?hew wi th your nouth open

You can aso redirect the output directly into afile:

$ svn cat -r 2 rules.txt > rules.txt.v2

svn list

The svn list command shows you what files are in a repository directory without actually downloading the files to your local ma-
chine:

$ svn list http://svn.exanpl e.contrepo/ project

38

Basic Usage

READIVE

br anches/
t ags/

t runk/

If you want amore detailed listing, passthe - - ver bose (- v) flag to get output like this:

$ svn list -v http://svn.exanpl e. contf repo/ proj ect

23351 sally Feb 05 13:26 ./

20620 harry 1084 Jul 13 2006 README
23339 harry Feb 04 01:40 branches/
23198 harry Jan 23 17:17 tags/
23351 sally Feb 05 13:26 trunk/

The columns tell you the revision at which the file or directory was last modified, the user who modified it, the size if it is afile,
the date it was last modified, and the item's name.

Thesvn |i st command with ho arguments defaults to the repository URL of the current working directory, not the
local working copy directory. After all, if you want alisting of your local directory, you could use just plain Is (or any
reasonable non-Unixy equivalent).

Fetching Older Repository Snapshots

In addition to all of the previous commands, you can usethe - - r evi si on (- r) option with svn update to take an entire working
copy “back in time”:3

Make the current directory look like it did in ri1729.
$ svn update -r 1729
Updating '.":

$

Many Subversion newcomers attempt to use the preceding svn update example to “undo” committed changes, but

_} this won't work as you can't commit changes that you obtain from backdating a working copy if the changed files
have newer revisions. See the section called “Resurrecting Deleted Items” for a description of how to “undo” a com-
mit.

If you'd prefer to create a whole new working copy from an older snapshot, you can do so by modifying the typical svn checkout
command. Aswith svn update, you can provide the- - r evi si on (- r) option. But for reasons that we cover in the section called
“Peg and Operative Revisions’, you might instead want to specify the target revision as part of Subversion's expanded URL syn-
tax.

3See? We told you that Subversion was a time machine.

39

Basic Usage

Checkout the trunk fromr1729.
$ svn checkout http://svn.exanple.conm svn/repo/trunk@729 trunk-1729

Checkout the current trunk as it |ooked in ri1729.
$ svn checkout http://svn.exanple.com svn/repo/trunk -r 1729 trunk-1729

Lastly, if you're building a release and wish to bundle up your files from Subversion but don't want those pesky . svn directories
in the way, you can use svn export to create alocal copy of all or part of your repository sans. svn directories. The basic syntax
of this subcommand isidentical to that of svn checkout:

Export the trunk fromthe | atest revision.
svn export http://svn.exanpl e.conisvn/repo/trunk trunk-export

Export the trunk fromr1729.
svn export http://svn. exanpl e. com svn/repo/trunk@729 trunk-1729

Export the current trunk as it |ooked in r1729.
svn export http://svn.exanpl e.com svn/repo/trunk -r 1729 trunk-1729

©: UFH:; 6941:5 ©

Sometimes You Just Need to Clean Up

Now that we've covered the day-to-day tasks that you'll frequently use Subversion for, we'll review afew administrative tasks relat-
ing to your working copy.

Disposing of a Working Copy

Subversion doesn't track either the state or the existence of working copies on the server, so there's no server overhead to keeping
working copies around. Likewise, there's no need to let the server know that you're going to delete aworking copy.

If you're likely to use aworking copy again, there's nothing wrong with just leaving it on disk until you're ready to use it again, at
which point all it takesis an svn updateto bring it up to date and ready for use.

However, if you're definitely not going to use aworking copy again, you can safely delete the entire thing using whatever directory
removal capabilities your operating system offers. We recommend that before you do so you run svn st at us and review any
fileslisted in its output that are prefixed with a? to make certain that they're not of importance.

Recovering from an Interruption

When Subversion modifies your working copy—either your files or its own administrative state—it tries to do so as safely as pos-
sible. Before changing the working copy, Subversion logs its intentions in a private “to-do list”, of sorts. Next, it performs those
actions to effect the desired change, holding a lock on the relevant part of the working copy while it works. This prevents other
Subversion clients from accessing the working copy mid-change. Finally, Subversion releasesits lock and cleans up its private to-
do list. Architecturally, thisis similar to ajournaled filesystem. If a Subversion operation is interrupted (e.g, if the processis killed
or if the machine crashes), the private to-do list remains on disk. This alows Subversion to return to that list later to complete any
unfinished operations and return your working copy to a consistent state.

Thisis exactly what svn cleanup does: it searches your working copy and runs any leftover to-do items, removing working copy

40

Basic Usage

locks as it completes those operations. If Subversion ever tells you that some part of your working copy is “locked,” run svn
cleanup to remedy the problem. The svn status command will inform you about administrative locks in the working copy, too, by
displaying an L next to those locked paths:

$ svn status
L sonedir
M sonedi r/ f 0o. ¢
$ svn cl eanup
$ svn status
M sonedi r/ f oo. ¢

Don't confuse these working copy administrative locks with the user-managed locks that Subversion users create when using the
lock-modify-unlock model of concurrent version control; see the sidebar The Three Meanings of “Lock” for clarification.

Dealing with Structural Conflicts

So far, we have only talked about conflicts at the level of file content. When you and your collaborators make overlapping changes
within the same file, Subversion forces you to merge those changes before you can commit.*

But what happens if your collaborators move or delete a file that you are still working on? Maybe there was a miscommunication,
and one person thinks the file should be deleted, while another person still wants to commit changes to the file. Or maybe your col-
laborators did some refactoring, renaming files and moving around directories in the process. If you were still working on these
files, those modifications may need to be applied to the files at their new location. Such conflicts manifest themselves at the direct-
ory tree structure level rather than at the file content level, and are known as tree conflicts.

Tree conflicts prior to Subversion 1.6

Prior to Subversion 1.6, tree conflicts could yield rather unexpected results. For example, if a file was locally modified, but
had been renamed in the repository, running svn update would make Subversion carry out the following steps:

» Check thefile to be renamed for local modifications.

» Deletethefile at its old location, and if it had local modifications, keep an on-disk copy of thefile at the old location. This
on-disk copy now appears as an unversioned file in the working copy.

» Addthefile, asit existsin the repository, at its new location.
When this situation arises, there is the possibility that the user makes a commit without realizing that local modifications
have been left in a now-unversioned file in the working copy, and have not reached the repository. This gets more and more

likely (and tedious) if the number of files affected by this problemislarge.

Since Subversion 1.6, this and other similar situations are flagged as conflicts in the working copy.

Aswith textual conflicts, tree conflicts prevent acommit from being made from the conflicted state, giving the user the opportunity
to examine the state of the working copy for potential problems arising from the tree conflict, and resolving any such problems be-
fore committing.

An Example Tree Conflict

“well, you could mark files containing conflict markers as resolved and commit them, if you really wanted to. But thisis rarely donein practice.

41

Basic Usage

Suppose a software project you were working on currently looked like this:

$ svn list -Rv svn://svn. exanpl e. cont trunk/
6

13 harry Sep 06 10:34 ./

13 harry 27 Sep 06 10: 34 COPYI NG
13 harry 41 Sep 06 10: 32 Makefile
13 harry 53 Sep 06 10: 34 README

13 harry Sep 06 10: 32 code/

13 harry 54 Sep 06 10:32 code/bar.c
13 harry 130 Sep 06 10: 32 code/foo.c

Later, in revision 14, your collaborator Harry renames the file bar . ¢ to baz. c¢. Unfortunately, you don't realize this yet. Asit
turns out, you are busy in your working copy composing a different set of changes, some of which aso involve modifications to
bar. c:

$ svn diff
| ndex: code/foo.c

--- code/foo.c (revision 13)
+++ code/ foo.c (working copy)
@-3,5 +3,5 @@

int main(int argc, char *argv[])

printf("l don't |ike being noved around!\n%", bar());
- return O;
+ return 1,

| ndex: code/bar.c

--- code/bar.c (revision 13)
+++ code/ bar.c (working copy)
@-1,4 +1,4 @@

const char *bar(void)

- return "Me neither!\n";
+ return "Well, | do like being noved around!\n";

You first realize that someone else has changed bar . ¢ when your own commit attempt fails:

$ svn conmit -m"Small fixes"

Sendi ng code/ bar. c

svn: E155011: Commit failed (details follow):

svn: E155011: File '/hone/svn/project/code/bar.c' is out of date
;vn: E160013: File not found: transaction '14-e', path '/code/bar.c'

At this point, you need to run svn update. Besides bringing our working copy up to date so that you can see Harry's changes, this
also flags atree conflict so you have the opportunity to evaluate and properly resolve it.

42

Basic Usage

$ svn update

Updating '."':
C code/ bar.c
A code/ baz. c

U Makefil e

Updated to revision 14,

Summary of conflicts:
Tree conflicts: 1

$

In its output, svn update signifies tree conflicts using a capital C in the fourth output column. svn status reveals additional details
of the conflict:

$ svn status

M code/ foo. ¢
A + C code/bar.c
> | ocal edit, incom ng del ete upon update

Summary of conflicts:
Tree conflicts: 1

Note how bar . ¢ is automatically scheduled for re-addition in your working copy, which simplifies things in case you want to
keep thefile.

Because amove in Subversion isimplemented as a copy operation followed by a delete operation, and these two operations cannot
be easily related to one another during an update, all Subversion can warn you about is an incoming delete operation on a locally
modified file. This delete operation may be part of a move, or it could be a genuine delete operation. Determining exactly what se-
mantic change was made to the repository is important—you want to know just how your own edits fit into the overall tragjectory of
the project. So read log messages, talk to your collaborators, study the line-based differences—do whatever you must do—to de-
termine your best course of action.

In this case, Harry's commit log message tells you what you need to know.

$ svn log -rl1l4 ™ trunk

ri4 | harry | 2011-09-06 10:38:17 -0400 (Tue, 06 Sep 2011) | 1 line
Changed pat hs:

M / Makefile

D /code/ bar.c

A /code/ baz.c (from/code/bar.c: 13)

Renane bar.c to baz.c, and adjust Makefile accordingly.

svn info shows the URLSs of the items involved in the conflict. The left URL shows the source of the loca side of the conflict,
while the right URL shows the source of the incoming side of the conflict. These URLSs indicate where you should start searching
the repository's history for the change which conflicts with your local change.

43

Basic Usage

$ svn info code/bar.c | tail -n 4

Tree conflict: local edit, incomng del ete upon update
Source left: (file) ~/trunk/code/bar.c@
Source right: (none) ~/trunk/code/bar.c@®

bar . ¢ isnow said to be the victim of atree conflict. It cannot be committed until the conflict is resolved:

$ svn conmmit -m"Small fixes"

svn: E155015: Commit failed (details follow):

svn: E155015: Aborting conmt: '/hone/svn/project/code/bar.c' remains in confl
i ct

$

To resolve this conflict, you must either agree or disagree with the move that Harry made.

If you agree with the move, your bar . ¢ is superfluous. You'll want to delete it and mark the tree conflict as resolved. But wait:
you made changes to that file! Before deleting bar . ¢, you need to decide if the changes you made to it need to be applied else-
where, for example to the new baz. c file where all of bar. c's code now lives. Let's assume that your changes do need to
“follow the move’. Subversion isn't smart enough to do thiswork for you5, S0 you need to migrate your changes manually.

In our example, you could manually re-make your changeto bar . ¢ pretty easily—it was, after all, asingle-line change. That's not
always the case, though, so we'll show a more scalable approach. Welll first use svn diff to create a patch file. Then we'll edit the
headers of that patch file to point to the new name of our renamed file. Finally, we re-apply the modified patch to our working

copy.

$ svn diff code/ bar.c > PATCHFI LE
$ cat PATCHFI LE
| ndex: code/bar.c

--- code/bar.c (working copy)
+++ code/ bar.c (working copy)
@_ 1! 4 +1! 4 @

const char *bar (void)

- return "Me neither!\n";
+ return "Well, | do |like being noved around!\n";

}
$ ### Edit PATCHFILE to refer to code/baz.c instead of code/bar.c
$ cat PATCHFI LE
| ndex: code/ baz.c

--- code/baz.c (working copy)
+++ code/ baz.c (working copy)
@_ 1! 4 +1! 4 @

const char *bar (void)

- return "Me neither!\n";
+ return "Well, | do |like being noved around!\n";

}

5In some cases, Subversion 1.5 and 1.6 would actually handle thisfor you, but this somewhat hit-or-miss functionality was removed in Subversion 1.7.

a4

Basic Usage

$ svn patch PATCHFI LE
] code/ baz. c
$

Now that the changes you originally made to bar . ¢ have been successfully reproduced in baz. c, you can delete bar . ¢ and re-
solve the conflict, instructing the resolution logic to accept what is currently in the working copy as the desired result.

$ svn delete --force code/bar.c

D code/ bar. c

$ svn resol ve --accept=worki ng code/bar.c
Resol ved conflicted state of 'code/bar.c
$ svn status

M code/ f 0o. c
M code/ baz. c
$ svn diff

| ndex: code/foo.c

--- code/foo.c (revision 14)
+++ code/foo.c (working copy)
@-3,5 +3,5 @@

int main(int argc, char *argv[])

printf("l don't like being noved around!\n%", bar());
- return O;
+ return 1,

}
| ndex: code/baz.c

--- code/baz.c (revision 14)
+++ code/ baz.c (working copy)
@ - 1! 4 +1! 4 @

const char *bar(voi d)

- return "Me neither!\n";
+ return "Well, | do like being nmoved around!\n";

But what if you do not agree with the move? Well, in that case, you can delete baz. ¢ instead, after making sure any changes
made to it after it was renamed are either preserved or not worth keeping. (Do not forget to also revert the changes Harry made to
Makefi | e.) Since bar . c isaready scheduled for re-addition, there is nothing else left to do, and the conflict can be marked re-
solved:

$ svn delete --force code/ baz.c

D code/ baz. c

$ svn resolve --accept=working code/bar.c
Resol ved conflicted state of 'code/bar.c
$ svn status

M code/ f 0o. c
A + code/ bar.c
D code/ baz. c
M Makefil e

$ svn diff

I ndex: code/foo.c

45

Basic Usage

.-~ code/foo.c (revision 14)
+++ code/ foo.c (working copy)
@ - 3! 5 +3! 5 @

int main(int argc, char *argv[])

printf("l don't like being noved around!\n%", bar());
- return O;
+ return 1;

}
I ndex: code/bar.c

--- code/bar.c (revision 14)
+++ code/ bar.c (working copy)
@a@-1,4 +1,4 @@

const char *bar(voi d)

- return "Me neither!\n";
+ return "Well, | do like being moved around!\n";

}
| ndex: code/baz.c

--- code/baz.c (revision 14)
+++ code/ baz.c (working copy)
@_ 1! 4 +0! 0 @

-const char *bar(void)

- return "Me neither!\n";

-}
| ndex: Makefil e

--- Makefile (revision 14)

+++ Makefile (working copy)

@-1,2 +1,2 @@

foo:

- $(CO -0 $@code/foo.c codel/baz.c
+ $(CCO -0 $@code/foo.c codel/bar.c

Y ou've now resolved your first tree conflict! Y ou can commit your changes and tell Harry during tea break about all the extra work
he caused for you.

Summary

Now we've covered most of the Subversion client commands. Notable exceptions are those dealing with branching and merging
(see Chapter 4, Branching and Merging) and properties (see the section called “ Properties”). However, you may want to take a mo-
ment to skim through Chapter 9, Subversion Complete Reference to get an idea of all the different commands that Subversion
has—and how you can use them to make your work easier.

46

Chapter 3. Advanced Topics

If you've been reading this book chapter by chapter, from start to finish, you should by now have acquired enough knowledge to
use the Subversion client to perform the most common version control operations. Y ou understand how to check out a working
copy from a Subversion repository. Y ou are comfortable with submitting and receiving changes using the svn commit and svn up-
date operations. You've probably even developed a reflex that causes you to run the svn status command almost unconsciously.
For all intents and purposes, you are ready to use Subversion in atypical environment.

But the Subversion feature set doesn't stop at “common version control operations.” It has other bits of functionality besides just
communicating file and directory changesto and from a central repository.

This chapter highlights some of Subversion's features that, while important, may not be part of the typical user'sdaily routine. It as-
sumes that you are familiar with Subversion's basic file and directory versioning capabilities. If you aren't, you'll want to first read
Chapter 1, Fundamental Concepts and Chapter 2, Basic Usage. Once you've mastered those basics and consumed this chapter,
you'll be a Subversion power user!

Revision Specifiers

As we described in the section called “Revisions’, revision numbers in Subversion are pretty straightforward—integers that keep
getting larger as you commit more changes to your versioned data. Still, it doesn't take long before you can no longer remember
exactly what happened in each and every revision. Fortunately, the typical Subversion workflow doesn't often demand that you
supply arbitrary revisions to the Subversion operations you perform. For operations that do require a revision specifier, you gener-
ally supply arevision number that you saw in a commit email, in the output of some other Subversion operation, or in some other
context that would give meaning to that particular number.

Referring to revision numbers with an “r ” prefix (r 314, for example) is an established practice in Subversion com-
/ munities, and is both supported and encouraged by many Subversion-related tools. In most places where you would
specify abare revision number on the command line, you may also use the r NNN syntax.

But occasionally, you need to pinpoint a moment in time for which you don't already have a revision number memorized or handy.
So besides the integer revision numbers, svn allows as input some additional forms of revision specifiers. revision keywords and
revision dates.

The various forms of Subversion revision specifiers can be mixed and matched when used to specify revision ranges.

/ For example, you can use -r REV1: REV2 where REV1 is arevision keyword and REV2 is a revision number, or
where REV1 is a date and REV2 is a revision keyword, and so on. The individual revision specifiers are independ-
ently evaluated, so you can put whatever you want on the opposite sides of that colon.

Revision Keywords

The Subversion client understands a number of revision keywords. These keywords can be used instead of integer arguments to the
--revi sion (- r) option, and are resolved into specific revision numbers by Subversion:
HEAD
The latest (or “youngest”) revision in the repository.
BASE

The revision number of an item in a working copy. If the item has been locally modified, this refers to the way the item ap-
pears without those local modifications.

47

Advanced Topics

COW TTED

The most recent revision prior to, or equal to, BASE, in which an item changed.

PREV

The revision immediately before the last revision in which an item changed. Technically, this boils down to COYW TTED-1.

As can be derived from their descriptions, the PREV, BASE, and COVM TTED revision keywords are used only when referring to a
working copy path—they don't apply to repository URLS. HEAD, on the other hand, can be used in conjunction with both of these
path types.

Here are some examples of revision keywords in action:

HHH HHE HHEHL HHOE HHEHL AL

svn diff -r PREV: COW TTED f 0o0. ¢
shows the last change committed to foo.c

svn log -r HEAD
shows | og nmessage for the |latest repository conmt

svn diff -r HEAD
conpares your working copy (with all of its |ocal changes) to the
| atest version of that tree in the repository

svn diff -r BASE: HEAD f 0o0. c
conpares the unnodified version of foo.c with the |latest version of
foo.c in the repository

svn | og -r BASE: HEAD
shows all commit logs for the current versioned directory since you
| ast updated

svn update -r PREV foo.c
rewi nds the | ast change on foo.c, decreasing foo.c's working revision

svn diff -r BASE: 14 foo.c
conpares the unnodified version of foo.c with the way foo.c | ooked
in revision 14

Revision Dates

Revision numbers reveal nothing about the world outside the version control system, but sometimes you need to correlate a mo-
ment in real time with a moment in version history. To facilitate this, the - - r evi si on (- r) option can also accept as input date
specifiers wrapped in curly braces ({ and }). Subversion accepts the standard 1SO-8601 date and time formats, plus a few others.
Here are some examples.

AAPAPAPAAPAP

svn checkout -r {2006-02-17}

svn checkout -r {15: 30}

svn checkout -r {15:30:00.200000}

svn checkout -r {"2006-02-17 15:30"}

svn checkout -r {"2006-02-17 15:30 +0230"}
svn checkout -r {2006-02-17T15: 30}

svn checkout -r {2006-02-17T15: 307}

svn checkout -r {2006-02-17T15: 30- 04: 00}

48

Advanced Topics

$ svn checkout -r {20060217T1530}
$ svn checkout -r {20060217T1530Z}
$ svn checkout -r {20060217T1530- 0500}

cluded as part of revision date specifiers. Certain shells may also take issue with the unescaped use of curly braces,

<> Keep in mind that most shells will require you to, at a minimum, quote or otherwise escape any spaces that are in-
/ too. Consult your shell's documentation for the requirements specific to your environment.

When you specify a date, Subversion resolves that date to the most recent revision of the repository as of that date, and then contin-
ues to operate against that resolved revision number:

$ svn log -r {2006-11-28}

ri2 | ira | 2006-11-27 12:31:51 -0600 (Mon, 27 Nov 2006) | 6 lines

Is Subversion a Day Early?

If you specify a single date as a revision without specifying a time of day (for example 2006- 11- 27), you may think that
Subversion should give you the last revision that took place on the 27th of November. Instead, you'll get back a revision
from the 26th, or even earlier. Remember that Subversion will find the most recent revision of the repository as of the date
you give. If you give a date without a timestamp, such as2006- 11- 27, Subversion assumes a time of 00:00:00, so looking
for the most recent revision won't return anything on the 27th.

If you want to include the 27th in your search, you can either specify the 27th with thetime ({ " 2006- 11- 27 23: 59"}),
or just specify the next day ({ 2006- 11- 28}).

You can aso use arange of dates. Subversion will find all revisions between both dates, inclusive:

$ svn log -r {2006-11-20}:{2006- 11- 29}

Since the timestamp of a revision is stored as an unversioned, modifiable property of the revision (see the section
called “Properties’), revision timestamps can be changed to represent complete falsifications of true chronology, or
even removed altogether. Subversion's ability to correctly convert revision dates into real revision numbers depends
on revision datestamps maintaining a sequential ordering—the younger the revision, the younger its timestamp. If this
ordering isn't maintained, you will likely find that trying to use dates to specify revision ranges in your repository
doesn't always return the data you might have expected.

Peg and Operative Revisions

We copy, move, rename, and completely replace files and directories on our computers all the time. And your version control sys-

49

Advanced Topics

tem shouldn't get in the way of your doing these things with your version-controlled files and directories, either. Subversion's file
management support is quite liberating, affording almost as much flexibility for versioned files as you'd expect when manipulating
your unversioned ones. But that flexibility means that across the lifetime of your repository, a given versioned object might have
many paths, and a given path might represent several entirely different versioned objects. This introduces a certain level of com-
plexity to your interactions with those paths and objects.

Subversion is pretty smart about noticing when an object's version history includes such “changes of address.” For example, if you
ask for the revision history log of a particular file that was renamed last week, Subversion happily provides al those logs—the re-
vision in which the rename itself happened, plus the logs of relevant revisions both before and after that rename. So, most of the
time, you don't even have to think about such things. But occasionally, Subversion needs your help to clear up ambiguities.

The simplest example of this occurs when a directory or fileis deleted from version control, and then a new directory or fileis cre-
ated with the same name and added to version control. The thing you deleted and the thing you later added aren't the same thing.
They merely happen to have had the same path—/ t r unk/ obj ect , for example. What, then, does it mean to ask Subversion
about the history of / t r unk/ obj ect ? Are you asking about the thing currently at that location, or the old thing you deleted from
that location? Are you asking about the operations that have happened to all the objects that have ever lived at that path? Subver-
sion needs a hint about what you really want.

And thanks to moves, versioned object history can get far more twisted than even that. For example, you might have a directory
named concept , containing some nascent software project you've been toying with. Eventually, though, that project matures to
the point that the idea seems to actually have some wings, so you do the unthinkable and decide to give the project a name.! Let's
say you called your software Frabnaggilywort. At this point, it makes sense to rename the directory to reflect the project's new
name, so concept isrenamed to f r abnaggi | ywor t . Life goes on, Frabnaggilywort releases a 1.0 version and is downloaded
and used daily by hordes of people aiming to improve their lives.

It'sanice story, really, but it doesn't end there. Entrepreneur that you are, you've already got another think in the tank. So you make
anew directory, concept , and the cycle begins again. In fact, the cycle begins again many times over the years, each time start-
ing with that old concept directory, then sometimes seeing that directory renamed as the idea cures, sometimes seeing it del eted
when you scrap the idea. Or, to get really sick, maybe you rename concept to something else for a while, but later rename the
thing back to concept for some reason.

In scenarios like these, attempting to instruct Subversion to work with these reused paths can be alittle like instructing a motorist
in Chicago's West Suburbs to drive east down Roosevelt Road and turn left onto Main Street. In a mere 20 minutes, you can cross
“Main Street” in Wheaton, Glen Ellyn, and Lombard. And no, they aren't the same street. Our motorist—and our Subver-
sion—need alittle more detail to do the right thing.

Fortunately, Subversion allows you to tell it exactly which Main Street you meant. The mechanism used is called a peg revision,
and you provide these to Subversion for the sole purpose of identifying unique lines of history. Because at most one versioned ob-
ject may occupy a path at any given time—or, more precisely, in any one revision—the combination of a path and a peg revision is
all that is needed to unambiguously identify a specific line of history. Peg revisions are specified to the Subversion command-line
client using at syntax, so called because the syntax involves appending an “at sign” (@ and the peg revision to the end of the path
with which the revision is associated.

But what of the - - r evi si on (- r) of which we've spoken so much in this book? That revision (or set of revisions) is called the
operative revision (or operative revision range). Once a particular line of history has been identified using a path and peg revision,
Subversion performs the requested operation usi ng the operative revision(s). To map this to our Chicagoland streets analogy, if we
are told to go to 606 N. Main Street in Wheaton,” we can think of “Main Street” as our path and “Wheaton” as our peg revision.
These two pieces of information identify a unique path that can be traveled (north or south on Main Street), and they keep us from
traveling up and down the wrong Main Street in search of our destination. Now we throw in “606 N.” as our operative revision of
sorts, and we know exactly where to go.

The Peg Revision Algorithm

The Subversion command-line client performs the peg revision algorithm any time it needs to resolve possible ambiguitiesin

ey ou're not supposed to name it. Once you name it, you start getting attached to it.”—Mike Wazowski
2606 N. Main Street, Wheaton, Ilinois, is the home of the Wheaton History Center. It seemed appropriate....

50

Advanced Topics

the paths and revisions provided to it. Here's an example of such an invocation:

$ svn conmand -r OPERATI VE- REV it em@EG REV

If OPERATI VE- REV isolder than PEG REV, the algorithm is as follows:

1. Locatei t emin the revision identified by PEG- REV. There can be only one such object.
2. Trace the object's history backwards (through any possible renames) to its ancestor in the revision OPERATI VE- REV.

3. Perform the requested action on that ancestor, wherever it islocated, or whatever its name might be or might have been at
that time.

But what if OPERATI VE- REV is younger than PEG REV? Well, that adds some complexity to the theoretical problem of
locating the path in OPERATI VE- REV, because the path's history could have forked multiple times (thanks to copy opera-
tions) between PEG- REV and OPERATI VE- REV. And that's not all—Subversion doesn't store enough information to per-
formantly trace an object's history forward, anyway. So the algorithm is alittle different:

1. Locatei t emin therevision identified by OPERATI VE- REV. There can be only one such object.
2. Tracethe object's history backward (through any possible renames) to its ancestor in the revision PEG- REV.

3. Verify that the object's location (path-wise) in PEG- REV is the same as it is in OPERATI VE- REV. If that's the case, at
least the two locations are known to be directly related, so perform the requested action on the location in OPERATI VE-
REV. Otherwise, relatedness was not established, so error out with a loud complaint that no viable location was found.
(Someday, we expect that Subversion will be able to handle this usage scenario with more flexibility and grace.)

Note that even when you don't explicitly supply a peg revision or operative revision, they are still present. For your conveni-
ence, the default peg revision is BASE for working copy items and HEAD for repository URLs. And when no operative revi-
sionis provided, it defaults to being the same revision as the peg revision.

Say that long ago we created our repository, and in revision 1 we added our first concept directory, plusan | DEA filein that dir-
ectory talking about the concept. After several revisions in which real code was added and tweaked, we, in revision 20, renamed
this directory to f r abnaggi | ywor t . By revision 27, we had a new concept, a new concept directory to hold it, and a new
| DEA fileto describeit. And then five years and thousands of revisions flew by, just like they would in any good romance story.

Now, years later, we wonder what the | DEA file looked like back in revision 1. But Subversion needs to know whether we are ask-
ing about how the current file looked back in revision 1, or whether we are asking for the contents of whatever file lived at con-
cept s/ | DEA in revision 1. Certainly those questions have different answers, and because of peg revisions, you can ask those
guestions. To find out how the current | DEA file looked in that old revision, you run:

$ svn cat -r 1 concept/I|DEA
svn: E195012: Unable to find repository location for 'concept/IDEA in revision 1

Of courseg, in this example, the current | DEA file didn't exist yet in revision 1, so Subversion gives an error. The previous com-
mand is shorthand for alonger notation which explicitly lists a peg revision. The expanded notation is:

51

Advanced Topics

$ svn cat -r 1 concept/| DEA@ASE
svn: E195012: Unable to find repository |location for 'concept/IDEA in revision 1

And when executed, it has the expected results.

The perceptive reader is probably wondering at this point whether the peg revision syntax causes problems for working copy paths
or URLsthat actually have at signsin them. After all, how does svh know whether news @1 is the name of adirectory in my tree
or just asyntax for “revision 11 of news”? Thankfully, while svn will always assume the latter, thereis atrivial workaround. Y ou
need only append an at sign to the end of the path, such as news @ 1@ svn cares only about the last at sign in the argument, and it
isnot considered illegal to omit a literal peg revision specifier after that at sign. This workaround even applies to paths that end in
an at sign—you would usef i | enane@@to talk about afilenamedfi | enane@

Let's ask the other question, then—in revision 1, what were the contents of whatever file occupied the address concept s/ | DEA
at the time? We'll use an explicit peg revision to help us out.

$ svn cat concept/| DEA@

The idea behind this project is to cone up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky

busi ness, and doing it incorrectly can have serious ramfications, so
we need to enpl oy over-the-top input validation and data verification
nmechani sns.

Notice that we didn't provide an operative revision this time. That's because when no operative revision is specified, Subversion as-
sumes a default operative revision that's the same as the peg revision.

As you can see, the output from our operation appears to be correct. The text even mentions frabbing naggily worts, so thisis al-
most certainly the file that describes the software now called Frabnaggilywort. In fact, we can verify this using the combination of
an explicit peg revision and explicit operative revision. We know that in HEAD, the Frabnaggilywort project is located in the
frabnaggi | ywort directory. So we specify that we want to see how the line of history identified in HEAD as the path f r abn-

aggi | ywor t/ | DEA looked in revision 1.

$ svn cat -r 1 frabnaggil ywort/| DEAGHEAD

The idea behind this project is to cone up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky

busi ness, and doing it incorrectly can have serious ram fications, so
we need to enploy over-the-top input validation and data verification
nmechani sns.

And the peg and operative revisions need not be so trivial, either. For example, say f r abnaggi | ywort had been deleted from
HEAD, but we know it existed in revision 20, and we want to see the diffs for its | DEA file between revisions 4 and 10. We can use
peg revision 20 in conjunction with the URL that would have held Frabnaggilywort's | DEA file in revision 20, and then use 4 and
10 as our operative revision range.

$ svn diff -r 4:10 http://svn.red-bean. coni projects/frabnaggi | ywort/| DEA@QO
I ndex: frabnaggil ywort/| DEA

--- frabnaggi |l ywort/ | DEA (revision 4)

52

Advanced Topics

+++ frabnaggil ywort/ |1 DEA (revision 10)

@-1,5 +1,5 @@

-The idea behind this project is to cone up with a piece of software
-that can frab a naggily wort. Frabbing naggily worts is tricky

-busi ness, and doing it incorrectly can have serious ramfications, so
-we need to enploy over-the-top input validation and data verification
- mechani sis.

+The i dea behind this project is to cone up with a piece of
+client-server software that can renotely frab a naggily wort.
+Frabbi ng naggily worts is tricky business, and doing it incorrectly
+can have serious ranifications, so we need to enploy over-the-top

+i nput validation and data verification nmechanisns.

Fortunately, most folks aren't faced with such complex situations. But when you are, remember that peg revisions are that extra
hint Subversion needs to clear up ambiguity.

Properties

We've already covered in detail how Subversion stores and retrieves various versions of files and directories in its repository.
Whole chapters have been devoted to this most fundamental piece of functionality provided by the tool. And if the versioning sup-
port stopped there, Subversion would still be complete from a version control perspective.

But it doesn't stop there.

In addition to versioning your directories and files, Subversion provides interfaces for adding, modifying, and removing versioned
metadata on each of your versioned directories and files. We refer to this metadata as properties, and they can be thought of as
two-column tables that map property names to arbitrary values attached to each item in your working copy. Generally speaking, the
names and values of the properties can be whatever you want them to be, with the constraint that the names must contain only AS-
Cll characters. And the best part about these properties is that they, too, are versioned, just like the textual contents of your files.
Y ou can modify, commit, and revert property changes as easily as you can file content changes. And the sending and receiving of
property changes occurs as part of your typical commit and update operations—you don't have to change your basic processes to
accommodate them.

ful of such propertiesin use today, you should avoid creating custom properties for your own needs whose names be-
gin with this prefix. Otherwise, you run the risk that a future release of Subversion will grow support for a feature or
behavior driven by a property of the same name but with perhaps an entirely different interpretation.

<> Subversion has reserved the set of properties whose names begin with svn: asits own. While there are only a hand-

Properties show up elsewhere in Subversion, too. Just as files and directories may have arbitrary property names and values at-
tached to them, each revision as awhole may have arbitrary properties attached to it. The same constraints apply—human-readable
names and anything-you-want binary values. The main difference is that revision properties are not versioned. In other words, if
you change the value of, or delete, arevision property, there's no way, within the scope of Subversion's functionality, to recover the
previous value.

Subversion has no particular policy regarding the use of properties. It asks only that you do not use property nhames that begin with
the prefix svn: as that's the namespace that it sets aside for its own use. And Subversion does, in fact, use properties—both the
versioned and unversioned variety. Certain versioned properties have special meaning or effects when found on files and director-
ies, or they house a particular bit of information about the revisions on which they are found. Certain revision properties are auto-
matically attached to revisions by Subversion's commit process, and they carry information about the revision. Most of these prop-
erties are mentioned elsewhere in this or other chapters as part of the more general topics to which they are related. For an exhaust-
ive list of Subversion's predefined properties, see the section called “Subversion Properties’ in Chapter 9, Subversion Complete
Reference.

53

Advanced Topics

it does not presume thereafter the existence of those properties, and neither should you or the tools you use to interact
with your repository. Revision properties can be deleted programmatically or viathe client (if allowed by the reposit-
ory hooks) without damaging Subversion's ability to function. So, when writing scripts which operate on your Sub-
version repository data, do not make the mistake of assuming that any particular revision property exists on a revi-
sion.

<> While Subversion automatically attaches properties (svn: dat e, svn: aut hor, svn: | og, and so on) to revisions,

In this section, we will examine the utility—both to users of Subversion and to Subversion itself—of property support. You'll learn
about the property-related svn subcommands and how property modifications affect your normal Subversion workflow.

Why Properties?

Just as Subversion uses properties to store extra information about the files, directories, and revisions that it contains, you might
also find properties to be of similar use. You might find it useful to have a place close to your versioned data to hang custom
metadata about that data.

Say you wish to design a web site that houses many digital photos and displays them with captions and a datestamp. Now, your set
of photos is constantly changing, so you'd like to have as much of this site automated as possible. These photos can be quite large,
so asis common with sites of this nature, you want to provide smaller thumbnail images to your site visitors.

Now, you can get this functionality using traditional files. That is, you can have your i nragel23.jpg and an i m
agel23-t hunbnail . j pg side by side in a directory. Or if you want to keep the filenames the same, you might have your
thumbnails in a different directory, such ast hunbnai | s/ i magel23. j pg. You can also store your captions and datestampsin
asimilar fashion, again separated from the original image file. But the problem here is that your collection of files multiplies with
each new photo added to the site.

Now consider the same web site deployed in away that makes use of Subversion's file properties. Imagine having a single image
file, i magel23. j pg, with properties set on that file that are named capt i on, dat est anp, and even t hunbnai | . Now your
working copy directory looks much more manageable—in fact, it looks to the casual browser like there are nothing but image files
in it. But your automation scripts know better. They know that they can use svn (or better yet, they can use the Subversion lan-
guage bindings—see the section called “Using the APIS") to dig out the extra information that your site needs to display without
having to read an index file or play path manipulation games.

optimally carry large property values or large sets of properties on a given file or directory. Subversion commonly
holds all the property names and values associated with a single item in memory at the same time, which can cause
detrimental performance or failed operations when extremely large property sets are used.

<> While Subversion places few restrictions on the names and values you use for properties, it has not been designed to

Custom revision properties are also frequently used. One common such use is a property whose value contains an issue tracker ID
with which the revision is associated, perhaps because the change made in that revision fixes a bug filed in the tracker issue with
that 1D. Other uses include hanging more friendly names on the revision—it might be hard to remember that revision 1935 was a
fully tested revision. But if there's, say, at est - r esul t s property on that revision with the valueal | passi ng, that's mean-
ingful information to have. And Subversion allows you to easily do this viathe - - wi t h- r evpr op option of the svn commit
command:

$ svn commit -m"Fix up the last remaining known regression bug." \
--with-revprop "test-results=all passing"

Sendi ng lib/crit_bits.c

Transmitting file data .

gomn’ tted revision 912.

Advanced Topics

Searchability (or, Why Not Properties)

For all their utility, Subversion properties—or, more accurately, the available interfaces to them—have a major shortcoming:
whileit is asimple matter to set a custom property, finding that property later is awhole different ball of wax.

Trying to locate a custom revision property generally involves performing alinear walk across all the revisions of the repos-
itory, asking of each revision, “Do you have the property I'm looking for?" Usethe--wi t h- al | - r evpr ops option with
the svn log command's XML output mode to facilitate this search. Notice the presence of the custom revision property
t estresul t s inthefollowing output:

$ svn log --with-all-revprops --xm lib/crit_bits.c
<?xm version="1.0"?>
<l og>
<l ogentry
revision="912">
<aut hor >harry</ aut hor >
<dat e>2011- 07-29T14: 47: 41. 1698947</ dat e>
<msg>Fi x up the last remaining known regression bug. </ nsg>
<revprops>
<property
nane="t estresul ts">al |l passi ng</property>
</ revprops>
</l ogentry>

=

Trying to find a custom versioned property is painful, too, and often involves a recursive svn propget across an entire work-
ing copy. In your situation, that might not be as bad as a linear walk across all revisions. But it certainly leaves much to be
desired in terms of both performance and likelihood of success, especialy if the scope of your search would require a work-
ing copy from the root of your repository.

For this reason, you might choose—especially in the revision property use case—to simply add your metadata to the revi-

sion's log message using some policy-driven (and perhaps programmatically enforced) formatting that is designed to be
quickly parsed from the output of svn log. It is quite common to see the following in Subversion log messages:

| ssue(s): 122376, 1271919
Revi ewed by: sally

This fixes a nasty segfault in the wort frabbing process

But here again lies some misfortune. Subversion doesn't yet provide a log message templating mechanism, which would go a
long way toward helping users be consistent with the formatting of their log-embedded revision metadata.

Manipulating Properties

The svn program affords a few ways to add or modify file and directory properties. For properties with short, human-readable val-
ues, perhaps the simplest way to add a new property is to specify the property name and value on the command line of the svn
propset subcommand:

55

Advanced Topics

$ svn propset copyright '(c) 2006 Red-Bean Software' cal c/button.c
property 'copyright' set on 'calc/button.c’
$

But we've been touting the flexibility that Subversion offers for your property values. And if you are planning to have a multiline
textual, or even binary, property value, you probably do not want to supply that value on the command line. So the svn propset
subcommand takesa- - f i | e (- F) option for specifying the name of afile that contains the new property value.

$ svn propset license -F /path/to/LI CENSE cal c/button.c
property 'license' set on 'calc/button.c'
$

There are some restrictions on the names you can use for properties. A property name must start with aletter, acolon (:), or an un-
derscore (_); after that, you can also use digits, hyphens (-), and periods (.).3

In addition to the propset command, the svn program supplies the propedit command. This command uses the configured editor
program (see the section called “ Config”) to add or modify properties. When you run the command, svn invokes your editor pro-
gram on atemporary file that contains the current value of the property (or that is empty, if you are adding a new property). Then,
you just modify that value in your editor program until it represents the new value you wish to store for the property, save the tem-
porary file, and then exit the editor program. If Subversion detects that you've actually changed the existing value of the property, it
will accept that as the new property value. If you exit your editor without making any changes, no property modification will oc-
cur:

$ svn propedit copyright calc/button.c ### exit the editor without changes
No changes to property 'copyright' on 'calc/button.c'
$

We should note that, as with other svn subcommands, those related to properties can act on multiple paths at once. This enables
you to modify properties on whole sets of files with a single command. For example, we could have done the following:

$ svn propset copyright '(c) 2006 Red-Bean Software' calc/*
property 'copyright' set on 'cal c/ Makefile'

property 'copyright' set on 'calc/button.c'

property 'copyright' set on 'calc/integer.c'

$

All of this property adding and editing isn't really very useful if you can't easily get the stored property value. So the svn program
supplies two subcommands for displaying the names and values of properties stored on files and directories. The svn proplist com-
mand will list the names of properties that exist on a path. Once you know the names of the properties on the node, you can request
their values individually using svn propget. This command will, given a property name and a path (or set of paths), print the value
of the property to the standard output stream.

81 you're familiar with XML, thisis pretty much the ASCI| subset of the syntax for XML “Name”.
56

Advanced Topics

$ svn proplist calc/button.c
Properties on 'calc/button.c’

copyri ght

license
$ svn propget copyright calc/button.c
(c) 2006 Red-Bean Software

There's even a variation of the proplist command that will list both the name and the value for al of the properties. Simply supply
the- - ver bose (- v) option.

$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyri ght
(c) 2006 Red-Bean Software
i cense

Copyright (c) 2006 Red-Bean Software. All rights reserved.

Redi stribution and use in source and binary forns, with or w thout
nodi fication, are pernmitted provided that the follow ng conditions
are net:

1. Redistributions of source code must retain the above copyri ght
notice, this list of conditions, and the recipe for Fitz's fanmous
red- beans-and-ri ce.

The last property-related subcommand is propdel. Since Subversion allows you to store properties with empty values, you can't re-
move a property altogether using svn propedit or svn propset. For example, this command will not yield the desired effect:

$ svn propset license "" calc/button.c
property 'license' set on 'calc/button.c
$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyri ght
(c) 2006 Red-Bean Software
i cense

Y ou need to use the propdel subcommand to delete properties altogether. The syntax is similar to the other property commands:

$ svn propdel license calc/button.c
property 'license' deleted from'calc/button.c'.
$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyri ght
(c) 2006 Red-Bean Software

57

Advanced Topics

Remember those unversioned revision properties? You can modify those, too, using the same svn subcommands that we just de-
scribed. Simply add the - - r evpr op command-line parameter and specify the revision whose property you wish to modify. Since
revisions are global, you don't need to specify atarget path to these property-related commands so long as you are positioned in a
working copy of the repository whose revision property you wish to modify. Otherwise, you can simply provide the URL of any
path in the repository of interest (including the repository's root URL). For example, you might want to replace the commit log
message of an existing revision.* If your current working directory is part of aworking copy of your repository, you can simply run
the svn propset command with no target path:

$ svn propset svn:log "* button.c: Fix a conpiler warning." -rl1ll --revprop
property 'svn:log' set on repository revision '11'
$

But even if you haven't checked out a working copy from that repository, you can still effect the property change by providing the
repository'sroot URL :

$ svn propset svn:log "* button.c: Fix a conpiler warning." -rl1l --revprop \
http://svn. exanpl e. coni r epos/ pr oj ect

property 'svn:log' set on repository revision '11'

$

Note that the ability to modify these unversioned properties must be explicitly added by the repository administrator (see the sec-
tion called “Commit Log Message Correction”). That's because the properties aren't versioned, so you run the risk of losing in-
formation if you aren't careful with your edits. The repository administrator can set up methods to protect against this loss, and by
default, modification of unversioned propertiesis disabled.

Users should, where possible, use svn propedit instead of svn propset. While the end result of the commands is

_') identical, the former will allow them to see the current value of the property that they are about to change, which
helps them to verify that they are, in fact, making the change they think they are making. Thisis especially true when
modifying unversioned revision properties. Also, it is significantly easier to modify multiline property valuesin atext
editor than at the command line.

Properties and the Subversion Workflow

Now that you are familiar with al of the property-related svn subcommands, let's see how property modifications affect the usual
Subversion workflow. As we mentioned earlier, file and directory properties are versioned, just like your file contents. As a result,
Subversion provides the same opportunities for merging—cleanly or with conflicts—someone el se's modifications into your own.

As with file contents, your property changes are local modifications, made permanent only when you commit them to the reposit-
ory with svn commit. Y our property changes can be easily unmade, too—the svn revert command will restore your files and dir-
ectories to their unedited states—contents, properties, and all. Also, you can receive interesting information about the state of your
file and directory properties by using the svn status and svn diff commands.

4Fixing spelling errors, grammatical gotchas, and “just-plain-wrongness’ in commit log messages is perhaps the most common use case for the - - r evpr op op-
tion.

58

Advanced Topics

$ svn status cal c/button.c
M calc/button.c
$ svn diff calc/button.c
Property changes on: cal c/button.c

Added: copyri ght

-0,0 +1

+(c) 2006 Red-Bean Software
$

Notice how the status subcommand displays Min the second column instead of the first. That is because we have modified the
propertieson cal ¢/ but t on. c, but not its textual contents. Had we changed both, we would have seen Min the first column, too.
(We cover svn statusin the section called “ See an overview of your changes”).

Property Conflicts

As with file contents, local property modifications can conflict with changes committed by someone else. If you update your
working copy directory and receive property changes on a versioned object that clash with your own, Subversion will report
that the object isin a conflicted state.

$ svn update calc
Updating 'calc':
M cal c/ Makefile.in
Conflict for property 'linecount' discovered on 'calc/button.c'.
Sel ect: (p) postpone, (df) diff-full, (e) edit,
(s) show all options: p

C calc/button.c
Updated to revision 143.
Summary of conflicts:

Property conflicts: 1

Subversion will also create, in the same directory as the conflicted object, afilewith a. pr ej extension that contains the de-
tails of the conflict. Y ou should examine the contents of this file so you can decide how to resolve the conflict. Until the con-
flict isresolved, you will see a Cin the second column of svn status output for that object, and attempts to commit your local
modifications will fail.

$ svn status calc
C cal c/button.c
? cal c/button. c. prej
$ cat cal c/button.c.prej
Trying to change property 'linecount' from'1267' to '1301',
gut property has been locally changed from'1267' to '1256'.

To resolve property conflicts, simply ensure that the conflicting properties contain the values that they should, and then use
the svn resolve --accept=wor king command to alert Subversion that you have manually resolved the problem.

59

Advanced Topics

You might also have noticed the nonstandard way that Subversion currently displays property differences. You can still use svn
diff and redirect its output to create a usable patch file. The patch program will ignore property patches—as arule, it ignores any
noise it can't understand. This does, unfortunately, mean that to fully apply a patch generated by svn diff using patch, any property
modifications will need to be applied by hand.

Subversion 1.7 improves this situation in two ways. First, its nonstandard display of property differencesis at least machine-read-
able—an improvement over the display of properties in versions prior to 1.7. But Subversion 1.7 also introduces the svn patch
subcommand, designed specifically to handle the additional information which svn diff's output can carry, applying those changes
to the Subversion working copy. Of specific relevance to our topic, property differences present in patch files generated by svn diff
in Subversion 1.7 or better can be automatically applied to a working copy by the svn patch command. For more about svn patch,
see svn patch in Chapter 9, Subversion Complete Reference.

There's one exception to how property changes are reported by svn diff: changes to Subversion's specia

/ svn: mer gei nf o property—used to track information about merges which have been performed in your reposit-
ory—are described in a more human-readable fashion. Thisis quite helpful to the humans who have to read those de-
scriptions. But it also serves to cause patching programs (including svn patch) to skip those change descriptions as
noise. This might sound like a bug, but it really isn't because this property isintended to be managed solely by the svn
mer ge subcommand. For more about merge tracking, see Chapter 4, Branching and Merging.

Automatic Property Setting

Properties are a powerful feature of Subversion, acting as key components of many Subversion features discussed elsewhere in this
and other chapters—textual diff and merge support, keyword substitution, newline translation, and so on. But to get the full benefit
of properties, they must be set on the right files and directories. Unfortunately, that step can be easily forgotten in the routine of
things, especially since failing to set a property doesn't usually result in an obvious error (at least compared to, say, failing to add a
file to version control). To help your properties get applied to the places that need them, Subversion provides a couple of simple
but useful features.

Whenever you introduce a file to version control using the svn add or svn import commands, Subversion tries to assist by setting
some common file properties automatically. First, on operating systems whose filesystems support an execute permission bit, Sub-
version will automatically set the svn: execut abl e property on newly added or imported files whose execute bit is enabled.
(See the section called “File Executability” later in this chapter for more about this property.)

Second, Subversion tries to determine the file's MIME type. If you've configured ani ne-t ypes-fi | es runtime configuration
parameter, Subversion will try to find a MIME type mapping in that file for your file's extension. If it finds such a mapping, it will
set your file's svn: mi nme-t ype property to the MIME type it found. If no mapping file is configured, or no mapping for your
file's extension could be found, Subversion will fall back to heuristic algorithms to determine the file's MIME type. Depending on
how it is built, Subversion 1.7 can make use of file scanning libraries® to detect a file's type based on its content. Failing all else,
Subversion will employ its own very basic heuristic to determine whether the file contains nontextual content. If so, it automatic-
aly sets the svn: m me-t ype property on that file to appl i cati on/ oct et - st r eam (the generic “this is a collection of
bytes” MIME type). Of course, if Subversion guesses incorrectly, or if you wish to set the svn: i ne-type property to
something more precise—perhaps i mage/ png or appl i cati on/ x- shockwave- f | ash—you can always remove or edit
that property. (For more on Subversion's use of MIME types, see the section called “File Content Type” later in this chapter.)

UTF-16 is commonly used to encode files whose semantic content is textual in nature, but the encoding itself makes

/ heavy use of bytes which are outside the typical ASCII character byte range. As such, Subversion will tend to classify
such files as binary files, much to the chagrin of users who desire line-based differencing and merging, keyword sub-
stitution, and other behaviors for those files.

Subversion also provides, via its runtime configuration system (see the section called “Runtime Configuration Ared’), a more flex-
ible automatic property setting feature that allows you to create mappings of filename patterns to property names and values. Once
again, these mappings affect adds and imports, and can not only override the default MIME type decision made by Subversion dur-

5Current|y, libmagic is the support library used to accomplish this.

60

Advanced Topics

ing those operations, but can also set additional Subversion or custom properties, too. For example, you might create a mapping
that says that anytime you add JPEG files—ones whose names match the pattern * . j pg—Subversion should automatically set the
svn: m ne-type property on those files to i nage/j peg. Or perhaps any files that match *. cpp should have
svn: eol -styl esettonati ve,andsvn: keywor ds setto| d. Automatic property support is perhaps the handiest property-re-
lated tool in the Subversion toolbox. See the section called “Config” for more about configuring that support.

which al connecting clients will automatically consider when operating on working copies checked out from that
server. Unfortunately, Subversion doesn't offer this feature. Administrators can use hook scripts to validate that the
properties added to and modified on files and directories match the administrator's preferred policies, rejecting com-
mits which are non-compliant in this fashion. (See the section called “Implementing Repository Hooks” for more
about hook scripts.) But there's no way to automatically dictate those preferences to Subversion clients beforehand.

O/ Subversion administrators commonly ask if it is possible to configure, on the server side, a set of property definitions

File Portability

Fortunately for Subversion users who routinely find themselves on different computers with different operating systems, Subver-
sion's command-line program behaves almost identically on all those systems. If you know how to wield svn on one platform, you
know how to wield it everywhere.

However, the same is not always true of other general classes of software or of the actual files you keep in Subversion. For ex-
ample, on a Windows machine, the definition of a “text file” would be similar to that used on a Linux box, but with a key differ-
ence—the character sequences used to mark the ends of the lines of those files. There are other differences, too. Unix platforms
have (and Subversion supports) symboalic links; Windows does not. Unix platforms use filesystem permission to determine execut-
ability; Windows uses filename extensions.

Because Subversion is in no position to unite the whole world in common definitions and implementations of all of these things,
the best it can do isto try to help make your life simpler when you need to work with your versioned files and directories on mul-
tiple computers and operating systems. This section describes some of the ways Subversion does this.

File Content Type

Subversion joins the ranks of the many applications that recognize and make use of Multipurpose Internet Mail Extensions
(MIME) content types. Besides being a genera-purpose storage location for a file's content type, the value of the
svn: m me- t ype file property determines some behavioral characteristics of Subversion itself.

Identifying File Types

Various programs on most modern operating systems make assumptions about the type and format of the contents of a file
by the file's name, specificaly its file extension. For example, files whose namesend in . t xt are generally assumed to be
human-readable; that is, able to be understood by simple perusal rather than requiring complex processing to decipher. Files
whose names end in . png, on the other hand, are assumed to be of the Portable Network Graphics type—not human-read-
able at all, and sensible only when interpreted by software that understands the PNG format and can render the information
in that format as a raster image.

Unfortunately, some of those extensions have changed their meanings over time. When personal computers first appeared, a
file named README. DOC would have ailmost certainly been a plain-text file, just like today's . t xt files. But by the mid-
1990s, you could almost bet that a file of that name would not be a plain-text file at al, but instead a Microsoft Word docu-
ment in a proprietary, non-human-readable format. But this change didn't occur overnight—there was certainly a period of
confusion for computer users over what exactly they had in hand when they saw a. DOCfile.

The popularity of computer networking cast still more doubt on the mapping between a file's name and its content. With in-
formation being served across networks and generated dynamically by server-side scripts, there was often no real file per se,
and therefore no filename. Web servers, for example, needed some other way to tell browsers what they were downloading

5y ou think that was rough? During that same era, WordPerfect also used . DOC for their proprietary file format's preferred extension!

61

Advanced Topics

so that the browser could do something intelligent with that information, whether that was to display the data using a pro-
gram registered to handle that datatype or to prompt the user for where on the client machine to store the downloaded data.

Eventually, a standard emerged for, among other things, describing the contents of a data stream. In 1996, RFC 2045 was
published. It was the first of five RFCs describing MIME. It describes the concept of media types and subtypes and recom-
mends a syntax for the representation of those types. Today, MIME media types—or “MIME types’—are used almost uni-
versally across email applications, web servers, and other software as the de facto mechanism for clearing up the file content
confusion.

For example, one of the benefits that Subversion typically provides is contextual, line-based merging of changes received from the
server during an update into your working file. But for files containing nontextual data, there is often no concept of a“line.” So, for
versioned fileswhose svn: mi me-t ype property is set to a nontextual MIME type (generally, something that doesn't begin with
t ext /, though there are exceptions), Subversion does not attempt to perform contextual merges during updates. Instead, any time
you have locally modified a binary working copy file that is also being updated, your file is left untouched and Subversion creates
two new files. Onefilehasa. ol dr ev extension and contains the BASE revision of thefile. The other filehasa. newr ev exten-
sion and contains the contents of the updated revision of the file. This behavior isrealy for the protection of the user against failed
attempts at performing contextual merges on files that ssmply cannot be contextually merged.

Thesvn: m me-t ype property, when set to a value that does not indicate textua file contents, can cause some un-
expected behaviors with respect to other properties. For example, since the idea of line endings (and therefore, line-
ending conversion) makes no sense when applied to nontextual files, Subversion will prevent you from setting the
svn: eol - st yl e property on such files. This is obvious when attempted on a single file target—svn propset will
error out. But it might not be as clear if you perform arecursive property set, where Subversion will silently skip over
filesthat it deems unsuitable for a given property.

Subversion provides a number of mechanisms by which to automatically set the svn: nmi ne-t ype property on a versioned file.
See the section called “ Automatic Property Setting” for details.

Also, if the svn: mi nme-t ype property is set, then the Subversion Apache module will use its value to populate the Cont ent -
t ype: HTTP header when responding to GET requests. This gives your web browser a crucial clue about how to display afile
when you use it to peruse your Subversion repository's contents.

File Executability

On many operating systems, the ability to execute a file as a command is governed by the presence of an execute permission bit.
This bit usually defaults to being disabled, and must be explicitly enabled by the user for each file that needs it. But it would be a
monumental hassle to have to remember exactly which filesin a freshly checked-out working copy were supposed to have their ex-
ecutable bits toggled on, and then to have to do that toggling. So, Subversion provides the svn: execut abl e property as a way
to specify that the executable bit for the file on which that property is set should be enabled, and Subversion honors that request
when populating working copies with such files.

This property has no effect on filesystems that have no concept of an executable permission hit, such as FAT32 and NTFS. Also,
although it has no defined values, Subversion will forceits value to * when setting this property. Finally, this property isvalid only
on files, not on directories.

End-of-Line Character Sequences

Unless otherwise noted using a versioned file'ssvn: m nme-t ype property, Subversion assumes the file contains human-readable
data. Generally speaking, Subversion uses this knowledge only to determine whether contextual difference reports for that file are
possible. Otherwise, to Subversion, bytes are bytes.

"The Windows fi lesystems use file extensions (such as. EXE, . BAT, and . COM) to denote executable files.
62

Advanced Topics

This means that by default, Subversion doesn't pay any attention to the type of end-of-line (EOL) markers used in your files. Un-
fortunately, different operating systems have different conventions about which character sequences represent the end of a line of
text in afile. For example, the usual line-ending token used by software on the Windows platform is a pair of ASCII control char-
acters—a carriage return (CR) followed by aline feed (LF). Unix software, however, just uses the LF character to denote the end of
aline.

Not all of the various tools on these operating systems understand files that contain line endings in a format that differs from the
native line-ending style of the operating system on which they are running. So, typically, Unix programs treat the CR character
present in Windows files as aregular character (usually rendered as M, and Windows programs combine all of the lines of a Unix
file into one giant line because no carriage return-linefeed (or CRLF) character combination was found to denote the ends of the
lines.

This sensitivity to foreign EOL markers can be frustrating for folks who share a file across different operating systems. For ex-
ample, consider a source code file, and developers who edit this file on both Windows and Unix systems. If all the developers al-
ways use tools that preserve the line-ending style of the file, no problems occur.

But in practice, many common tools either fail to properly read afile with foreign EOL markers, or convert the file's line endings
to the native style when the file is saved. If the former is true for a developer, he has to use an external conversion utility (such as
dos2unix or its companion, unix2dos) to prepare the file for editing. The latter case requires no extra preparation. But both cases
result in afile that differs from the original quite literally on every line! Prior to committing his changes, the user has two choices.
Either he can use a conversion utility to restore the modified file to the same line-ending style that it was in before his edits were
made, or he can simply commit the file—new EOL markers and all.

The result of scenarios like these include wasted time and unnecessary modifications to committed files. Wasted time is painful
enough. But when commits change every line in afile, this complicates the job of determining which of those lines were changed
in anontrivial way. Where was that bug really fixed? On what line was a syntax error introduced?

The solution to this problem isthe svn: eol - st yl e property. When this property is set to avalid value, Subversion usesit to de-
termine what special processing to perform on the file so that the file's line-ending style isn't flip-flopping with every commit that
comes from a different operating system. The valid values are;

native
This causes the file to contain the EOL markers that are native to the operating system on which Subversion was run. In other
words, if auser on a Windows machine checks out aworking copy that contains afile with an svn: eol - st yl e property set
tonati ve, that file will contain CRLF EOL markers. A Unix user checking out a working copy that contains the same file
will see LF EOL markersin his copy of thefile.

Note that Subversion will actually store the file in the repository using normalized LF EOL markers regardless of the operating
system. Thisis basically transparent to the user, though.

CRLF
This causes the file to contain CRLF sequences for EOL markers, regardless of the operating system in use.

LF
This causes the file to contain LF characters for EOL markers, regardless of the operating system in use.

CR
This causes the file to contain CR characters for EOL markers, regardless of the operating system in use. Thisline-ending style
is hot very common.

Ignoring Unversioned ltems

In any given working copy, there is a good chance that alongside all those versioned files and directories are other files and direct-
ories that are neither versioned nor intended to be. Text editors litter directories with backup files. Software compilers generate in-
termediate—or even final—files that you typically wouldn't bother to version. And users themselves drop various other files and
directories wherever they seefit, often in version control working copies.

63

Advanced Topics

It's ludicrous to expect Subversion working copies to be somehow impervious to this kind of clutter and impurity. In fact, Subver-
sion counts it as a feature that its working copies are just typica directories, just like unversioned trees. But these not-
to-be-versioned files and directories can cause some annoyance for Subversion users. For example, because the svn add and svn
import commands act recursively by default and don't know which filesin a given tree you do and don't wish to version, it's easy
to accidentally add stuff to version control that you didn't mean to. And because svn status reports, by default, every item of in-
terest in a working copy—including unversioned files and directories—its output can get quite noisy where many of these things
exist.

So Subversion provides two ways for telling it which files you would prefer that it simply disregard. One of the ways involves the
use of Subversion's runtime configuration system (see the section called “Runtime Configuration Area’), and therefore applies to
all the Subversion operations that make use of that runtime configuration—generally those performed on a particular computer or
by a particular user of a computer. The other way makes use of Subversion's directory property support and is more tightly bound
to the versioned tree itself, and therefore affects everyone who has a working copy of that tree. Both of the mechanisms use file
patterns (strings of literal and special wildcard characters used to match against filenames) to decide which files to ignore.

The Subversion runtime configuration system provides an option, gl obal - i gnor es, whose value is a whitespace-delimited col-
lection of file patterns. The Subversion client checks these patterns against the names of the files that are candidates for addition to
version control, as well as to unversioned files that the svn status command notices. If any file's name matches one of the patterns,
Subversion will basically act asif the file didn't exist at all. Thisisreally useful for the kinds of files that you almost never want to
version, such as editor backup files such as Emacs * ~ and . * ~ files.

File Patterns in Subversion

File patterns (also called globs or shell wildcard patterns) are strings of characters that are intended to be matched against fi-
lenames, typically for the purpose of quickly selecting some subset of similar files from a larger grouping without having to
explicitly name each file. The patterns contain two types of characters: regular characters, which are compared explicitly
against potential matches, and special wildcard characters, which are interpreted differently for matching purposes.

There are different types of file pattern syntaxes, but Subversion uses the one most commonly found in Unix systems imple-
mented asthe f nmat ch system function. It supports the following wildcards, described here simply for your convenience:

?
Matches any single character

*

Matches any string of characters, including the empty string
[

Begins a character class definition terminated by] , used for matching a subset of characters

Y ou can see this same pattern matching behavior at a Unix shell prompt. The following are some examples of patterns being
used for various things:

$1s ### the book sources

appa- qui ckstart. xnl ch06- server -configuration. xnl
appb-svn-for-cvs-users. xni ch07- cust om zi ng- svn. xm
appc- webdav. xm ch08- enbeddi ng- svn. xni

book. xm ch09-ref erence. xm

ch00- pr ef ace. xml ch10- wor | d- peace-t hr u- svn. xml
ch01- f undament al - concept s. xml copyri ght. xm

ch02- basi c- usage. xm foreword. xm

ch03- advanced-t opi cs. xm i mages/

chO04- br anchi ng- and- ner gi ng. xm i ndex. xml

chO05-r eposi t ory-adm n. xni styl es. css

$ Is ch* ### the book chapters

Advanced Topics

ch0O0- pr ef ace. xm ch06- server - confi gurati on. xm
ch01-f undament al - concept s. xml chQ07- cust om zi ng- svn. xm
ch02- basi c- usage. xni ch08- enbeddi ng- svn. xm

ch03- advanced-t opi cs. xm ch09-r ef erence. xm

ch04- br anchi ng- and- ner gi ng. xm ch10-wor| d- peace-t hru-svn. xni
chO05-reposi t ory-adm n. xni

$ Is ch?0-* ### the book chapters whose nunbers end in zero

ch00- preface. xm ch10-wor | d- peace-t hru-svn. xnl

$ Is chO[3578] -* ### the book chapters that M ke is responsible for
ch03- advanced-t opi cs. xnl ch07- cust om zi ng- svn. xm

ghOS— reposi tory-adm n. xm ch08- enbeddi ng-svn. xn

File pattern matching is a bit more complex than what we've described here, but this basic usage level tends to suit the major-
ity of Subversion users.

When found on a versioned directory, the svn: i gnor e property is expected to contain a list of newline-delimited file patterns
that Subversion should use to determine ignorable objects in that same directory. These patterns do not override those found in the
gl obal -i gnor es runtime configuration option, but are instead appended to that list. And it's worth noting again that, unlike the
gl obal -i gnor es option, the patterns found in the svn: i gnor e property apply only to the directory on which that property is
set, and not to any of its subdirectories. The svn: i gnor e property is a good way to tell Subversion to ignore files that are likely
to be present in every user's working copy of that directory, such as compiler output or—to use an example more appropriate to
this book—the HTML, PDF, or PostScript files generated as the result of a conversion of some source DocBook XML files to a
more legible output format.

directories to version control. Once an object is under Subversion's control, the ignore pattern mechanisms no longer
apply to it. In other words, don't expect Subversion to avoid committing changes you've made to a versioned file
simply because that file's name matches an ignore pattern—Subversion always notices all of its versioned objects.

O/ Subversion's support for ignorable file patterns extends only to the one-time process of adding unversioned files and

Ignore Patterns for CVS Users

The Subversion svn: i gnor e property is very similar in syntax and function to the CVS. cvsi gnor e file. In fact, if you
are migrating a CV'S working copy to Subversion, you can directly migrate the ignore patterns by using the . cvsi gnor e
file asinput file to the svn propset command:

$ svn propset svn:ignore -F .cvsignore .
property 'svn:ignore' set on '.'

There are, however, some differences in the ways that CVS and Subversion handle ignore patterns. The two systems use the
ignore patterns at some different times, and there are dight discrepancies in what the ignore patterns apply to. Also, Subver-
sion does not recognize the use of the! pattern as areset back to having no ignore patterns at all.

The global list of ignore patterns tends to be more a matter of personal taste and ties more closely to a user's particular tool chain
than to the details of any particular working copy's needs. So, the rest of this section will focus on the svn: i gnor e property and
its uses.

65

Advanced Topics

Say you have the following output from svn status:

$ svn status calc

M cal c/button.c
cal ¢/ cal cul at or
cal c/data.c
cal ¢/ debug_| og
cal ¢/ debug |l og. 1
cal ¢/ debug_| 0g. 2. gz
cal ¢/ debug_| og. 3. gz

N N N N N)

In this example, you have made some property modificationsto but t on. ¢, but in your working copy, you also have some unver-
sioned files: the latest cal cul at or program that you've compiled from your source code, a source file named dat a. ¢, and a set
of debugging output logfiles. Now, you know that your build system aways results in the cal cul at or program being
generated.s And you know that your test suite always leaves those debugging logfiles lying around. These facts are true for all
working copies of this project, not just your own. And you know that you aren't interested in seeing those things every time you
run svn status, and you are pretty sure that nobody else is interested in them either. So you usesvn propedit svn:ignore
cal ¢ to add someignore patternsto the cal c¢ directory.

$ svn propget svn:ignore calc
cal cul at or

debug | og*

$

After you've added this property, you will now have alocal property modification on the cal ¢ directory. But notice what else is
different about your svn status output:

$ svn status

M cal c
M calc/button.c
? calc/data.c

Now, all that cruft is missing from the output! Your cal cul at or compiled program and all those logfiles are still in your work-
ing copy; Subversion just isn't constantly reminding you that they are present and unversioned. And now with all the uninteresting
noise removed from the display, you are left with more intriguing items—such as that source code file dat a. ¢ that you probably
forgot to add to version control.

Of course, this less-verbose report of your working copy status isn't the only one available. If you actually want to see the ignored
files as part of the status report, you can passthe - - no- i gnor e option to Subversion:

$ svn status --no-ignore
M cal c
M cal c/button.c
| cal ¢/ cal cul ator
? cal c/data.c
I cal ¢/ debug_| og

8lsn't that the whole point of abuild system?

66

Advanced Topics

I cal ¢/ debug |l og. 1
I cal ¢/ debug_| og. 2. gz
I cal ¢/ debug_| og. 3. gz

As mentioned earlier, the list of file patterns to ignore is also used by svn add and svn import. Both of these operations involve
asking Subversion to begin managing some set of files and directories. Rather than force the user to pick and choose which filesin
atree she wishes to start versioning, Subversion uses the ignore patterns—both the global and the per-directory lists—to determine
which files should not be swept into the version control system as part of alarger recursive addition or import operation. And here
again, you can use the - - no- i gnor e option to tell Subversion to disregard its ignores list and operate on al the files and direct-
ories present.

are expanded into an explicit list of targets before Subversion operates on them, so running svn SUBCOMMVAND * is
just likerunningsvn SUBCOVMVAND filel file2 file3 ...Inthecaseof thesvn add command, this has an
effect similar to passing the - - no- i gnor e option. So instead of using awildcard, usesvn add --force . to
do abulk scheduling of unversioned things for addition. The explicit target will ensure that the current directory isn't
overlooked because of being already under version control, and the - - f or ce option will cause Subversion to crawl
through that directory, adding unversioned files while still honoring the svn: i gnor e property and gl obal -i g-
nor es runtime configuration variable. Be sure to also provide the - - dept h fi | es option to the svn add com-
mand if you don't want afully recursive crawl for things to add.

@j Even if svn: i gnor e is set, you may run into problems if you use shell wildcards in a command. Shell wildcards

Keyword Substitution

Subversion has the ability to substitute keywords—pieces of useful, dynamic information about a versioned file—into the contents
of the file itself. Keywords generally provide information about the last modification made to the file. Because this information
changes each time the file changes, and more importantly, just after the file changes, it is a hassle for any process except the ver-
sion control system to keep the data completely up to date. Left to human authors, the information would inevitably grow stale.

For example, say you have a document in which you would like to display the last date on which it was modified. Y ou could bur-
den every author of that document to, just before committing their changes, also tweak the part of the document that describes
when it was last changed. But sooner or later, someone would forget to do that. Instead, smply ask Subversion to perform keyword
substitution on the Last ChangedDat e keyword. You control where the keyword is inserted into your document by placing a
keyword anchor at the desired location in thefile. Thisanchor isjust astring of text formatted as $Keywor dNane$.

All keywords are case-sensitive where they appear as anchorsin files: you must use the correct capitalization for the keyword to be
expanded. Y ou should consider the value of the svn: keywor ds property to be case-sensitive, too—certain keyword names will
be recognized regardless of case, but this behavior is deprecated.

Subversion defines the list of keywords available for substitution. That list contains the following keywords, some of which have
aliases that you can also use:

Dat e
This keyword describes the last time the file was known to have been changed in the repository, and is of the form $Dat e:
2006- 07-22 21:42:37 -0700 (Sat, 22 Jul 2006) $.Itmay aso be specified as Last ChangedDat e. Un-
likethe |l d keyword, which uses UTC, the Dat e keyword displays dates using the local time zone.

Revi si on
This keyword describes the last known revision in which this file changed in the repository, and looks something like
$Revi sion: 144 $. It may also be specified as Last ChangedRevi si on or Rev.

Aut hor
This keyword describes the last known user to change this file in the repository, and looks something like $Aut hor : harry

67

Advanced Topics

$. It may aso be specified asLast ChangedBy.

HeadURL
This keyword describes the full URL to the latest version of the file in the repository, and looks something like $Head URL :
http://svn. exanpl e. conf repos/trunk/cal c. c $. It may be abbreviated as URL.

Id
This keyword is a compressed combination of the other keywords. Its substitution looks something like $1 d: cal c. ¢ 148
2006- 07- 28 21:30:43Z sal ly $,andisinterpreted to mean that thefilecal c. ¢ waslast changed in revision 148 on
the evening of July 28, 2006 by the user sal | y. The date displayed by this keyword is in UTC, unlike that of the Dat e
keyword (which uses the local time zone).

Header
This keyword is similar to the | d keyword but contains the full URL of the latest revision of the item, identical to Head URL.
Its substitution looks something like $Header: http://svn. exanple.com repos/trunk/calc.c 148
2006-07-28 21:30:43Z sally $.

Several of the preceding descriptions use the phrase “last known” or similar wording. Keep in mind that keyword expansion is a
client-side operation, and your client “knows” only about changes that have occurred in the repository when you update your work-
ing copy to include those changes. If you never update your working copy, your keywords will never expand to different values
even if those versioned files are being changed regularly in the repository.

Simply adding keyword anchor text to your file does nothing special. Subversion will never attempt to perform textual substitu-
tions on your file contents unless explicitly asked to do so. After al, you might be writing adocument® about how to use keywords,
and you don't want Subversion to substitute your beautiful examples of unsubstituted keyword anchors!

To tell Subversion whether to substitute keywords on a particular file, we again turn to the property-related subcommands. The
svn: keywor ds property, when set on a versioned file, controls which keywords will be substituted on that file. The value is a
space-delimited list of keyword names or aliases.

For example, say you have aversioned file named weat her . t xt that lookslike this:

Here is the latest report fromthe front |ines.

$Last ChangedDat e$

Rev

Cumul us cl ouds are appearing nore frequently as sumer approaches.

With no svn: keywor ds property set on that file, Subversion will do nothing special. Now, let's enable substitution of the
Last ChangedDat e keyword.

$ svn propset svn: keywords "Date Author" weather.txt
property 'svn: keywords' set on 'weather.txt'
$

Now you have made a local property modification on the weat her . t xt file. You will see no changes to the file's contents
(unless you made some of your own prior to setting the property). Notice that the file contained a keyword anchor for the Rev
keyword, yet we did not include that keyword in the property value we set. Subversion will happily ignore requests to substitute
keywords that are not present in the file and will not substitute keywords that are not present in the svn: keywor ds property
value.

S..or maybe even a section of abook ...

68

Advanced Topics

Immediately after you commit this property change, Subversion will update your working file with the new substitute text. |nstead
of seeing your keyword anchor $Last ChangedDat e$, you'll see its substituted result. That result also contains the name of the
keyword and continues to be delimited by the dollar sign ($) characters. And as we predicted, the Rev keyword was not substi-
tuted because we didn't ask for it to be.

Note also that we set the svn: keywords property to Date Author, yet the keyword anchor used the alias
$Last ChangedDat e$ and still expanded correctly:

Here is the latest report fromthe front |ines.

%Lasgsd’langedDate: 2006- 07-22 21:42:37 -0700 (Sat, 22 Jul 2006) $
Rev

Cumul us cl ouds are appearing nore frequently as sumer approaches.

If someone else now commits a change to weat her . t xt, your copy of that file will continue to display the same substituted
keyword value as before—until you update your working copy. At that time, the keywords in your weat her . t xt file will be re-
substituted with information that reflects the most recent known commit to that file.

Where's $GlobalRev$?

New users are often confused by how the Rev keyword works. Since the repository has a single, globally increasing revi-
sion number, many people assume that it is this number that is reflected by the Rev keyword's value. But Rev expands
to show the last revision in which the file changed, not the last revision to which it was updated. Understanding this clears
the confusion, but frustration often remains—without the support of a Subversion keyword to do so, how can you automatic-
ally get the global revision number into your files?

To do this, you need external processing. Subversion ships with a tool called svnversion, which was designed for just this
purpose. It crawls your working copy and generates as output the revision(s) it finds. Y ou can use this program, plus some
additional tooling, to embed that revision information into your files. For more information on svnversion, see the section
called “svnversion—Subversion Working Copy Version Info” in Chapter 9, Subversion Complete Reference.

You can also instruct Subversion to maintain a fixed length (in terms of the number of bytes consumed) for the substituted
keyword. By using a double colon (: :) after the keyword name, followed by a number of space characters, you define that fixed
width. When Subversion goes to substitute your keyword for the keyword and its value, it will essentially replace only those space
characters, leaving the overall width of the keyword field unchanged. If the substituted value is shorter than the defined field width,
there will be extra padding characters (spaces) at the end of the substituted field; if it istoo long, it is truncated with a special hash
(#) character just before the final dollar sign terminator.

For example, say you have a document in which you have some section of tabular data reflecting the document's Subversion
keywords. Using the original Subversion keyword substitution syntax, your file might look something like:

Rev: Revi si on of last commt
$Aut hor$: Author of last commt
$Dat e$: Date of |ast commit

Now, that looks nice and tabular at the start of things. But when you then commit that file (with keyword substitution enabled, of
COUrSE), you See:

$Rev: 12 $: Revi sion of |ast commt

69

Advanced Topics

$Aut hor :

harry $: Author of last conmit

$Date: 2006-03-15 02:33:03 -0500 (Wed, 15 Mar 2006) $: Date of |ast commt

The result is not so beautiful. And you might be tempted to then adjust the file after the substitution so that it again looks tabular.
But that holds only as long as the keyword values are the same width. If the last committed revision rolls into a new place value
(say, from 99 to 100), or if another person with alonger username commits the file, stuff gets al crooked again. However, if you
are using Subversion 1.2 or later, you can use the new fixed-length keyword syntax and define some field widths that seem sane, so
your file might look like this:

$Rev: :
$Aut hor : :
$Dat e: :

$: Revision of last comit
$: Author of last comit
$: Date of |ast commit

Y ou commit this change to your file. This time, Subversion notices the new fixed-length keyword syntax and maintains the width
of the fields as defined by the padding you placed between the double colon and the trailing dollar sign. After substitution, the
width of the fields is completely unchanged—the short values for Rev and Aut hor are padded with spaces, and the long Dat e
field is truncated by a hash character:

$Rev:: 13
$Aut hor : :
$Date:: 2

$: Revision of last comit
harry $: Author of last conmt
006- 03-15 O#%$: Date of last commt

The use of fixed-length keywords is especialy handy when performing substitutions into complex file formats that themselves use
fixed-length fields for data, or for which the stored size of a given data field is overbearingly difficult to modify from outside the
format's native application (asistrue for the older Microsoft Office document formats).

O
&

Subversion will only perform keyword substitution on files that it considers to be human-readable—this is, files
which don't carry an svn: m ne-t ype property whose value indicates otherwise. To force keyword substitution on
binary files, you'll need to either lie or feign ignorance about their true content type. Understand, however, that doing
so will also enable for those files other Subversion behaviors that you might not desire, including line-based differen-
cing and merging. For more about content types, see the section called “File Content Type”.

Be aware that because the width of a keyword field is measured in bytes, the potential for corruption of multibyte val-
ues exists. For example, a username that contains some multibyte UTF-8 characters might suffer truncation in the
middle of the string of bytes that make up one of those characters. The result will be a mere truncation when viewed
at the byte level, but will likely appear as a string with an incorrect or garbled final character when viewed as UTF-8
text. It is conceivable that certain applications, when asked to load the file, would notice the broken UTF-8 text and
deem the entire file corrupt, refusing to operate on the file altogether. So, when limiting keywords to a fixed size,
choose a size that allows for this type of byte-wise expansion.

Sparse Directories

By default, most Subversion operations on directories act in a recursive manner. For example, svn checkout creates a working
copy with every file and directory in the specified area of the repository, descending recursively through the repository tree until

70

Advanced Topics

the entire structure is copied to your local disk. Subversion 1.5 introduces a feature called sparse directories (or shallow checkouts)
that allows you to easily check out a working copy—or a portion of a working copy—more shallowly than full recursion, with the
freedom to bring in previously ignored files and subdirectories at alater time.

For example, say we have arepository with atree of files and directories with names of the members of a human family with pets.
(It'san odd example, to be sure, but bear with us.) A regular svn checkout operation will give us aworking copy of the whole tree;

svn checkout file:///var/svn/repos nom
nom son
nmont son/ gr andson
nmonm daught er
nmoni daught er/ gr anddaught er 1
nom daught er / gr anddaught er 1/ bunny1. t xt
nonm daught er / gr anddaught er 1/ bunny2. t xt
noni daught er/ gr anddaught er 2
nmoni daught er/fi shie. txt
mom kittyl. txt
nonl doggi el. t xt
ecked out revision 1.

BQPPBP>>>> PP

Now, let's check out the same tree again, but this time we'll ask Subversion to give us only the topmost directory with none of its
children at al:

$ svn checkout file:///var/svn/repos nomenpty --depth empty
Checked out revision 1
$

Notice that we added to our original svn checkout command line anew - - dept h option. This option is present on many of Sub-
version's subcommands and is similar to the - - non-recursi ve (-N) and - - r ecur si ve (- R) options. In fact, it combines,
improves upon, supercedes, and ultimately obsoletes these two older options. For starters, it expands the supported degrees of
depth specification available to users, adding some previously unsupported (or inconsistently supported) depths. Here are the depth
values that you can request for a given Subversion operation:

--depth enpty
Include only the immediate target of the operation, not any of itsfile or directory children.

--depth files
Include the immediate target of the operation and any of itsimmediate file children.

--depth i medi at es
Include the immediate target of the operation and any of its immediate file or directory children. The directory children will
themselves be empty.

--depth infinity
Include the immediate target, its file and directory children, its children's children, and so on to full recursion.

Of course, merely combining two existing options into one hardly constitutes a new feature worthy of a whole section in our book.
Fortunately, there is more to this story. This idea of depth extends not just to the operations you perform with your Subversion cli-
ent, but also as a description of a working copy citizen's ambient depth, which is the depth persistently recorded by the working
copy for that item. Its key strength is this very persistence—the fact that it is sticky. The working copy remembers the depth you've
selected for each item in it until you later change that depth selection; by default, Subversion commands operate on the working

71

Advanced Topics

copy citizens present, regardless of their selected depth settings.

You can check the recorded ambient depth of a working copy using the svn info command. If the ambient depth is
_} anything other than infinite recursion, svn info will display aline describing that depth value:

$ svn info nomimediates | grep "“Depth:"
Dept h: i nmedi at es
$

Our previous examples demonstrated checkouts of infinite depth (the default for svn checkout) and empty depth. Let's look now at
examples of the other depth values:

$ svn checkout file:///var/svn/repos nomfiles --depth files

A mmfiles/kittyl.txt

A mom fil es/ doggi el. t xt

Checked out revision 1.

$ svn checkout file:///var/svn/repos nominmredi ates --depth i medi at es
A nmom i nredi at es/ son

A nmom i nredi at es/ daught er
A nmom i nmredi at es/ ki ttyl.txt
A nmom i nredi at es/ doggi el. t xt

Checked out revision 1.
$

As described, each of these depths is something more than only the target, but something less than full recursion.

We've used svn checkout as an example here, but you'll find the - - dept h option present on many other Subversion commands,
too. In those other commands, depth specification is away to limit the scope of an operation to some depth, much like the way the
older - - non-recursi ve (- N)and - - r ecur si ve (- R) options behave. This means that when operating on a working copy of
some depth, while requesting an operation of a shallower depth, the operation is limited to that shallower depth. In fact, we can
make an even more general statement: given a working copy of any arbitrary—even mixed—ambient depth, and a Subversion
command with some requested operational depth, the command will maintain the ambient depth of the working copy members
while still limiting the scope of the operation to the requested (or default) operational depth.

In addition to the - - dept h option, the svn update and svn switch subcommands also accept a second depth-related option: -
- set - dept h. It iswith this option that you can change the sticky depth of a working copy item. Watch what happens as we take
our empty-depth checkout and gradually telescope it deeper using svn updat e - - set - dept h NEW DEPTH TARGET:

$ svn update --set-depth files momenpty
Updating ' nomenpty':

A nmomenpty/ kittiel.txt

A nom enpt y/ doggi el. t xt

Updated to revision 1.

$ svn update --set-depth i medi ates nom enpty
Updating 'nomenpty':

A nom enpt y/ son

A nmom enpt y/ daught er

Updated to revision 1.

$ svn update --set-depth infinity nomenpty
Updating ' nomenpty':

A nom enpt y/ son/ gr andson

72

Advanced Topics

nom enpt y/ daught er / gr anddaught er 1
nmom enpt y/ daught er/ gr anddaught er 1/ bunny1. t xt
nmom enpt y/ daught er/ gr anddaught er 1/ bunny2. t xt
nmom enpt y/ daught er/ gr anddaught er 2
nom enpt y/ daught er/fi shi el. t xt

pdated to revision 1.

>>>>>

©C

Aswe gradually increased our depth selection, the repository gave us more pieces of our tree.

In our example, we operated only on the root of our working copy, changing its ambient depth value. But we can independently
change the ambient depth value of any subdirectory inside the working copy, too. Careful use of this ability allows us to flesh out
only certain portions of the working copy tree, leaving other portions absent altogether (hence the “sparse” bit of the feature's
name). Here's an example of how we might build out a portion of one branch of our family's tree, enable full recursion on another
branch, and keep still other pieces pruned (absent from disk).

$rm-rf nomenpty

$ svn checkout file:///var/svn/repos nomenpty --depth enpty
Checked out revision 1.

$ svn update --set-depth enpty nmom enpty/son

Updating ' nom enpty/son':

A nmom enpt y/ son

Updated to revision 1.

$ svn update --set-depth enpty nmom enpty/daughter

Updati ng ' mom enpty/ daughter':

A nmom enpt y/ daught er

Updated to revision 1.

$ svn update --set-depth infinity nom enpty/ daught er/ granddaughterl
Updati ng ' nom enpt y/ daught er/ gr anddaught er 1" :

A nom enpt y/ daught er / gr anddaught er 1

A nom enpt y/ daught er/ gr anddaught er 1/ bunny1. t xt

A nom enpt y/ daught er/ gr anddaught er 1/ bunny2. t xt

gpdat ed to revision 1.

Fortunately, having a complex collection of ambient depths in a single working copy doesn't complicate the way you interact with
that working copy. You can till make, revert, display, and commit local modifications in your working copy without providing
any new options (including - - dept h and - - set - dept h) to the relevant subcommands. Even svn update works as it does el se-
where when no specific depth is provided—it updates the working copy targets that are present while honoring their sticky depths.

Y ou might at this point be wondering, “ So what? When would | use this?’ One scenario where this feature finds utility istied to a
particular repository layout, specifically where you have many related or codependent projects or software modules living as sib-
lings in a single repository location (t r unk/ proj ect 1, t runk/ proj ect 2, t runk/ pr oj ect 3, etc.). In such scenarios, it
might be the case that you personally care about only a handful of those projects—maybe some primary project and a few other
modules on which it depends. Y ou can check out individual working copies of all of these things, but those working copies are dis-
joint and, as aresult, it can be cumbersome to perform operations across severa or all of them at the same time. The aternative is
to use the sparse directories feature, building out a single working copy that contains only the modules you care about. You'd start
with an empty-depth checkout of the common parent directory of the projects, and then update with infinite depth only the items
you wish to have, like we demonstrated in the previous example. Think of it like an opt-in system for working copy citizens.

The original (Subversion 1.5) implementation of shallow checkouts was good, but didn't support de-telescoping of working copy
items. Subversion 1.6 remedied this problem. For example, running svn updat e --set-depth enpty inan infinite-depth
working copy will discard everything but the topmost di rectory.10 Subversion 1.6 aso introduced another supported value for the -

73

Advanced Topics

- set - dept h option: excl ude. Using - - set - dept h excl ude with svn update will cause the update target to be removed
from the working copy entirely—a directory target won't even be left present-but-empty. This is especialy handy when there are
more things that you'd like to keep in aworking copy than things you'd like to not keep.

Consider a directory with hundreds of subdirectories, one of which you would like to omit from your working copy. Using an
“additive” approach to sparse directories, you might check out the directory with an empty depth, then explicitly telescope (using
svn update --set-depth infinity)eachandevery subdirectory of the directory except the one you don't care about.

svn checkout http://svn. exanple.confrepos/ many-dirs --depth enpty
svn update --set-depth infinity many-dirs/wanted-dir-1

svn update --set-depth infinity many-dirs/wanted-dir-2

695 695 69; ©~

svn update --set-depth infinity many-dirs/wanted-dir-3

it and so on, and so on,

This could be quite tedious, especially since you don't even have stubs of these directoriesin your working copy to deal with. Such
aworking copy would aso have another characteristic that you might not expect or desire: if someone €lse creates any new subdir-
ectories in this top-level directory, you won't receive those when you update your working copy.

Beginning with Subversion 1.6, you can take a different approach. First, check out the directory in full. Thenrunsvn update -
-set -dept h excl ude on the one subdirectory you don't care about.

$ svn checkout http://svn.exanpl e.con repos/ many-dirs

$ svn update --set-depth exclude nmany-dirs/unwant ed-dir
D many-di r s/ unwant ed-di r
$

This approach leaves your working copy with the same stuff as in the first approach, but any new subdirectories which appear in
the top-level directory would also show up when you update your working copy. The downside of this approach is that you have to
actually check out that whole subdirectory that you don't even want just so you can tell Subversion that you don't want it. This
might not even be possible if that subdirectory is too large to fit on your disk (which might, after all, be the very reason you don't
want it in your working copy).

While the functionality for excluding an existing item from a working copy was hung off of the svn update com-

/ mand, you might have noticed that the output fromsvn updat e --set-depth excl ude differsfrom that of a
normal update operation. This output betrays the fact that, under the hood, exclusion is a completely client-side oper-
ation, very much unlike atypical update.

In such a situation, you might consider a compromise approach. First, check out the top-level directory with - - dept h i nredi -
at es. Then, exclude the directory you don't want using svn update --set-depth excl ude. Finaly, telescope al the
items that remain to infinite depth, which should be fairly easy to do because they are all addressable in your shell.

$ svn checkout http://svn.exanple.comrepos/ many-dirs --depth i nmedi ates

10s4fely, of course. Asin other situations, Subversion will leave on disk any files you've modified or which aren't versioned.

74

Advanced Topics

$ svn update --set-depth exclude nmany-dirs/unwant ed-dir

D many- di r s/ unwant ed- di r
$ svn update --set-depth infinity many-dirs/*

Once again, your working copy will have the same stuff as in the previous two scenarios. But now, any time a new file or subdir-
ectory is committed to the top-level directory, you'll receive it—at an empty depth—when you update your working copy. Y ou can
now decide what to do with such newly appearing working copy items: expand them into infinite depth, or exclude them altogeth-
er

Locking

Subversion's copy-modify-merge version control model lives and dies on its data merging algorithms—specifically on how well
those algorithms perform when trying to resolve conflicts caused by multiple users modifying the same file concurrently. Subver-
sion itself provides only one such algorithm: a three-way differencing algorithm that is smart enough to handle data at a granularity
of asingle line of text. Subversion also allows you to supplement its content merge processing with external differencing utilities
(as described in the section called “External diff3” and the section called “External merge”’), some of which may do an even better
job, perhaps providing granularity of aword or a single character of text. But common among those algorithms is that they gener-
ally work only on text files. The landscape starts to look pretty grim when you start talking about content merges of nontextual file
formats. And when you can't find a tool that can handle that type of merging, you begin to run into problems with the copy-
modify-merge model.

Let'slook at areal-life example of where this model runs aground. Harry and Sally are both graphic designers working on the same
project, a bit of marketing collateral for an automobile mechanic. Central to the design of a particular poster is an image of acar in
need of some bodywork, stored in a file using the PNG image format. The poster's layout is aimost finished, and both Harry and
Sally are pleased with the particular photo they chose for their damaged car—a baby blue 1967 Ford Mustang with an unfortunate
bit of crumpling on the |eft front fender.

Now, as is common in graphic design work, there's a change in plans, which causes the car's color to be a concern. So Sally up-
dates her working copy to HEAD, fires up her photo-editing software, and sets about tweaking the image so that the car is now
cherry red. Meanwhile, Harry, feeling particularly inspired that day, decides that the image would have greater impact if the car
also appears to have suffered greater impact. He, too, updates to HEAD, and then draws some cracks on the vehicle's windshield.
He manages to finish his work before Sally finishes hers, and after admiring the fruits of his undeniable talent, he commits the
modified image. Shortly thereafter, Sally is finished with the car's new finish and tries to commit her changes. Bu